The cf2 argumentation semantics revisited

SARAH ALICE GAGGL and STEFAN WOLTRAN, Institute of Information Systems, Database and Artificial Intelligence Group, Vienna University of Technology, Vienna A-1040, Austria.
E-mail: gaggl@dbai.tuwien.ac.at, woltran@dbai.tuwien.ac.at

Abstract

Abstract argumentation frameworks nowadays provide the most popular formalization of argumentation on a conceptual level. Numerous semantics for this paradigm have been proposed, whereby the cf2 semantics has shown to solve particular problems concerned with odd-length cycles in such frameworks. Due to the complicated definition of this semantics it has somehow been neglected in the literature. In this article, we introduce an alternative characterization of the cf2 semantics which, roughly speaking, avoids the recursive computation of subframeworks. This facilitates further investigation steps, like a complete complexity analysis. Furthermore, we show how the notion of strong equivalence can be characterized in terms of the cf2 semantics. In contrast to other semantics, it turns out that for the cf2 semantics strong equivalence coincides with syntactical equivalence. We make this particular behaviour more explicit by defining a new property for argumentation semantics, called the succinctness property. If a semantics \(\sigma \) satisfies the succinctness property, then for every framework \(F \), all its attacks contribute to the evaluation of at least one framework \(F' \) containing \(F \). We finally characterize strong equivalence also for the stage and the naive semantics. Together with known results these characterizations imply that none of the prominent semantics for abstract argumentation, except the cf2 semantics, satisfies the succinctness property.

Keywords: Abstract argumentation, cf2 semantics, succinctness, complexity, strong equivalence.

1 Introduction

Abstract argumentation frameworks (AFs), introduced by Dung [11], represent the most popular approach for formalizing and reasoning over argumentation problems on a conceptual level. Dung already introduced different extension-based semantics (preferred, complete, stable, grounded) for such frameworks. In addition, recent proposals tried to overcome several shortcomings observed for those original semantics. For instance, the semi-stable semantics [8], and likewise the stage semantics [23], handles the problem of the possible non-existence of stable extensions, while the ideal semantics [12] is proposed as a unique-status approach (each AF possesses exactly one extension) less skeptical than the grounded extension.

Another family of semantics, the so-called SCC-recursive semantics has been introduced in [7]. Hereby, a recursive decomposition of the given AF along strongly connected components (SCCs) is necessary to obtain the extensions. Among them, the cf2 semantics, first proposed in [3] and later discussed in [7], has been introduced in order to solve particular problems arising for AFs with odd-length cycles. It fulfills several requirements such as the symmetric treatment of odd- and even-length cycles, and ensures that attacks from self-defeating arguments have no influence on the selection of other arguments to be included in an extension. Furthermore, the cf2 semantics satisfies most of the evaluation criteria proposed in [4]. Basically, only the admissibility- and reinstatement criteria are violated. This is due to the fact that the cf2 semantics explicitly gives up on these conditions when it comes to evaluate SCCs. At this point, it has to be mentioned, however, that the property of admissibility turns out to be crucial when abstract argumentation is employed in certain forms of instantiation-based argumentation, see e.g. [9].

Vol. 23 No. 5, © The Author, 2012. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
Published online April 26, 2012 doi:10.1093/logcom/exs011
Due to the quite complicated definition of its semantics, the cf2 approach has been somehow neglected in the literature. For instance, a complete complexity analysis is still missing, although Nieves et al. [19] observed that the decision problem of verifying whether a set of arguments is a cf2 extension is polynomial-time computable. However, cf2 semantics attracted specific attention lately, for example in [1] it has been used to handle loops in Talmudic Logic.

In another branch of research, attention was directed to the investigation of redundant patterns in AFs. Oikarinen and Woltran [20] identified kernels that eliminate those redundant attacks of AFs and introduced the concept of strong equivalence: two AFs are strongly equivalent wrt. a semantics σ (i.e. they provide the same σ-extensions no matter how the two AFs are simultaneously extended), if their σ-kernels coincide. In [2], the notion of equivalence wrt. stable semantics has been studied also for logic-based argumentation systems. To the best of our knowledge, redundancies for the cf2 semantics have not been studied yet. As we show in this article, the cf2 semantics has the interesting feature that strong equivalence coincides with syntactical equivalence. In other words, for the cf2 semantics there are no redundant attacks.

