Finite and Algorithmic Model Theory

Lecture 2 (Dresden 19.10.22, Short version with errors?)

Lecturer: Bartosz "Bart" Bednarczyk

TECHNISCHE UNIVERSITÄT DRESDEN & UNIWERSYTET WROCŁAWSKI

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?

- **2.** Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1.
- 3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].
- Atomic k-types and extensions axioms. Theory $\mathbb{E}\mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong , the Rado graph (the random graph).
- $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Feel free to ask questions and interrupt me!

Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!

Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$.

Let \mathcal{G}_n be the class of simple undirected graphs with n nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with n nodes".

$$\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$$

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

- **1.** Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim_{n\to\infty}\frac{|\{\mathfrak{G}\in\mathcal{G}_n:\mathfrak{G}\models\mathcal{P}\}|}{|\mathcal{G}_n|}=\lim_{n\to\infty}\frac{1}{2^{\frac{n(n-1)}{2}}}=0.$
- **2.** Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_3(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3n}(\mathcal{P})\geq 1-(1-\frac{1}{8})^n$, we get $\mu_\infty(\mathcal{P})=1$.
- **3.** Take $\mathcal{P}:=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P})=\frac{1}{2}$. Why?

$$\mu_{\infty}(\mathcal{P}) = \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{2^{\frac{n(n-1)}{2}}} = \frac{\sum_{i \geq 0} \binom{n(n-1)/2}{2i}}{2^{\frac{n(n-1)}{2}}} = \left[\text{Sum of Even Index Binomial Coeff.} \right] = \frac{2^{\frac{n(n-1)}{2}-1}}{2^{\frac{n(n-1)}{2}}} = \frac{1}{2}$$

4. Take $\mathcal{P} :=$ "the graph has even number of nodes". Then $\mu_{\infty}(\mathcal{P})$ does not exist.

k-Types and Extension Axioms

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

A (k+1)-type t extends a k-type s if conjuncts $(s) \subseteq \text{conjuncts}(t)$ (c.f. the above picture).

An (s, t)-extension axiom $\sigma_{s,t}$ is $\forall x_1 \ldots \forall x_k \ s(x_1, \ldots, x_k) \rightarrow \exists x_{k+1} t(x_1, \ldots, x_k, x_{k+1})$.

$$\mathbb{E}\mathbb{A} := \left\{ orall x \
eg \mathbb{E}(x,x), \ orall xy \ \mathbb{E}(x,y)
ightarrow \mathbb{E}(y,x), \ \sigma_{s,t} \mid s \ ext{is k-type, t is $(k+1)$-type, t extends s}
ight\}$$

Why the theory $\mathbb{E}\mathbb{A}$ is important? Zero-One Law for $FO[\{E\}]$.

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)

For every formula $\varphi \in \mathsf{FO}[\{E\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1.

Proof

Take any $\varphi \in \mathsf{FO}[\{\mathsf{E}\}]$. By (4) either $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$. If $\mathbb{E}\mathbb{A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi) = 1$.

Otherwise $\mathbb{E}\mathbb{A}\models\neg\varphi$, so by (2) we infer $\mu_{\infty}(\neg\varphi)=1$, which leads to $\mu_{\infty}(\varphi)=1-\mu_{\infty}(\neg\varphi)=0$.

Applications?

- Evenness of the number of nodes/edges not $FO[\{E\}]$ -definable.
- No information about connectivity because $\mu_{\infty}("graph is connected") = 0$.

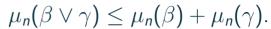
Proof of $\mathbb{E}\mathbb{A}\models\varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall\sigma\in\mathbb{E}\mathbb{A}\ \mu_{\infty}(\sigma)=1$).

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

$$\mu_n(\neg \alpha) = 1 - \mu_n(\alpha)$$

Compactness: $\mathbb{E}\mathbb{A} \models \varphi$ implies

there is $\mathbb{E}\mathbb{A}_0\subseteq_{\mathsf{fin}}\mathbb{E}\mathbb{A}$ implying φ



Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$.

Assume $\mathbb{E}\mathbb{A}\models\varphi$. By compactness, there is a finite $\mathbb{E}\mathbb{A}_0\subseteq\mathbb{E}\mathbb{A}$ such that $\mathbb{E}\mathbb{A}_0\models\varphi$.

So $\mu_n(\varphi) \geq \mu_n(\wedge \mathbb{E} \mathbb{A}_0)$, thus $\mu_n(\neg \wedge \mathbb{E} \mathbb{A}_0) \geq \mu_n(\neg \varphi)$.

