

Sarah Gaggl Logic Programming and Argumentation Group, TU Dresden, Germany

Navigating and Querying Answer Sets: How Hard Is It Really and Why?

joint work with: Dominik Rusovac, Markus Hecher, Martin Gebser, and Johannes K Fichte

Hanoi, 7th November 2024

Answer Set Programming (ASP)

knowledge representation

logic programming (non-monotonic) reasoning

Declarative problem solving

- planning
- product configuration
- diagnosis

logic program solving answer sets interpreting solution

modeling

problem

ASP Modelling and Solving

Answer: 1
q(5,13) q(7,14) q(2,8) q(6,11) q(4,7) q(1,3) q(9,10)
q(12,12) q(3,2) q(8,5) q(10,6) q(14,9) q(11,4) q(13,1)
Answer: 2
q(2,12) q(1,9) q(7,13) q(6,11) q(4,7) q(12,14) q(9,10)
q(3,3) q(5,4) q(8,5) q(10,6) q(14,8) q(11,1) q(13,2)
Answer: 3
q(1,13) q(7,14) q(3,9) q(6,11) q(4,7) q(2,4) q(9,10)
q(12,12) q(5,3) q(10,6) q(14,8) q(8,1) q(13,5) q(11,2)
Answer: 365596
q(4,13) q(1,9) q(7,14) q(3,8) q(2,6) q(8,11) q(11,12)
q(5,4) q(12,10) q(9,5) q(6,1) q(13,7) q(10,3) q(14,2)
SATISFIABLE

Navigating ASP Solution Spaces

```
#const n=14.
{q(I, 1..n)} == 1 :- I = 1..n.
{q(1..n, J)} == 1 :- J = 1..n.
:- {q(D-J,J)} >=2, D=2..2*n.
:- {q(D+J,J)} >=2, D=1-n..n-1.
```

トー

Diverse Solutions: Solution: 1 q(1,12) q(2,8) q(3,6) q(4,14) q(5,9) q(6,2) q(7,5)q(14,1) q(9,11) q(10,7) q(11,10) q(12,4) q(13,13) q(8,3)Solution: 2 q(1,1) q(2,10) q(3,5) q(4,7) q(5,12) q(6,3) q(7,11)q(8,2) q(9,14) q(10,9) q(11,4) q(12,13) q(13,8) q(14,6)Solution: 3 q(1,11) q(2,2) q(3,10) q(4,6) q(5,3) q(6,1) q(7,13)q(8,7) q(9,12) q(10,14) q(11,8) q(12,5) q(13,9) q(14,4)

```
Quantitative Reasoning:
* zoom in
```

```
* zoom out
```

* ...

Visual Approach:

* zoom in

* zoom out

* ...

Weighted Faceted Answer Set Navigation

[1] Johannes Klaus Fichte, Sarah Alice Gaggl, Dominik Rusovac. Rushing and Strolling among Answer Sets - Navigation Made Easy Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), 2022.

	2		5		1		9	
8			2		3			6
	3			6			7	
		1						
5	4						1	9
						7		
	9			3			8	
2			8		4			7
	1		9		7		6	

How to solve this Sudoku as quick as possible?

Which moves (queens) have the least/most impact?

Weighted Faceted Answer Set Navigation

[1] Johannes Klaus Fichte, Sarah Alice Gaggl, Dominik Rusovac. Rushing and Strolling among Answer Sets - Navigation Made Easy Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), 2022.

How to solve this Sudoku as quick as possible?

How can we find answers without going through all solutions?

Which moves (queens) have the least/most impact?