The main contributions of this article are the following.

• To simplify further investigation, we first give an alternative characterization for the cf2 semantics. The original definition of Baroni et al. [7] involves a recursive computation of different sub-frameworks. Our aim here is to shift the need of recursion from generating sub-frameworks to arguments. We show that the required set of arguments can be captured via a fixed-point operator. This allows to characterize cf2 semantics using only linear recursion.

• With the alternative characterization at hand, we formally prove the following complexity results. (i) Verifying if a given set is a cf2 extension is in P; (ii) deciding if an argument is contained in some cf2 extension (credulous acceptance) is NP-complete; (iii) deciding if an argument is contained in all cf2 extension (skeptical acceptance) is coNP-complete; and (iv) checking whether there exists a non-empty cf2 extension is in P.

• As the third main contribution we define a new property for argumentation semantics called the succinctness property. As outlined above, a semantics satisfies the succinctness property or is maximal succinct iff no redundant attacks for this semantics exist. It turns out that the cf2 semantics is the only one that is maximal succinct, whereas for other semantics we can reuse results about strong equivalence [20] for an analysis on their succinctness. Our results thus provide a new classification for argumentation semantics, namely in terms of redundant attacks.

Parts of this article have been published in proceedings of conferences [17, 18]. Completely novel material is provided by the complexity analysis as well as by the investigations on the succinctness property.

2 Preliminaries

In this section we introduce the basics of abstract argumentation, the semantics we need for further investigations and some properties of the semantics we are mainly interested in this work, the cf2 semantics.

2.1 Abstract argumentation

The definition of abstract argumentation frameworks and the semantics are based on [11, 23].
Definition 2.1
An argumentation framework (AF) is a pair \(F = (A, R) \), where \(A \) is a finite set of arguments and \(R \subseteq A \times A \). The pair \((a, b) \in R\) means that \(a \) attacks \(b \). A set \(S \subseteq A \) of arguments defeats \(b \) (in \(F \)), if there is an \(a \in S \), such that \((a, b) \in R\). An argument \(a \in A \) is defeated by \(S \subseteq A \) (in \(F \)) iff, for each \(b \in A \), it holds that, if \((b, a) \in R\), then \(S \) defeats \(b \) (in \(F \)).

The inherent conflicts between the arguments are solved by selecting subsets of arguments, where a semantics \(\sigma \) assigns a collection of sets of arguments to an AF \(F \). The basic requirement for all semantics is that none of the selected arguments attack each other.

Definition 2.2
Let \(F = (A, R) \) be an AF. A set \(S \subseteq A \) is said to be conflict-free (in \(F \)), if there are no \(a, b \in S \), such that \((a, b) \in R\). We denote the collection of sets that are conflict-free (in \(F \)) by \(\text{cf}(F) \). A set \(S \subseteq A \) is maximal conflict-free or naive, if \(S \in \text{cf}(F) \) and for each \(T \in \text{cf}(F), S \not\subseteq T \). We denote the collection of all naive sets of \(F \) by \(\text{naive}(F) \).

Beside the naive semantics we will consider the following semantics in this work.

Definition 2.3
Let \(F = (A, R) \) be an AF. A set \(S \subseteq A \) is said to be
- a stable extension (of \(F \)), i.e. \(S \in \text{stable}(F) \), if \(S \in \text{cf}(F) \) and each \(a \in A \setminus S \) is defeated by \(S \) in \(F \).
- a stage extension (of \(F \)), i.e. \(S \in \text{stage}(F) \), if \(S \in \text{cf}(F) \) and there is no \(T \in \text{cf}(F) \) with \(T^+ R \supseteq S^+ R \), where \(S^+_R = S \cup \{ b \mid \exists a \in S, \text{ s.t. } (a, b) \in R \} \).
- an admissible extension, i.e. \(S \in \text{adm}(F) \) if \(S \in \text{cf}(F) \) and each \(a \in S \) is defended by \(S \).
- a preferred extension, i.e. \(S \in \text{pref}(F) \) if \(S \in \text{adm}(F) \) and for each \(T \in \text{adm}(F), S \not\subseteq T \).

