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Abstract

Motivated by medical terminology applications, we
investigate the decidability of the well known ex-
pressive DL, �	��

� , extended with role inclusion
axioms (RIAs) of the form ��������� . We show
that this extension is undecidable even when RIAs
are restricted to the forms ��������� or ��������� ,
but that decidability can be regained by further re-
stricting RIAs to be acyclic. We present a tableau
algorithm for this DL and report on its implemen-
tation, which behaves well in practise and provides
important additional functionality in a medical ter-
minology application.

1 Motivation
The description logic (DL) ����

� [Horrocks et al., 1999;
Horrocks and Sattler, 2002b] is an expressive knowledge rep-
resentation formalism that extends � �	! [Schmidt-Schauß
and Smolka, 1991] (a notational variant of the multi modal
logic " [Schild, 1991]) with qualifying number restrictions,
inverse roles, role inclusion axioms (RIAs) �#�$� , and
transitive roles. The development of ����

� was motivated
by several applications, one of which was the representation
of knowledge about complex physically structured domains
found, e.g., in chemical engineering [Sattler, 2000] and med-
ical terminology [Rector and Horrocks, 1997].

Although �	��

� allows many important properties of
such domains to be captured (e.g., transitive and inverse
roles), one extremely useful feature that it cannot express
is the “propagation” of one property along another prop-
erty [Padgham and Lambrix, 1994; Rector, 2002; Spackman,
2000]. E.g., it may be useful to express the fact that certain
locative properties are transfered across certain partonomic
properties so that a trauma or lesion located in a part of a body
structure is recognised as being located in the body structure
as a whole. This enables highly desirable inferences such as a
fracture of the neck of the femur being inferred to be a kind of
fracture of the femur, or an ulcer located in the gastric mucosa
being inferred to be a kind of stomach ulcer.

The importance of these kinds of inference, particularly
in medical terminology applications, is illustrated by the fact
that the Grail DL [Rector et al., 1997], which was specifically

designed for use with medical terminology, is able to repre-
sent these kinds of propagation (although it is quite weak in
other respects). Moreover, in another medical terminology
application using the comparatively inexpressive DL � �	! , a
rather complex “work around” is performed in order to repre-
sent similar propagations [Schulz and Hahn, 2001].1 Similar
expressiveness was also provided in the CycL language by
the transfersThro statement [Lenat and Guha, 1989].

It is quite straightforward to extend ����

� so that this
kind of propagation can be expressed: simply allow for role
inclusion axioms of the form �%���&�&� , which then enforces
all models 
 to interpret the composition of ��' with �(' as a
sub-relation of �)' . E.g., the above examples translate into*,+,-/.10,23+54768039 � 65-/:�6<;�65-168039>=3? � *,+,-8.10@23+54�680891A
which implies thatBDC@+@2/4FE1C@G3HJIF*,+,-/.10,23+54768039@KMLON@G,2<P1HJI�6F-/:76<;�6F-16/039>=5?DK B@G<Q,E1CDR
is subsumed by/a specialization ofBDC1+,2/4FE1C1GSHTIF*,+,-8.D0,23+54�6/0391K B1G<Q,E1C
Unfortunately, this extension leads to the undecidability of
the interesting inference problems; see [Wessel, 2001] for an
undecidability proof and [Baldoni, 1998; Baldoni et al., 1998;
Demri, 2001] for the closely related family of Grammar Log-
ics. On closer inspection of the problem, we observe that only
RIAs of the form ���D�&��� or �S�F����� are required in order
to express propagation. Surprisingly, it turns out that ����
)�
extended with this restricted form of RIAs is still undecidable.
Decidability can be regained, however, by further restricting
the set of RIAs to be acyclic (in a non-standard way). This
additional restriction does not seem too severe: the above ex-
amples are still covered, acyclic sets of RIAs should suffice
for many applications, and cycles in RIAs may even be an
indicator of modelling flaws [Rector, 2002]. We call this de-
cidable logic UV

� .