Outline

- Preliminaries
- Weighted Faceted Navigation
- Complexity Results for Facet Reasoning
- Querying Answer Sets
- Conclusion

Preliminaries

Definition (logic program)

A (normal disjunctive) logic program Π over a set of atoms $\{\alpha_0,\ldots,\alpha_n\}$ is a finite set of rules r of the form:

 $\alpha_0 \mid \ldots \mid \alpha_k \leftarrow \alpha_{k+1}, \ldots, \alpha_m, {\sim} \alpha_{m+1}, \ldots, {\sim} \alpha_n. \text{ where } 0 \leq k \leq m \leq n$

Remark: We focus on ground programs without extended rules.

$$\begin{split} \mathcal{AS}(\Pi) \dots \text{answer sets (solutions)} \\ 2^{\mathcal{AS}(\Pi)} \dots \text{solution space} \\ \mathcal{BC}(\Pi) \coloneqq \bigcup \mathcal{AS}(\Pi) \dots \text{brave consequences} \\ \alpha \in \mathcal{BC}(\Pi) \dots \text{partial solution} \\ \mathcal{CC}(\Pi) \coloneqq \bigcap \mathcal{AS}(\Pi) \dots \text{cautious consequences} \end{split}$$

Part 1 Weighted Faceted Navigation

 $\Pi: \quad a \, | \, b. \quad c \, | \, d \leftarrow b. \quad e.$

 $\Pi: a | b. c | d \leftarrow b. e.$

<u>Facets</u>: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}$

ANSWER	1:	\mathbf{a}, \mathbf{e}
ANSWER	2:	$\mathbf{b}, \mathbf{c}, \mathbf{e}$
ANSWER	3:	$\mathbf{b}, \mathbf{d}, \mathbf{e}$

 $\begin{array}{ll} \Pi: \ a \mid b. \ c \mid d \leftarrow b. \ e. & \\ \hline \textbf{ANSWER 1:} \ a, e \\ \hline \textbf{Facets:} \ \mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\} & \\ \hline \textbf{ANSWER 2:} \ b, c, e \\ \hline \textbf{Routes:} \ \Delta^{\Pi} \coloneqq \{\langle f_0, \ldots, f_n \rangle \mid f_i \in \mathcal{F}(\Pi), 0 \leq i \leq n\} \cup \{\epsilon\} & \\ \hline \textbf{ANSWER 3:} \ b, d, e \\ \hline \end{array}$

 $\Pi: \quad a \, | \, b. \quad c \, | \, d \leftarrow b. \quad e.$

<u>Facets</u>: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}\$

<u>Routes</u>: $\Delta^{\Pi} \coloneqq \{ \langle f_0, \dots, f_n \rangle \mid f_i \in \mathcal{F}(\Pi), 0 \le i \le n \} \cup \{ \epsilon \}$

ANSWER 1: a,e ANSWER 2: b,c,e ANSWER 3: b,d,e

Navigating and Querying Answer Sets LPArg / Sarah Gaggl Hanoi, 7th November 2024

slide 9 of 24

 $\Pi: \quad a \, | \, b. \quad c \, | \, d \leftarrow b. \quad e.$

<u>Facets</u>: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}\$

<u>Routes</u>: $\Delta^{\Pi} \coloneqq \{ \langle f_0, \dots, f_n \rangle \mid f_i \in \mathcal{F}(\Pi), 0 \le i \le n \} \cup \{ \epsilon \}$

ANSWER 1: a,e ANSWER 2: b,c,e ANSWER 3: b,d,e

Navigating and Querying Answer Sets LPArg / Sarah Gaggl Hanoi, 7th November 2024

slide 9 of 24

 $\Pi: \quad a \, | \, b. \quad c \, | \, d \leftarrow b. \quad e.$

<u>Facets</u>: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}$

<u>Routes</u>: $\Delta^{\Pi} \coloneqq \{ \langle f_0, \dots, f_n \rangle \mid f_i \in \mathcal{F}(\Pi), 0 \le i \le n \} \cup \{ \epsilon \}$

ANSWER 1: a, e ANSWER 2: b, c, e ANSWER 3: b, d, e

 $\Pi: \quad a \, | \, b. \quad c \, | \, d \leftarrow b. \quad e.$

<u>Facets</u>: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}$

<u>Routes</u>: $\Delta^{\Pi} \coloneqq \{ \langle f_0, \dots, f_n \rangle \mid f_i \in \mathcal{F}(\Pi), 0 \le i \le n \} \cup \{ \epsilon \}$