We illustrate the different behaviour of the introduced semantics in the following example.

Example 2.4
Consider the AF \(F = (A, R) \) with \(A = \{a, b, c, d, e, f, g\} \) and \(R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, f), (f, g), (g, e)\} \) as in Figure 1. Then, the above defined semantics yield the following extensions.
- \(\text{stable}(F) = \emptyset \);
- \(\text{naive}(F) = \text{stage}(F) = \{[a, d, g], [a, c, e], [a, c, g]\} \);
- \(\text{adm}(F) = \{\}, [a], [c], [d], [a, c], [a, d]\} \);
- \(\text{pref}(F) = \{[a, c], [a, d]\} \).

2.2 The cf2 semantics

The semantics we are mainly interested in this work is based on a decomposition along the SCCs of an AF. Hence, we require some further formal machinery. A directed graph is called strongly connected if there is a path from each vertex in the graph to every other vertex of the graph. By \(\text{SCC}(F) \), we denote the set of strongly connected components of an AF \(F = (A, R) \), i.e. sets of vertices of the maximal strongly connected sub-graphs of \(F \); \(\text{SCC}(F) \) is thus a partition of \(A \). Moreover, for an argument \(a \in A \), we denote by \(C_F(a) \) the component of \(F \) where \(a \) occurs in, i.e. the (unique) set
We consider the framework exists an Let Formulation 2.6\footnote{Figure 1. The argumentation framework F from Example 2.4.} for the arguments for the framework F. Moreover, the union between (not necessarily disjoint) AFs is defined as $F_1 \cup F_2 = (A_1 \cup A_2, R_1 \cup R_2)$. Thus, the union of AFs can be defined as $F_1 = (A_1, R_1)$ and $F_2 = (A_2, R_2)$ are called disjoint if $A_1 \cap A_2 = \emptyset$. Moreover, the union between (not necessarily disjoint) AFs is defined as $F_1 \cup F_2 = (A_1 \cup A_2, R_1 \cup R_2)$.

Example 2.5

We consider the framework $F = (A, R)$ with $A = \{a, b, c, d, e, f, g, h, i\}$ and $R = \{(a, b), (b, c), (c, a), (b, d), (b, e), (d, f), (f, e), (f, g), (g, h), (h, i), (i, f)\}$ as illustrated in Figure 2. F has three SCCs, namely $C_1 = \{a, b, c\}$, $C_2 = \{d\}$ and $C_3 = \{e, f, g, h, i\}$. For example, the argument g belongs to C_3, thus $C_F(g) = C_3$.

It turns out to be convenient to use two different concepts to obtain sub-frameworks of AFs. Let $F = (A, R)$ be an AF and S a set of arguments. Then, $F|_S = ((A \cap S), R \cap (S \times S))$ is the sub-framework of F wrt. S and we also use $F - S = F|_{A \setminus S}$. We note the following relation (that we use implicitly later on), for an AF F and sets $S, S': F|_{S \setminus S} = F|_{S - S'} = (F - S')|_S$. In particular, for an AF F, a component $C \in SCCs(F)$ and a set S we thus have $F|_{C \setminus S} = F|_{C - S}$.

For the framework F of Example 2.5 and the set $S = \{f\}$. Then, $F|_{C_1 - S} = \{(e, g, h, i), \{(g, h), (h, i)\}\}$.

We now give the definition of the cf2 semantics that slightly differs from (but is equivalent to) the original definition in [3, 7]. (i) We use some of the notation established above, like the concept of sub-frameworks and the corresponding relations; (ii) $D_F(S)$, as introduced next, replaces the set $‘D_F(S, E)’$ and $F|_C - D_F(S)$ replaces $‘F|_C \cup \{\{S\}\}’$; moreover, the set of undefeated arguments $‘U_F(S, E)’$ as used in the general schema from [7], is not required here, because the base function for the cf2 semantics does not make use of this set. Next, we define the set of component-defeated arguments $D_F(S)$, which identifies all arguments that are attacked from a given set S from outside their SCC.