Moreover (by our assumption), $\mu_n(\neg \sigma) = 1 - \mu_n(\sigma)$ tends to 0 when $n \to \infty$.

$$\mu_n(\neg \varphi) \leq \mu_n(\neg \wedge \mathbb{E}\mathbb{A}_0) = \mu_n(\bigvee_{\sigma \in \mathbb{E}\mathbb{A}_0} \neg \sigma) \leq \sum_{\sigma \in \mathbb{E}\mathbb{A}_0} \mu_n(\neg \sigma)$$

The sum $\sum_{\sigma \in \mathbb{E} \mathbb{A}_0} \mu_n(\neg \sigma)$ converges to 0 for $n \to \infty$, concluding $\mu_\infty(\varphi) = 1$.

$\mathbb{E}\mathbb{A}$ is satisfiable and complete (assuming ω -categoricity)

• Note that $\mathbb{E}\mathbb{A}\not\models \forall x\bot$ (due to $\mu_{\infty}(\forall x\bot)=0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E}\mathbb{A}$ is not complete. Thus we have $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\models\neg\varphi$ that are both models of $\mathbb{E}\mathbb{A}$.

Since $|\mathbb{E}\mathbb{A}|=\aleph_0$, by Löwenheim-Skolem we can assume w.l.o.g. that $\mathfrak A$ and $\mathfrak B$ are also countably-infinite.

But then, by ω -categoricity of $\mathbb{E}\mathbb{A}$, we infer $\mathfrak{A}\cong\mathfrak{B}$.

Thus $\mathfrak{A} \models \varphi$ and $\mathfrak{A} \models \neg \varphi$ (since $\mathfrak{B} \models \neg \varphi$). A contradiction!

Ad absurdum

Löwenheim-Skolem

 ω -categoricity

 \cong preserves \models

Today's final boss: $\mathbb{E}\mathbb{A}$ is ω -categorical

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A},\mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A:=\{a_1,a_2,\ldots\}$ and $B:=\{b_1,b_2,\ldots\}$.

Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$

The union $\bigcup \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$.

Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \dots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} .

If n+1 is even, we will select some element from $\mathfrak A$ (otherwise proceed analogously in $\mathfrak B$, proof omitted).

Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ?

There are unique n- and (n+1)-types s and t such that $s \subseteq t$, $\mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$.

Since \mathfrak{p}_n is a partial isomorphism, we have $\mathfrak{B} \models s(b_{i_1}, \ldots, b_{i_n})$. But $\sigma_{s,t} \in \mathbb{E}\mathbb{A}$ and $\mathfrak{B} \models \mathbb{E}\mathbb{A}!$

Thus $\mathfrak{B} \models \sigma_{s,t} := \forall x_1 \dots \forall x_n \ s(x_1,\dots,x_n) \rightarrow \exists x_{n+1} \ t(x_1,\dots,x_n,x_{n+1}).$

So there is an $b \in B$ so that $\mathfrak{B} \models t(b_{i_1}, \ldots, b_{i_n}, b)$. Continue from $\mathfrak{p}_{n+1} := \mathfrak{p}_n \cup \{(a_k \mapsto b)\}$.

ind. ass. $\mathfrak{B} \models \mathbb{E} \mathbb{A}$ Choose a witness

Extra: The Random Graph

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively.

Can we describe the countable model of $\mathbb{E}\mathbb{A}$?

Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ $(p_i$ is the i-th prime number)

Lemma

$$\mathfrak{G} \models \sigma_{s,t} := \forall x_1 \ldots \forall x_n \ s(x_1, \ldots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \ldots, x_n, x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$.

We divide indices $1, 2, \ldots, k$ into Con $:= \{i \mid E(x_i, x_{k+1})\}$ and DisC $:= \{i \mid \neg E(x_i, x_{k+1})\}$.

Thus, our a_{k+1} must be connected to all a_i with $i \in Con$ and disconnected from all a_i with $i \in DisC$.

 $a_{k+1} := \Pi_{i \in \mathsf{Con}} \; p_{a_i} \cdot q$, where q is any prime number bigger than $\Pi_{i=1}^k \; p_{a_i}$

And now it is easy to check our choice of a_{k+1} is correct.

Divide x_1, x_2, \dots, x_k biased on type connections with k+1 (Dis)connected with $x \approx (\text{non})$ dividable by the x-th prime number

Copyright of used icons and pictures

- 1. Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages.
- 2. Idea icon created by Vectors Market Flaticon flaticon.com/free-icons/idea.
- 3. Head icons created by Eucalyp Flaticon flaticon.com/free-icons/head
- 4. Dice icons created by Dimi Kazak Flaticon flaticon.com/free-icons/dice