ANSWER 1: a,e ANSWER 2: b,c,e ANSWER 3: b,d,e

 $\Pi: \quad a \, | \, b. \quad c \, | \, d \leftarrow b. \quad e.$

<u>Facets</u>: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}$

<u>Routes</u>: $\Delta^{\Pi} \coloneqq \{ \langle f_0, \dots, f_n \rangle \mid f_i \in \mathcal{F}(\Pi), 0 \le i \le n \} \cup \{ \epsilon \}$

Navigating and Querying Answer Sets LPArg / Sarah Gaggl Hanoi, 7th November 2024

slide 9 of 24

What is the effect of taking a certain navigation step?

Can we somehow characterize sub-spaces beforehand?

[1] Johannes Klaus Fichte, S.A.G., Dominik Rusovac. Rushing and Strolling among Answer Sets - Navigation Made Easy Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), 2022.

What is the effect of taking a certain navigation step?

Can we somehow characterize sub-spaces beforehand?

V Let's do some counting!

Quantifying effects of navigation steps

The Weight of a Facet

Definition (weighting function)

We call $#: \{\Pi^{\delta} \mid \delta \in \Delta^{\Pi}\} \rightarrow \mathbb{N}$ weighting function, whenever $#(\Pi^{\delta}) > 0$, if $|\mathcal{AS}(\Pi)| \ge 2$.

Definition (weight)

Let $\delta \in \Delta^{\Pi}$, $f \in \mathcal{F}(\Pi)$ and δ' be a redirection of δ w.r.t. f. The *weight* of f w.r.t. #, Π^{δ} and δ' is defined as:

$$\omega_{\#}(\mathbf{f}, \Pi^{\delta}, \delta') \coloneqq \begin{cases} \#(\Pi^{\delta}) - \#(\Pi^{\delta'}), & \text{if } \langle \delta, \mathbf{f} \rangle \notin \Delta_{\mathrm{s}}^{\Pi} \text{ and } \delta' \neq \epsilon; \\ \#(\Pi^{\delta}) - \#(\Pi^{\langle \delta, \mathbf{f} \rangle}), & \text{otherwise.} \end{cases}$$

Facet Counting Weight

Count Facets with $\omega_{\#_{\mathcal{F}}}$

- $\omega_{\#_{\mathcal{F}}}$ provides information on the similarity/diversity of solutions
- Outputting the facet-counting weight $\omega_{\#_F}$ for a given program Π and route δ is in $\Delta_3^P[1]$
- Precise computational complexity of facet problems remained widely open

```
\begin{split} \mathcal{AS}(\Pi) &= \{\{\mathbf{a}, \mathbf{e}\}, \{\mathbf{b}, \mathbf{c}, \mathbf{e}\}, \{\mathbf{b}, \mathbf{d}, \mathbf{e}\}\}\\ & \omega_{\#\mathcal{F}}(\overline{\mathbf{c}}, \Pi, \boldsymbol{\epsilon}) = 2 \end{split}\mathcal{AS}(\Pi^{(\overline{\mathbf{c}})}) &= \{\{\mathbf{a}, \mathbf{e}\}, \{\mathbf{b}, \mathbf{d}, \mathbf{e}\}\} \end{split}
```

 Johannes Klaus Fichte, S.A.G., Dominik Rusovac. Rushing and Strolling among Answer Sets - Navigation Made Easy Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), 2022.

Rushing and Strolling among Answer Sets

Definition (strictly goal-oriented navigation mode)

The *stricly goal-oriented* navigation mode $\nu_{sgo}^{\#}: \Delta_s^{\Pi} \times \mathcal{F}(\Pi) \rightarrow 2^{\mathcal{AS}(\Pi)}$ is defined by:

 $\nu_{\rm sgo}^{\#}(\delta, f) \coloneqq \begin{cases} \mathcal{AS}(\Pi^{(\delta, f)}), & \text{if } f \in \max_{\omega_{\#}}(\Pi^{\delta}); \\ \mathcal{AS}(\Pi^{\delta}), & \text{otherwise.} \end{cases}$