Definition 2.6

Let $F = (A, R)$ be an AF and $S \subseteq A$. An argument $b \in A$ is component-defeated by S (in F), if there exists an $a \in S$, such that $(a, b) \in R$ and $a \notin C_F(b)$. The set of arguments component-defeated by S in F is denoted by $D_F(S)$.
We thus conclude that we first identify the SCCs of extension of F.

Definition 2.7

Let $F = (\mathcal{A}, \mathcal{R})$ be an argumentation framework and S a set of arguments. Then, S is a cf2 extension of F, i.e. $S \in \text{cf2}(F)$, iff

- in case $|\text{SCCs}(F)| = 1$, then $S \in \text{naive}(F)$,
- otherwise, $\forall C \in \text{SCCs}(F), (S \cap C) \in \text{cf2}(F|_{C} - D_{F}(S))$.

In words, the recursive definition $\text{cf2}(F)$ is based on a decomposition of the AF F into its SCCs depending on a given set S of arguments. We illustrate the behaviour of this procedure in the following example.

Example 2.8

Consider the framework F from Example 2.5. We want to check whether $S = \{a, d, e, g, i\}$ is a cf2 extension of F (the arguments of the set S are highlighted in Figure 3). Following Definition 2.7, we first identify the SCCs of F, hence $\text{SCCs}(F) = \{C_1, C_2, C_3\}$ as in Example 2.5. Due to the attack (d,f) and $d \in S$ we obtain f as the only component-defeated argument, thus $D_{F}(S) = \{f\}$. This leads us to the following checks (see also Figure 4 that shows the involved sub-frameworks). Note here that in case $F|_{C_1} - D_{F}(S) = F|_{C_1}$ we only write $(S \cap C_1) \in \text{cf2}(F|_{C_1})$.

1. $(S \cap C_1) \in \text{cf2}(F|_{C_1})$: $F|_{C_1}$ consists of a single SCC; hence, we have to check whether $(S \cap C_1) = \{a\} \in \text{naive}(F|_{C_1})$, which indeed holds.
2. $(S \cap C_2) \in \text{cf2}(F|_{C_2})$: $F|_{C_2}$ consists of a single argument d (and thus of a single SCC); $(S \cap C_2) = \{d\} \in \text{naive}(F|_{C_2})$ thus holds.
3. $(S \cap C_3) \in \text{cf2}(F|_{C_3} - \{f\})$: $F|_{C_3} - \{f\} = F|_{\{e,g,b,i\}}$ consists of four SCCs, namely $C_4 = \{e\}$, $C_5 = \{g\}$, $C_6 = \{h\}$ and $C_7 = \{i\}$. Hence, we need a second level of recursion for $F’ = F|_{\{e,g,b,i\}}$ and $S’ = S \cap C_3$. Note that we have $D_{F}(S’) = \{h\}$. The single-argument AFs $F'|_{C_4} = F|_{\{e\}}$, $F'|_{C_5} = F|_{\{g\}}$, $F'|_{C_7} = F|_{\{i\}}$ all satisfy $(S’ \cap C_1) \in \text{naive}(F'|_{C_1})$; while $F'|_{C_6} - \{h\}$ yields the empty AF. Therefore, $(S’ \cap C_6) = \emptyset \in \text{cf2}(F|_{C_6} - \{h\})$ holds as well.

We thus conclude that S is a cf2 extension of F. Further cf2 extensions of F are $\{b,f,h\}$, $\{b,g,i\}$ and $\{c,d,e,g,i\}$. The extensions of the other semantics for this example are as follows:

- stable(F) = \emptyset;
- adm(F) = $\{\{g,i\}\}$;
- pref(F) = $\{\{g,i\}\}$.

For the stage semantics we obtain the same result as for the cf2 semantics, but this is not the case in general, as we are going to discuss in the next subsection.