Here, we present the above undecidability result and prove
the decidability of ����

� with acyclic RIAs via a tableau-
based decision procedure for concept satisfiability. The al-
gorithm works by transforming concepts of the form W�� K X ,
where � is a role, into concepts of the form W�� KYX , where � is
a non-deterministic finite automaton (NFA). These automata

1In this approach, so-called SEP-triplets are used both to com-
pensate for the absence of transitive roles in Z\[(] , and to express
the propagation of properties across a distinguished “part-of” role.



are derived from a set of RIAs U by first unfolding U into a
set of implications ����� L U R between regular expressions and
roles, and then transforming the regular expressions into au-
tomata. The algorithm is of the same complexity as the one
for ����

� —in the size of ����� L U R and the length of the input
concept—but, unfortunately, ����� L U R is exponential in U . We
present a syntactic restriction that avoids this blow-up; inves-
tigating whether this blow-up can be avoided in general will
be part of future work. Finally, in order to evaluate the prac-
ticability of this algorithm, we have extended the DL system
FaCT [Horrocks, 1998] to deal with acyclic RIAs. We discuss
how the properties of NFAs are exploited in the implementa-
tion, and we present some preliminary results showing that
the performance of the extended system is comparable with
that of the original, and that it is able to compute inferences of
the kind mentioned above w.r.t. the well known Galen medi-
cal terminology knowledge base [Rector and Horrocks, 1997;
Horrocks, 1998].

For full proofs, the interested reader is referred to [Hor-
rocks and Sattler, 2002a].

2 Preliminaries
In this section, we introduce the DL �	��� 

� . This includes
the definition of syntax, semantics, and inference problems.

Definition 1 Let � and 	 be sets of concept and role names.
The set of roles is 	�

�<�����>����	�� . For roles ��� (each
of which can be inverse), a role inclusion axiom (RIA) is an
expression of the form ���)����� , ���3�@��� ����� , or ���3�1��� �
� � . A generalised role box (g-RBox) is a set of RIAs.

An interpretation 
�� L! ' A#" ' R associates, with each role
name � , a binary relation � '�$  '�%  ' . Inverse roles are
interpreted as usual, i.e.,L �&� R ''�(�*),+ A.-0/ ��) -(A + / ���\'1� for each role �2�3	 .

An interpretation 
 is a model of a g-RBox U if it satisfies
each inclusion assertion in U , i.e., if

�
' � $ �\' � for each � � �&� � � U and
�\' � � �
' � $ �\' 4 for each ����� ��� ��� 4 �TU ,

where � stands for the composition of binary relations.

Transitive role names were not introduced since � �@���&�
is equivalent to saying that � is a transitive role.

To avoid considering roles such as � �5� , we define a func-
tion 687�9 on roles as follows: 687�9 L � R � �:� if � is a role name,
and 687�9 L � R � � if �(� �;� .

Obviously, if � � � � �<� U ( ��� �$� �=� U
or � � �>� U ), then each model of U also satisfies
687�9 L � R �?6@7#9 L � R �A687�9 L � R ( 687#9 L � R �:687�9 L � R �A687#9 L � R and
687�9 L � R �B6@7#9 L � R ). Thus, in the following, we assume that a
g-RBox always contains both “directions” of a RIA.

For a g-RBox U , we define the relation � * to be the
transitive-reflexive closure of � over U .

Definition 2 A role � is simple if it does not have implied
sub-roles, i.e., if �1��� �C� ��� 4 implies � 4 � * � does not hold.

The set of �	�'� 
)� -concepts is the smallest set such that
(i) every concept name is a concept, and, (ii) if

X
, D are

concepts, � is a role (possibly inverse), � is a simple role
(possibly inverse) , and E is a nonnegative integer, then

X�H D ,

XGF D , H X , W�� K X ,
I � KYX ,

L.I E � K X�R , and
LKJ E � K X�R are also

concepts.
An interpretation 
L� L! ' A#" ' R consists of a set

 ' , called
the domain of 
 , and a valuation

" ' which maps every concept
to a subset of

 ' and every role to a subset of
 ' %  ' such

that, for all concepts
X

, D , roles � , � , and non-negative
integers E , the following equations are satisfied, where M.N
denotes the cardinality of a set N :L H X�R 'O�  '�P X ' ,L X H D R ' � X '�Q D ' ,