Definition (explore navigation mode)

The explore navigation mode $\nu_{expl}^{\#}: \Delta_s^{\Pi} \times \mathcal{F}(\Pi) \to 2^{\mathcal{AS}(\Pi)}$ is defined by:

$$\nu_{\mathrm{expl}}^{\#}(\delta, \mathbf{f}) \coloneqq \begin{cases} \mathcal{AS}(\Pi^{\langle \delta, \mathbf{f} \rangle}), & \text{if } \mathbf{f} \in \min_{\omega_{\#}}(\Pi^{\delta}); \\ \mathcal{AS}(\Pi^{\delta}), & \text{otherwise.} \end{cases}$$

Part 2 Complexity Results for Facet Reasoning

Complexity Results

Problem	Given	Task	Disj	Tight/Normal	Reference
AspFacetReason	Π , a $\in \operatorname{at}(\Pi)$	$\mathbf{a} \in \mathcal{F}(\Pi)$	$\Sigma_2^{ ext{P}}$ -c	NP-c	Theorem 4
Exact-k-Facets	Π , k $\in \mathbb{N}_0$	$ \mathcal{F}(\Pi) = \mathrm{k}$	$\mathrm{D}_2^{\mathrm{P}}$ -c	D_1^P -c	Theorem 7
Atleast-k-Facets	Π , k $\in \mathbb{N}_0$	$ \mathcal{F}(\Pi) \ge \mathrm{k}$	Σ^{P}_2 -c	NP-c	Corollary 8
AtMost-k-Facets	Π , k $\in \mathbb{N}_0$	$ \mathcal{F}(\Pi) \le \mathrm{k}$	$\Pi^{\mathbf{\bar{P}}}_{2}$ -c	NP-c	Corollary 9
FacetNumCompare	Π_1 , Π_2	$ \mathcal{F}(\Pi_1) > \mathcal{F}(\Pi_2) $	$\Theta^{ extsf{P}}_3$ -c	Θ_2^{P} -c	Theorem 10

Part 3 Querying Answer Sets

Querying Solution Spaces

- Propositional queries to select answer sets matching specific conditions
- Program Π , prop. formula F, answer sets of Π that satisfy F $\sigma_F(\Pi) \coloneqq \{M \in \mathcal{AS}(\Pi) \mid M \vDash F\}$
- Express propositional query itself in ASP

EAS

Example

$$\Pi_1 = \{ p \leftarrow \neg q; q \leftarrow \neg p; r \lor s \leftarrow q; t \leftarrow \}.$$

The answer sets of Π_1 are $\mathcal{AS}(\Pi_1)$ = $\{\{p,t\}, \{q,r,t\}, \{q,s,t\}\}$, and $\mathcal{F}(\Pi_1)$ = $\{p,q,r,s\}$.

Querying Solution Spaces

- Propositional queries to select answer sets matching specific conditions
- Program Π , prop. formula F, answer sets of Π that satisfy F $\sigma_F(\Pi) \coloneqq \{M \in \mathcal{AS}(\Pi) \mid M \vDash F\}$
- Express propositional query itself in ASP

Example

 $\Pi_1 = \{ p \leftarrow \neg q; \ q \leftarrow \neg p; \ r \lor s \leftarrow q; \ t \leftarrow \}.$

The answer sets of Π_1 are $\mathcal{AS}(\Pi_1)$ = {{p,t}, {q,r,t}, {q,s,t}}, and $\mathcal{F}(\Pi_1)$ = {p,q,r,s}.

Query for $F = (\neg r \land s) \lor (p \land \neg q)$?

Querying Solution Spaces

- Propositional queries to select answer sets matching specific conditions
- Program Π , prop. formula F, answer sets of Π that satisfy F $\sigma_F(\Pi) \coloneqq \{M \in \mathcal{AS}(\Pi) \mid M \vDash F\}$
- Express propositional query itself in ASP

Example

$$\Pi_1 = \big\{ p \leftarrow {\sim} q; \; q \leftarrow {\sim} p; \; r \lor s \leftarrow q; \; t \leftarrow \big\}.$$

The answer sets of Π_1 are $\mathcal{AS}(\Pi_1)$ = {{p,t}, {q,r,t}, {q,s,t}}, and $\mathcal{F}(\Pi_1)$ = {p,q,r,s}.