![Figure 3. The argumentation framework F from Example 2.5.](image-url)
2.3 Properties of the cf2 semantics

The cf2 semantics has some special properties that clearly differ from the admissible based semantics. Especially the treatment of odd- and even-length cycles is more uniform in the case of cf2 semantics.

For our framework of Example 2.5 we obtain \{g, i\} as the only preferred extension. This comes due to the fact that in an odd-length cycle, as is the case in this example for the arguments a, b and c, none of these arguments can be defended. Let us modify the framework in the sense that we include a new argument x which makes the cycle even, as illustrated in Figure 5. Then, we obtain totally different preferred extensions, namely \{b, x, g, i\}, \{b, x, f, h\} and \{a, c, d, e, g, i\}, which are conform with the cf2 extensions of the modified AF F'. One possible application for the cf2 semantics, which makes use of that special behaviour, would be for example that we have three agents, let us call them A, B and C, where agent A disagrees with agent B, B disagrees with C and agent C disagrees with agent A. Additionally, we have further arguments and attacks as in Figure 2 that are independent from the disagreement of the agents. We would now want to have at least one of the agents to be chosen, which is not possible with the admissible based semantics like preferred. This is exactly what the cf2 semantics does by selecting the maximal conflict-free sets of the SCC \{a, b, c\}. If now there comes a fourth agent into play, let us call him X like in Figure 5, the situation of the whole framework does not change that drastically, we just have four in turn of three agents. But now, we obtain for both semantics, the preferred and the cf2 semantics, the same results.

One special case of an odd-length cycle is a self-attacking argument.
Example 2.9
Consider the following AF F:

\[
\begin{array}{c}
\text{a} \\
\downarrow \\
\text{b}
\end{array}
\]

Then, the empty set is the only preferred extension, whereas $\{a\}$ is a cf_2 extension. The motivation behind selecting $\{a\}$ as a reasonable extension is that it is not necessary to defend a against the attack from b, as b is a self-attacking argument.

Till now, we only mentioned positive properties of the cf_2 semantics compared to the admissible based semantics. The next example will show a more questionable behaviour.

Example 2.10
Consider the AF F:

\[
\begin{array}{c}
\text{a} \\
\rightarrow \\
\text{b} \\
\downarrow \\
\text{c} \\
\rightarrow \\
\text{d} \\
\end{array}
\]

We obtain $\text{stage}(F) = \text{pref}(F) = \text{stable}(F) = \{(a, c, e), [b, d, f]\}$, but $cf_2(F) = \text{naive}(F) = \{\{a, d\}, [b, e], [c, f], \{a, c, e\}, [b, d, f]\}$. In this example, we have an even-length cycle and the cf_2 semantics produce three more extensions. This does not really coincide with the motivation for a symmetric treatment of odd- and even-length cycles, as now the results differ significantly for an even-length cycle.

One suggestion to repair the undesired behaviour from Example 2.10, could be to check in Definition 2.7 for the case $|\text{SCCs}(F)| = 1$ whether $S \in \text{stage}(F)$ instead of $S \in \text{naive}(F)$. We leave a formalization of this modification for future work.

The relation between the introduced semantics is illustrated in Figure 6, an arrow from semantics σ to semantics τ encodes that each σ-extension is also a τ-extension. The relations between the cf_2 semantics and the stable, resp. the naive semantics, are due to [6].

As pointed out in Example 2.8, there is no particular relation between the cf_2 and the preferred semantics, but the stage and the cf_2 semantics coincide for this framework. The following examples will show that there is no particular relation between stage and cf_2 extensions as well.

Example 2.11
Consider the following AF F:
Here \{a, c\} is the only stage extension of \(F\) (it is also stable). Concerning the \(cf2\) semantics, note that \(F\) is built from a single SCC. Thus, the \(cf2\) extensions are given by the maximal conflict-free sets of \(F\), which are \{a, c\} and \{a, d\}. Thus, we have \(\text{stage}(F) \subset \text{cf2}(F)\).