L XGF D R ' � X ' 
�D ' ,L I � KYX�R 'O�R� - � I + K ) -(A + / �%�
' and +S� X '5� ,L W�� KYX�R '��R� - � W0+ K ) - A + / �%�
' implies +S� X '5� ,LKI E � KYX�R '��R� - �TMU�#+'�V) - A + / �T�
' and +S� X '5� I EW� ,LKJ E � KYX�R ' �R� - �TMU�#+'�V) - A + / �T� ' and +S� X ' � J EW� .
A concept

X
is called satisfiable w.r.t. a g-RBox U iff there

is a model 
 of U with
X 'YX��Z . A concept D subsumes a

concept
X

w.r.t. U (written
X �\[]D ) iff

X ' $ D�' holds
for each model 
 of U . For an interpretation 
 , an element- �  ' is called an instance of a concept

X
iff
- � X ' .

Remarks: number restrictions
L.I E � K X�R and

LKJ E � K X�R are
restricted to simple roles (intuitively these are (possibly in-
verse) roles that are not implied by others) since ����
)� with-
out this restriction is undecidable [Horrocks et al., 1999].

For DLs that are closed under negation, subsumption and
(un)satisfiability can be mutually reduced:

X ��D iff
X H HWD

is unsatisfiable, and
X

is unsatisfiable iff
X �_^ H HW^ for

some concept name ^ . It is straightforward to extend these
reductions to g-RBoxes and TBoxes. In contrast, the reduc-
tion of inference problems w.r.t. a TBox to pure concept in-
ference problems (possibly w.r.t. a g-RBox), deserves spe-
cial care: �	��

� is expressive enough to internalise TBoxes,
i.e., to reduce reasoning w.r.t. TBoxes to reasoning with-
out TBoxes [Schild, 1991; Horrocks et al., 1999]. Thus, in
the following, we restrict our attention to the satisfiability of
���'� 

� -concepts.

2.1 Relationship with other formalisms
Grammar logics are a class of propositional multi modal
logics where the accessibility relations are “axiomatised”
through a grammar [Farinãs del Cerro and Penttonen, 1988].
More precisely, for `a� , bdc modal parameters, the production
rule `0� K K K `fehgibj� K K K b�k can be viewed as a notational vari-
ant for the RIA bl�J� K K K �mb�kT��`a�J� K K K �m`fe K Analogously to
the DL case, the semantics of a grammar logic takes into ac-
count only those frames/relational structures that “satisfy the
grammar”.

Now grammars are traditionally organised in (refinements
of) the Chomsky hierarchy, which induces a hierarchy of
grammar logics, e.g., context free grammar logics are those
propositional multi modal logics where the accessibility rela-
tions can be axiomatised through a context free grammar. Un-
surprisingly, the expressiveness of the grammars influences
the expressiveness of the corresponding grammar logics. It
was shown that satisfiability of regular grammar logics is
ExpTime-complete [Demri, 2001], whereas this problem is
undecidable for context free grammar logics [Baldoni, 1998;
Baldoni et al., 1998]. The latter result is closely related to the
undecidability proof in [Wessel, 2001].



Here, we are concerned with (a) multi modal logics
that provide for a converse operator on modal parameters
and graded modalities (to restrict the number of accessible
worlds; see, e.g., [Tobies, 2001]) and (b) a certain sub-class
of context-free grammars. In our undecidability proof in Sec-
tion 3, the main difficulty was to develop a grammar that
generates the language � L���� R k L����1R k � E��
	�� using only
productions of the form � g#� � or � g � � .2 We can
construct a “similar” grammar � with � L � R Q L���� R�
3L����1R�
 �
� L���� R k L����DR k �lE���	�� . The production rules of � are

D g ^�D A ^ g ^ X�AX g � X�A � g ��D A ^�g �7A K K K D g �>K

Role value maps (RVMs) [Brachman and Schmolze, 1985;
Schmidt-Schauss, 1989] are closely related to the RIAs
investigated here. RVMs are concepts of the form
� � K K K � e��� � � K K K � k , for ��� , � � roles, whose interpreta-
tion

L � � K K K � e��� � � K K K � k R ' is defined as follows:

� - �  ' � L ��� K K K ��e R ' L -�R $ L �5� K K K � k R ' L,-�R � A
where

L ��� K K K ��e R ' L,-�R denotes the set of those +��  ' that
are reachable from

-
via �)' � � K K K �
�
' e . Thus the RIA ���

�&��� is equivalent to saying that each individual must be an
instance of � ������ . The undecidability proof of KL-ONE
[Schmidt-Schauss, 1989] also involves RVMs ���� � � , and
thus cannot be adapted easily to our logic.