Query for
$$F = (\neg r \land s) \lor (p \land \neg q)$$
?
 $\sigma_{(\neg r \land s) \lor (p \land \neg q)}(\Pi_1) = \{\{p, t\}, \{q, s, t\}\}$

Matching all Elements

Terms

$\sigma_{\bigwedge_{\ell \in \mathcal{L}} \ell}(\Pi) = \mathcal{AS}(\Pi \cup \{\leftarrow \sim \ell \mid \ell \in \mathcal{L}\})$

 Π program, L set of literals

Matching all Elements

Terms

$$\sigma_{\bigwedge_{\ell \in L} \ell}(\Pi) = \mathcal{AS}(\Pi \cup \{\leftarrow \sim \ell \mid \ell \in L\})$$

Π program, L set of literals

Example

$$\Pi_1 = \{ p \leftarrow \neg q; \ q \leftarrow \neg p; \ r \lor s \leftarrow q; \ t \leftarrow \}, \ \mathcal{AS}(\Pi_1) = \{ \{ p, t \}, \ \{q, r, t \}, \ \{q, s, t \} \}$$

 $\sigma_{p \wedge \neg q}(\Pi_1) = \mathcal{AS}(\Pi_1 \cup \{\leftarrow \neg p; \leftarrow q\}) = \{\{p, t\}\}$

Matching at least one Element

Clauses

 $\sigma_{\bigvee_{\ell \in L} \ell}(\Pi) = \mathcal{AS}(\Pi \cup \{\leftarrow \sim L\})$

 Π program, L set of literals, $\sim\!L\coloneqq\{\sim\!\ell\mid\ell\in L\}$

Matching at least one Element

Clauses

$$\sigma_{\bigvee_{\ell \in L} \ell}(\Pi) = \mathcal{AS}(\Pi \cup \{\leftarrow \sim L\})$$

 Π program, L set of literals, ${\sim}L\coloneqq\{{\sim}\ell\mid\ell\in L\}$

Example

 $\Pi_1 = \{ p \leftarrow \neg q; \ q \leftarrow \neg p; \ r \lor s \leftarrow q; \ t \leftarrow \}, \ \mathcal{AS}(\Pi_1) = \{ \{ p, t \}, \ \{q, r, t \}, \ \{q, s, t \} \}$

 $\sigma_{s \lor \neg q}(\Pi_1) = \mathcal{AS}(\Pi_1 \cup \{\leftarrow \sim s, q\}) = \{\{p, t\}, \{q, s, t\}\}$

CNFs

$\sigma_{\mathrm{F}}(\Pi) = \mathcal{AS}(\Pi \cup \{\leftarrow \sim L_i \mid L_i \in \mathrm{F}\})$

 Π program, L set of literals, F a simple formula in CNF, F = $\{L_1,\ldots,L_m\}$ set of clauses

Matching CNFs

CNFs

$$\sigma_{\mathrm{F}}(\Pi) = \mathcal{AS}(\Pi \cup \{\leftarrow \sim L_i \mid L_i \in \mathrm{F}\})$$

 Π program, L set of literals, F a simple formula in CNF, F = $\{L_1,\ldots,L_m\}$ set of clauses

Example

$$\Pi_1 = \{ p \leftarrow \neg q; q \leftarrow \neg p; r \lor s \leftarrow q; t \leftarrow \}, \ \mathcal{AS}(\Pi_1) = \{ \{ p, t \}, \{ q, r, t \}, \{ q, s, t \} \}$$

 $\sigma_{(p \vee \neg q) \land (\neg s \vee r)}(\Pi_1) = \mathcal{AS}(\Pi_1 \cup \{\leftarrow \neg p, q; \leftarrow s, \neg r\}) = \{\{p, t\}, \{q, r, t\}\}$