As an example for a framework \(G\) such that \(\text{cf2}(G) \subset \text{stage}(G)\), consider the following AF:

Then \(G\) consists of two SCCs namely \(C_1 = \{a\}\) and \(C_2 = \{b, c\}\). The conflict-free sets of \(G\) are \(E_1 = \{a\}\) and \(E_2 = \{b\}\). Now it remains to check if \(E_1\) and \(E_2\) are also \(cf2\) extensions of \(G\). First we make the check for \(E_1\). Due to the attack \((a, b)\) and \(a \in E_1\) we obtain \(D_G(E_1) = \{b\}\). We have the following two cases:

1. \((E_1 \cap C_1) \in \text{cf2}(G|_{C_1})\), which holds, since \(\{a\} \in \text{naive}(G|_{C_1})\).
2. \((E_1 \cap C_2) \in \text{cf2}(G|_{C_2} - D_G(E_1))\), which holds, since \(\emptyset \in \text{naive}(G|_{\{c\}})\).

For \(E_2\) we obtain \(D_G(E_2) = \emptyset\). The check \((E_2 \cap C_1) \in \text{cf2}(G|_{C_1})\) does not hold, since \(\text{naive}(G|_{C_1}) = \{a\}\). Hence, \(E_2\) is not a \(cf2\) extension of \(G\). Thus, \(\text{cf2}(G) = \{E_1\}\) but \(\text{stage}(G) = \{E_1, E_2\}\).

3 An alternative characterization for the \(cf2\) semantics

In the original definition of the SCC-recursive semantics in [7], the computation is based on checking recursively whether a set of arguments fulfils a base function (depending on the semantics) in a single SCC. Thus, the computation is based on a decomposition of the framework along its SCCs. Our alternative characterization is based on the idea to decompose the framework as well, but differently to the original approach the decomposition is only recursive in terms of a certain set of arguments, for which we provide a fixed-point operator. This modification allows us to avoid the recursive computation of several sub-frameworks. Instead we only compute one, possibly not connected,
framework where we eliminate the arguments and corresponding attacks which are, what we call, ‘recursively component defeated’. We start with the following concept.

Definition 3.1
An AF $F = (A, R)$ is called separated if for each $(a, b) \in R$, $C_F(a) = C_F(b)$. We define $[[F]] = \bigcup_{C \in \text{SCCs}(F)} F|_C$ and call $[[F]]$ the separation of F.

In words, an AF is separated if there are no attacks between different SCCs. Thus, the separation of an AF always yields a separated AF.

The separation of the framework F of Example 2.5 is depicted in Figure 7. The following technical lemma will be useful later.

Lemma 3.2
For any AF F and set S of arguments, $\bigcup_{C \in \text{SCCs}(F)} [[F|_C - S]] = [[F - S]]$.

Proof. We first note that for disjoint AFs F and G, $[[F]] \cup [[G]] = [[F \cup G]]$ holds. Moreover, for a set S of arguments and arbitrary frameworks F and G, $(F - S) \cup (G - S) = (F \cup G) - S$ is clear. Using these observations, we obtain

$$\bigcup_{C \in \text{SCCs}(F)} [[F|_C - S]] = \bigcup_{C \in \text{SCCs}(F)} (F|_C - S)] = \bigcup_{C \in \text{SCCs}(F)} F|_C - S)] = [[[[F]] - S]].$$

It remains to show that $[[[[F]] - S]] = [[F - S]]$. Obviously, both AFs possess the same arguments A. Thus, let R be the attacks of $[[[[F]] - S]]$ and R' the attacks of $[[F - S]]$. $R \subseteq R'$ holds by the fact that each attack in $[[F]]$ is also contained in F. To show $R' \subseteq R$, let $(a, b) \in R'$. Then $a, b \notin S$, and $C_{F - S}(a) = C_{F - S}(b)$. From the latter, $C_F(a) = C_F(b)$ and thus (a, b) is an attack in $[[F]]$ and also in $[[F]] - S$. Again using $C_{F - S}(a) = C_{F - S}(b)$, shows $(a, b) \in R$.

Next, we define the level of recursiveness a framework shows with respect to a set S of arguments and then the aforementioned set of recursively component defeated arguments (by S) in an AF.