3 ��� �"!$# is undecidable
Due to the syntactic restriction on RIAs, we were not able
to adapt the undecidability proof for � ��! with context-free
or linear grammars in [Baldoni, 1998; Baldoni et al., 1998;
Demri, 2001], the one for � ��! with role boxes [Wessel,
2001], or the one for KL-ONE [Schmidt-Schauss, 1989] to
prove undecidability of ������
)� . In the following, we sketch
the reduction of the undecidable domino problem [Berger,
1966] to ���'��
)� satisfiability.

Definition 3 A domino system % � L D A'&%A)(�R consists of
a non-empty set of domino types D �2�lDS� A K K K A D ka� , and of
sets of horizontally and vertically matching pairs

& $ D % D
and
( $ D % D . The problem is to determine if, for

a given % , there exists a tiling *,+.- / % - / g D such
that for all 0 A Ei�1- / , )�* L 0 A E R A * L 0
243 A E R./ � & and
)�* L 0 A E R A * L 0 A E5263 RK/ � ( .

For a domino system % , we define a ���3��

� -concept
X87

and a g-RBox U:9 such that % has a tiling iff
X;7

is satisfiable
w.r.t. U 7 . Due to space limitation, we only present U 7 :

�=<T�J��+ � A <T� �>< A@? ��� - � A"? � � ? �A	CB�DEBGF�� 

� - ��IH � + � � + � A - ��IH � - � � - ��JH �
+ ��IH � - � � - � A + ��JH � + � � + ��IH � �A	CB�D8B�FV�

where K and L denotes addition and subtraction modulo four.
Existential and number restrictions on roles

?
and < (for

the horizontal and vertical neighbours) are used to ensure that
a point has at most one vertical and at most one horizontal

2Thanks to Christof Löding at RWTH Aachen!
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Figure 1: The staircase structure and the effects of U 7 .

successor, and that these successors satisfy the horizontal and
vertical matching conditions induced by

&
and
(

; this, as
well as ensuring that each point is associated with exactly
one domino type, is standard in domino reductions.

The next step is rather special: we do not enforce a grid
structure, but a structure with “staircases”, which is illus-
trated in Figure 1. To this purpose, we introduce four sub-
roles <AX A K K K A < 4 of < and four sub-roles

? X A K K K A�? 4 of
?

, and
ensure that we only have “staircases”. An D -staircase is an
alternating chain of < � and

? � edges, without any other <lc -
or
? c -successors. At each point on the

-
-axis, two staircases

start that need not meet again, one D -staircase starting with
<T� and one D@LY3 -staircase starting with

? �IZ � . A symmetric
behaviour is enforced for the nodes on the + -axis.

It only remains to ensure that, if two elements
�
,
�=[

repre-
sent the same point in the grid, then they are associated with
the same domino type:

�
and
��[

“represent the same point” if
there is an E and an instance

�
on the

-
-or the + -axis such that

both
�

and
��[

are reachable by following a staircase starting at�
for E steps, i.e., if there is a < � ? � -path (resp.