Matching DNFs

DNFs

 $\sigma_F(\Pi) = \{ M \smallsetminus \{a_1, \dots, a_m\} \mid M \in \mathcal{AS}(\Pi \cup \{a_i \leftarrow \neg \ell \mid 1 \leq i \leq m, \ell \in L_i\} \cup \{\leftarrow a_1, \dots, a_m\}) \}$

where a_1, \ldots, a_m are fresh atoms

 Π program, L set of literals, F a simple formula in DNF, F = $\{L_1,\ldots,L_m\}$ set of terms

Matching DNFs

DNFs

 $\sigma_F(\Pi) = \{ M \smallsetminus \{a_1, \dots, a_m\} \mid M \in \mathcal{AS}(\Pi \cup \{a_i \leftarrow \neg \ell \mid 1 \leq i \leq m, \ell \in L_i\} \cup \{\leftarrow a_1, \dots, a_m\}) \}$

where a_1,\ldots,a_m are fresh atoms

 Π program, L set of literals, F a simple formula in DNF, F = $\{L_1,\ldots,L_m\}$ set of terms

Example

 $\Pi_1 = \{ p \leftarrow \sim q; \ q \leftarrow \sim p; \ r \lor s \leftarrow q; \ t \leftarrow \}, \ \mathcal{AS}(\Pi_1) = \{ \{ p, t \}, \ \{ q, r, t \}, \ \{ q, s, t \} \}$

$$\begin{split} \sigma_{(\neg r \land s) \lor (p \land \neg q)}(\Pi_1) &= \{ M \smallsetminus \{a_1, a_2\} \mid M \in \mathcal{AS}(\Pi_1 \cup \{a_1 \leftarrow r; \ a_1 \leftarrow \neg s; \ a_2 \leftarrow \neg p; \ a_2 \leftarrow q; \leftarrow a_1, a_2\}) \} \\ &= \{ \{p, t\}, \{q, s, t\} \} \end{split}$$

fasb - Faceted Answer Set Browser

REPL on top of clingo solver implementing: ν_{go} , $\nu_{sgo}^{\#}$, $\nu_{expl}^{\#}$ for $\# \in \{\#_{\mathcal{AS}}, \#_{\mathcal{F}}\}$ https://github.com/drwadu/fasb

	fasb web application
-a -b -d input an encoding - input a cnf: one clause per line with whitespace seperated literals (use '~' for negation) - choose an option in the drop-down list	2 a :- not b. b :- not a. 3 c;d :- b.
- input an encoding - input a cnf: one clause per line with whitespace seperated literals (use '~' for negation) - choose an aption in the drop-down list	ab⊸c ∽a⊸b⊸d
 input a cnf: one clause per line with whitespace seperated literals (use `~` for negation) choose an option in the drop-down list 	answer sets 😝 enter
	 input a cnf: one clause per line with whitespace seperated literals (use `~` for negation) choose an option in the drop-down list

https://drwadu.github.io/web-fasb.github.io/

Summary & Future Work

Summary:

- Weighted faceted navigation allows to quantitatively explore the solution space
- Complexity results for facet reasoning
- Empirical evaluation of facet reasoning (in paper)
- Extend facet reasoning to queries on ASP solution spaces

Summary & Future Work

Summary:

- Weighted faceted navigation allows to quantitatively explore the solution space
- Complexity results for facet reasoning
- Empirical evaluation of facet reasoning (in paper)
- Extend facet reasoning to queries on ASP solution spaces

Future Work:

- We expect facet reasoning to be of interest for various formalisms in KR and AI (QBFs, planning, argumentation, DL, epistemic logic programming, constraint programming and paraconsistent reasoning
- Characterise practical applications for facet reasoning, while approximate or exact solution counting would be required otherwise
- Investigate the complexity of facets in the presence of preferences

Thanks to the Collaborators

Dominik Rusovac

Markus Hecher

Martin Gebser

Johannes Fichte

Thanks to our sponsors: BMBF (Grant 01IS20056_NAVAS), DFG (Grant TRR 248), FWF (Grant Y698)