Definition 3.3
For an AF $F = (A, R)$ and a set S of arguments, we recursively define the level $\ell_F(S)$ of F wrt S as follows:

- if $|\text{SCCs}(F)| = 1$ then $\ell_F(S) = 1$;
- otherwise, $\ell_F(S) = 1 + \max(|\ell_{F|_{C - D_F(S)}}(S \cap C) | C \in \text{SCCs}(F))$.
We are now prepared to give our first alternative characterization, which establishes a to sum up the level of component. By the induction hypothesis, we thus obtain that, for each \(C = C_1, C_2, C_3 \) with \(C_1 = [a, b, c], C_2 = [d] \) and \(C_3 = [e, f, g, h, i] \). This leads to the following recursive calls:

- \(\ell_{F|S}(S \cap C_1) = 1 \),
- \(\ell_{F|S}(S \cap C_2) = 1 \),
- \(\ell_{F|S}(S \cap C_3) = 1 + \max \{ \ell_{F|S}(S \cap C_i) \mid C_i \in \text{SCCs}(F') \} \),

where \(F' = F|_{C_i} - D_F(S) \), \(S' = S \cap C_i \) and \(D_F(S') = \{h\} \), furthermore \(\text{SCCs}(F') = \{C_4, C_5, C_6, C_7\} \) with \(C_4 = \{e\}, C_5 = \{g\}, C_6 = \{h\} \) and \(C_7 = \{i\} \). As all those SCCs of \(F' \) are single SCCs, we obtain in each recursive call level 1.

To sum up the level of \(F \) wrt \(S \) is \(\ell_F(S) = 3 \). One can compare the tree of recursive calls in Figure 3 with the computation of \(\ell_F(S) \). When the height \(h \) of a tree is the length of the path from the root to the deepest node in the tree, we denote the height of the computation tree for the \(\text{cf}2 \) semantics for an \(AF \) \(F \) wrt \(S \) as \(h_F(S) \), then \(\ell_F(S) = h_F(S) + 1 \).

Definition 3.4

Let \(F = (A, R) \) be an \(AF \) and \(S \) a set of arguments. We define the set of arguments recursively component defeated by \(S \) (in \(F \)) as follows:

- if \(|\text{SCCs}(F)| = 1 \) then \(\mathcal{R}D_F(S) = \emptyset \);
- otherwise, \(\mathcal{R}D_F(S) = D_F(S) \cup \bigcup_{C \in \text{SCCs}(F)} \mathcal{R}D_{F|_{C}}(S \cap C) \).

We are now prepared to give our first alternative characterization, which establishes a \(\text{cf}2 \) extension \(S \) of a given \(AF \) \(F \) by checking whether \(S \) is maximal conflict-free in a certain separated framework constructed from \(F \) using \(S \).

Lemma 3.5

Let \(F = (A, R) \) be an \(AF \) and \(S \) be a set of arguments. Then,

\[
S \in \text{cf}2(F) \iff S \in \text{naive}(\{[F - \mathcal{R}D_F(S)]\}).
\]

Proof. We show the claim by induction over \(\ell_F(S) \).

Induction base. For \(\ell_F(S) = 1 \), we have \(|\text{SCCs}(F)| = 1 \). By definition \(\mathcal{R}D_F(S) = \emptyset \) and we have \(\{[F - \mathcal{R}D_F(S)]\} = \{[F]\} = F \). Thus, the assertion states that \(S \in \text{cf}2(F) \) iff \(S \in \text{naive}(F) \), which matches the original definition for the \(\text{cf}2 \) semantics in case the \(AF \) has a single strongly connected component.