? � < � -path) of
length E from

�
to
�
, and a

? �JZ ��< �IZ � -path (resp. < �IH � ? �JH � -
path) of length E from

�
to
�S[

.
To this purpose, we add super roles

- � of
? � and + � of

<T� (for which we use dashed arrows in Figure 1), and the
last group of RIAs in U 7 . These role inclusion axioms en-
force appropriate, additional role successorships between el-
ements, and we use the additional roles

- � and + � since we
only want to have at most one < � or

? � -successor. For each
2 staircases starting at the same element on one of the axes,
these RIAs ensure that each pair of elements representing the
same point is related by + � . To see this, consider the conse-
quences of the RIAs for elements representing the four pointsL 3 A 	 R A K K K A L�\@A 3 R , and “apply” the RIA + �� - X�� - X . Next,
“apply”

- �� - X�� - �� , and finally
- �� +]X ��+]X , which yields the

+ X -link between the two elements representing
L^\1A 3 R . Then,

starting with + �� + X �A+ � , we can continue with the pointsL�\@A 3 R A K K K A L F A�\5R and work up the role inclusion axioms and
up the staircase.

The above observations imply that the concept
X_7

is satis-
fiable w.r.t. ` 7 and U 7 iff % has a solution.



Theorem 1 Satisfiability of ����� 
)� -concepts w.r.t. gener-
alized RBoxes is undecidable.

4 � ! # is decidable
In this section, we show that �	��

� with acyclic generalised
RBoxes, UV

� , is decidable. We present a tableau-based
algorithm that decides satisfiability of UV
)� -concepts, and
therefore also subsumption in UV

� and, using internalisa-
tion, both inferences w.r.t. TBoxes. The tableau algorithm
implemented in the FaCT system [Horrocks, 1998] was ex-
tended to the one presented here, and the empirical results
are reported in Section 5.

Definition 4 Let U be a g-RBox (containing always both di-
rections of a RIA; see above). A role � directly affects a role
� if � X� � and either � ���B� U , � �)� � ����U , or
� ��� � �Y��U . Let “affects” be the transitive closure of
“directly affects”. An acyclic generalised RBox (a-RBox) is
a g-RBox where “affects” has no cycles. UV

� is the restric-
tion of ���'� 

� to a-RBoxes.

Please note that, in a-RBoxes, we can no longer say that a
role � is symmetric using � ���:� and ��� � � since this
would yield an “affects” cycle of length

\
.

Syntactic transformations Before specifying this algorithm,
we transform the RBox to make the presentation of the algo-
rithm easier—basically, we unfold the role hierarchy to make
all implications explicit.

Firstly, for each (possibly inverse) role � we define two
regular expressions as follows:

b�� + � L������	��
���
������ � � R 
 � L���������
���
������ � � R 

� � + �

� b�� if � � ������X� UL b � R � if � � �����2� U
Secondly, we iteratively replace roles in � � with unions of
regular expressions of roles, working our way up the affect-
ing relation. We start with roles “almost” minimal w.r.t. the
affecting relation, i.e., we start with roles � such that all roles
� which affect � are not affected. We proceed with roles di-
rectly affected by roles that are either already treated or not
affected by other roles, and do the following:� � + � L � � with � replaced with ��
 ����
* R ����� � ��� R and,

for each ��X� � occurring in � � do� � + � L � � with � replaced with
� � �

* R"! �#� R K
After this recursion, we define ����� L U R + � � � � � � �
� occurs in U�� .

Due to the acyclicity of U , the recursion in this transfor-
mation terminates after at most E steps for E the number of
role inclusion axioms in U . Please note that, by construction,
for each (possibly inverse) role � occurring in U , ����� L U R
contains exactly one inclusion � � ��� .

For example, for the RIAs U
��� � ��� A �%�%$ � � A �5� � ��� ����� A
� � �8� � ��� � A ( �8� � ��� � A � � ��� A � � ���
the above transformation yield a set ����� L U R containingL � 
 � � � 
� 
 L�( 
 � � R 
 � � R 
 �&$ 
 � � A

��
T���S� 
� 
 L�( 
 �5� R 
 ��� ��� A
���=� 
� �&��� A L^( 
 �5� R 
 �����&��� A ( 
 �5� ���C� K

Unfortunately, the size of ���*� L U R can be exponential in the
size of U . A further syntactic restriction which avoids this
exponential blow-up is described in Section 4.1.

The regular role terms on the left hand side of ����� L U R are
read with the standard semantics for regular role expressions,
(i.e., using union, composition, and transitive closure of bi-
nary relations, see, e.g., [Schild, 1991]). We use � L � R to de-
note the language described by a regular expression � .
Lemma 1 An interpretation 
 is a model of an acyclic gen-
eralised RBox U iff 
 is a model of ���*� L U R .
The Tableau Algorithm tries to construct, for an input
UV

� -concept D and an a-RBox U , a tableau (an abstraction
of a model) for D w.r.t. U . We can prove that this algorithm
constructs a tableau for D and U iff D is satisfiable w.r.t.
U , and thus decides satisfiability of UV

� concepts w.r.t. an
a-RBox. But for the use of NFAs introduced below, this algo-
rithm is quite similar to the one for ����

� [Horrocks et al.,
1999; Horrocks and Sattler, 2002b].

If � occurs in U , then � � � � �h����� L U R , and we can
build a non-deterministic finite automaton (NFA) � � with
� L � � R � � L � � R . Due to the use of non-deterministic au-
tomata, � � can be of size linear in � � � � . Otherwise, � � is a
(two-state) automaton with � L � � R �(�<��� .

For � an NFA and ' a state in � , �)( denotes the NFA
obtained from � by making ' the (only) initial state of � ,
and we use ' g ! ' [ � � to denote that � has a transition
labelled with � from ' to ' [ .

As usual, each concept can be easily transformed into an
equivalent one in negation normal form (NNF, i.e., negation
occurs in front of concept names only), and we use �H X for the
NNF of a concept

X
. For a concept

X
, *,+ -/. L X�R is the smallest

set that contains
X

and that is closed under sub-concepts and
�H . Then 01*,+ -2. L X�A U R is the superset of */+ -2. L X�A U R that con-

tains W�� !( K D for each � occurring in U or
X

with ' a state in
� ! and W�� K D �3*,+ -/. L X�R .

A completion tree 4 for a UV

� concept D and an a-
RBox U is a tree where each node

-
is labelled with a set5 L,-�R $ 01*/+ -/. L D A U R and each edge ) -(A + / from a node

-
to its

successor + is labelled with a non-empty set
5 L ) -(A + / R $ U

of (possibly inverse) roles occurring in D and U . Finally,
completion trees come with an explicit inequality relation X

K
�

on nodes which is implicitly assumed to be symmetric.
If � � 5 L ) -(A + / R for a node

-
and its successor + and

� � * � , then + is called an � -successor of
-

and
-

is called an
687�9 L � R -predecessor of + . If + is an � -successor or an 687#9 L � R -
predecessor of

-
, then + is called an � -neighbour of

-
. Fi-

nally, ancestor is the transitive closure of predecessor.
For a role � , a concept

X
and a node

-
in 4 we define

�76 L - A X�R + ���#+��l+ is an � -neighbour of
-

and
X � 5 L + R � .

A node is blocked iff it is either directly or indirectly
blocked. A node

-
is directly blocked iff none of its ances-

tors are blocked, and it has ancestors
- [

, + and + [ such that
(1) + is not the root node; (2)

-
is a successor of

- [
and +

is a successor of + [ ; and (3)
5 L -�R � 5 L + R , 5 L - [ R � 5 L + [ R ,5 L ) - [ A.-0/ R � 5 L ),+ [ A + / R . A node + is indirectly blocked if one

of its ancestors is blocked.



� H
: if
X � HTX �O� 5 L -�R , - is not indirectly blocked,
and � X � A X � � X$ 5 L,-�R

then
5 L,-�R + � 5 L,-�R 
 � X � A X � �� F

: if
X � FTX �O� 5 L -�R , - is not indirectly blocked,
and � X � A X �T� Q 5 L,-�R � Z

then
5 L,-�R + � 5 L,-�R 
 ��� � for some �B� � X � A X � �� I

: if
I � KYX � 5 L -�R , - is not blocked, and-

has no � -neighbour + with
X � 5 L + R

then create a new node + with5 L ) - A + / R + ���<�;� and
5 L + R + �(� X �� WC� : if W�� K X � 5 L -�R , - is not indirectly blocked, and

W�� ! KYX X� 5 L,-�R
then

5 L,-�R + � 5 L,-�R 
 � W�� ! KYX �� W0� : if W���� KYX � 5 L,-�R , - is not indirectly blocked,� g ! ' in ��� , and + is an � -neighbour of
-

with
W�� ( K X��� 5 L + R

then
5 L + R + � 5 L + R 
 � W���( KYX �� W 4 : if W�� K X � 5 L -�R , - is not indirectly blocked,	 � � L � R , and

X X� 5 L,-�R
then

5 L,-�R + � 5 L,-�R 
 � X ��
?: if

LKJ E � K X�R � 5 L,-�R , - is not indir. blocked, and +
is an � -neighbour of

-
with � X�A �H X � Q 5 L + R � Z

then
5 L + R + � 5 L + R 
 ���?� for some � � � X�A �H X �� I

: if
LKI E � K X�R � 5 L,-�R , - is not blocked, and there are
no +*� A K K K A + k��%�76 L,-(A X�R with + � X

K
� + c for each D X��


then create E new nodes + � with
5 L ) - A + � / R ���<�;� ,5 L + � R ��� X � , and + �;X

K
� + c for 3 B�D
��
.B E .� J

: if
LKJ E � K X�R � 5 L,-�R , - is not indirectly blocked,� �76 L - A X�R�� E , there are + A�� ���&6 L - A X�R with
not + X

K
� � and + is not an ancestor of

�
,

then
5 L��1R + � 5 L��1R 
 5 L + R and if

�
is an ancestor of

-
then

5 L ) �,A -a/ R + � 5 L ) �,A -a/ R 
 687#9 L 5 L ) - A + / R R
else

5 L ) - A�� / R + � 5 L ) - A��*/ R 
 5 L ) - A + / R
and remove + and the sub-tree below +

Figure 2: The Expansion Rules for UV

� .

For a node
-

,
5 L,-�R

is said to contain a clash if, for some
concept name ^ , �j^ A HW^�� $ 5 L,-�R

, or if there is some
concept

LKJ E � KYX�R � 5 L,-�R and
-

has E 2 3 � -neighbours
+ X A K K K A + k with

X � 5 L + � R and + ��X
K
�(+ c for all 	 B D���
$B

E . A completion tree is clash-free if none of its nodes con-
tains a clash, and it is complete if no rule from Figure 2 can
be applied to it.

For a UV

� -concept D , the algorithm starts with the com-
pletion tree consisting of a single root node

-
with

5 L,-�R �
�jD�� and X

K
� empty. It applies the expansion rules in Figure 2,

stopping when a clash occurs, and answers “ D is satisfiable
w.r.t. U ” iff the completion rules can be applied in such a way
that they yield a complete and clash-free completion tree, and
“ D is unsatisfiable w.r.t. U ” otherwise.

Most of the rules have been used before for fragments of
UV

� —only the three W � -rules are new: they are elegant gen-
eralisations of standard rules for value restrictions taking into
account automata.

As usual, we can prove termination, soundness, and com-
pleteness of the tableau algorithm to show that it indeed de-

cides satisfiability of UV

� -concepts w.r.t. a-RBoxes.

Theorem 2 The tableau algorithm decides satisfiability and
subsumption of UV
)� -concepts w.r.t. a-RBoxes and TBoxes.

4.1 Avoiding the blow-up
So far, the satisfiability algorithm presented here involves
an exponential blow-up compared to similar algorithms that
are implemented in state-of-the-art description logic reason-
ers [Horrocks, 1998; Haarslev and Möller, 2001]: the closure01*,+ -2. L D A U R is exponential in U since we have “unfolded”
the a-RBox U into the possibly exponentially large ����� L U R .
While investigating whether and how this exponential blow-
up can be avoided, we observe that a further restriction of the
syntax of a-RBoxes avoids this blow-up:

An a-RBox U is called simple if, whenever ���S� � � �
and � � � � � � are in U , then � � and � � do not have a
common subrole � [ that occurs on the right hand side of an
axiom � [ � � [ ��� [ or � [ � � [ ��� [ .

For a simple a-RBox U , ����� L U R is only polynomial in the
size of U since each term used in the substitution step of the
construction of ���*� L U R from U is at most used once in each
other axiom.

Thus, for simple role hierarchies, the tableau algorithm
presented here is of the same worst case complexity as for
����
)� , namely 2NExpTime. A detailed investigation of the
exact complexity will be part of future work.

5 Empirical Evaluation
In order to evaluate the practicability of the above algorithm,
we have extended the DL system FaCT [Horrocks, 1998] to
deal with UV
)� , and we have carried out a preliminary em-
pirical evaluation.

From a practical point of view, one potential problem with
the UV
)� algorithm is that the number of different automata,
and hence the number of different W�� K X concepts, could
be very large. Moreover, many of these automata could be
equivalent (i.e., accept the same languages). This could ad-
versely effect blocking, and thus lead to a serious degradation
in performance [Horrocks and Sattler, 2002b].

The FaCT implementation addresses these possible prob-
lems by transforming all of the initial NFAs into minimal
deterministic finite automata (DFAs) using the AT&T FSM
LibraryTM [Mohri et al., 1998]. One DFA is constructed for
each role, the states in each automaton are uniquely num-
bered, and the implementation uses concepts of the form
W�� K X , where � is the number of a state in one of the au-
tomata. Because the automata are deterministic, for each con-
cept of the form W�� KYX in the label of a node

-
, the

� W � -rule
can add at most one concept to the label of a given neigh-
bouring node + per role in the label of the edge ) - A + / . More-
over, because the automata are minimal, if W�� K X leads to the
presence of W�� [ K X in some successor node as a result of re-
peated applications of the

� WC� -rule, then W�� KYX is equivalent
to W�� [ K X iff � ��� [ . As � and � [ are numbers, such com-
parisons are very easy, and minimisation of automata avoids
unnecessary blocking delays.

The implementation is still at the “beta” stage, but it has
been possible to carry out some preliminary tests using the



well known Galen medical terminology KB [Rector and Hor-
rocks, 1997; Horrocks, 1998]. This KB contains 2,740 named
concepts and 413 roles, 26 of which are transitive. The roles
are arranged in a relatively complex hierarchy with a maxi-
mum depth of 10. Classifying this KB using FaCT’s �	��

�
reasoner takes 116s on an 800 MHz Pentium III equipped
Linux PC. Classifying the same KB using the new UV

� rea-
soner took a total of 275s, but this includes 135s to compute
the minimal DFAs for the role box (it should be noted that this
is an unusually large and complex role box, and that comput-
ing the DFAs is a preprocessing step that will not need to be
repeated when the remainder of the KB is extended, modified,
or queried). This result is encouraging as it shows that, in the
case of the Galen KB at least, using automata in W�� K X con-
cepts does not, in itself, lead to an unacceptable degradation
in performance.

The KB was then extended with several RIAs that express
the propagation of location across various partonomic roles.
These included*,+,-8.D0,23+54�6/039 � 6F-��D0��,6��5:�6<;�6F-D68039>=5? � *,+,-8.D0,23+54�6/0391A*,+,-/.10,23+54768039 � 65-8.1+��@G3C,=5? � *,+,-8.D0,23+54�6/0391K
Classifying the extended KB took 280s, an increase of only
2% (3.5% if we exclude the DFA computation time). Sub-
sumption queries w.r.t. this KB revealed that, e.g.,BFC@+,2/4FEDC@GSHTIF*,+,-/.10,23+547680391K N@G,2/P,=3?FB@G<Q,EDC

was implicitly a kind ofBFC@+,2/4FEDC@GSHTIF*,+,-/.10,23+547680391K B@G<Q,E1C
(
N1G,2/P,=5?5B@G<Q,E1C

is a solid division of
B@G<Q,EDC

), and
�	�@28G5C)HTIF*,+,-8.D0,23+54�6/039@K 
1+@-/4DC�6F2��FE�230,-8+

was implicitly a kind of�	�@28G5C)HTIF*,+,-8.D0,23+54�6/039@K
�5410<Q�+,2<*
(

D+,-/4DC�652��FE�230@-3+

is a layer of
�54@0 Q�+,2<*

). None of these sub-
sumption relationships held w.r.t. the original KB. The times
taken to compute these relationships w.r.t. the classified KB
could not be measured accurately as they were of the same
order as a system clock tick (10ms).
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