Induction step. Let \(\ell_F(S) = n \) and assume the assertion holds for all \(AFS \) \(F' \) and sets \(S' \) with \(\ell_{F'}(S') < n \). In particular, we have by definition that, for each \(C \in \text{SCCs}(F) \), \(\ell_{F|_{C}}(S \cap C) < n \). By the induction hypothesis, we thus obtain that, for each \(C \in \text{SCCs}(F) \), the following holds:

\[
(S \cap C) \in \text{cf}2(F|_{C} - D_F(S)) \iff (S \cap C) \in \text{naive}(\{([F|_{C} - D_F(S)] - \mathcal{R}_{F,C}^{'})\})
\]

(3.1)
The operator is clearly monotonic, i.e. $\Delta_{F,S}(D) \subseteq \Delta_{F,S}(D')$ holds for $D \subseteq D'$. As usual, we let $\Delta_{F,S}^0 = \Delta_{F,S}(\emptyset)$ and, for $i > 0$, $\Delta_{F,S}^i = \Delta(\Delta_{F,S}^{i-1})$. Due to monotonicity the least fixed-point (lfp) of the operator exists and, with slight abuse of the notation, will be denoted as $\Delta_{F,S}$. The $\Delta_{F,S}$ operator applied to the empty-set computes recursively the arguments that are defeated from outside their component. Hence, it also takes into account that the SCCs of the framework may change during the computation. We need two more lemmata before showing that $\Delta_{F,S}$ captures $\mathcal{R} \mathcal{D}_F(S)$.
Lemma 3.8
For any $AF = (A, R)$ and any set $S \subseteq A$, $\Delta^0_{F,S} = D_F(S)$.

Proof. We have $\Delta^0_{F,S} = \Delta_{F,S}(\emptyset) = \{ a \in A \mid \exists b \in S : b \neq a, (b,a) \in R, a \not\in F b \}$. Hence, $a \in \Delta^0_{F,S}$, if there exists a $b \in S$, such that $(b,a) \in R$ and a does not reach b in F, i.e. $b \not\in C_F(a)$. This meets exactly the definition of $D_F(S)$.

Lemma 3.9
For any $AF = (A, R)$ and any set $S \in \epsilon(F)$,

$$\Delta_{F,S} = D_F(S) \cup \bigcup_{C \in SCC(F)} \Delta_{F|C \setminus D_F(S), (S \cap C)}.$$

Proof. Let $F = (A, R)$. For the \subseteq-direction, we show by induction over $i \geq 0$ that $\Delta^i_{F,S} \subseteq D_F(S) \cup \bigcup_{C \in SCC(F)} \Delta_{F|C \setminus D_F(S), (S \cap C)}$. To ease notation, we write $\hat{\Delta}_{F,S,C}$ as a shorthand for $\Delta_{F|C \setminus D_F(S), (S \cap C)}$, where $C \in SCC(F)$.

Induction base. For $i = 0$, $\Delta^0_{F,S} \subseteq D_F(S) \cup \bigcup_{C \in SCC(F)} \hat{\Delta}_{F,S,C}$ follows from Lemma 3.8.

Induction step. Let $i > 0$ and assume $\Delta^i_{F,S} \subseteq D_F(S) \cup \bigcup_{C \in SCC(F)} \hat{\Delta}_{F,S,C}$ holds for all $j < i$. Let $a \in \Delta^i_{F,S}$. Then, there exists a $b \in S$, such that $(b,a) \in R$ and $a \not\in D_F(S)$. If $b \not\in C_F(a)$, we have also $a \not\in \Delta^i_{F,S}$. If $b \in C_F(a)$, then, $b \not\in D_F(S)$ and, since $S \in \epsilon(F)$ and $b \in S$, also $b \not\in D_F(S)$. Thus, both a and b are contained in the framework $F|C \setminus D_F(S)$ (and so is the attack (b,a)) for $C = C_F(a)$. Moreover, $b \in (S \cap C)$. Towards a contradiction, assume now $a \not\in \hat{\Delta}_{F,S,C}$. This yields that $a \not\in D_F|C \setminus D_F(S) \setminus b$ for $D' = A \setminus \hat{\Delta}_{F,S,C}$, i.e. there exist arguments c_1, \ldots, c_n $(n > 1)$ in $F|C \setminus D_F(S)$ but not contained in $\hat{\Delta}_{F,S,C}$, such that $c_1 = a$, $c_n = b$, and $(c_j, c_{j+1}) \in R$, for all i with $1 \leq i < n$. Obviously all the c_i's are contained in F as well, but since $a \not\in D^i_{F,S}$ (recall that $D = A \setminus \Delta^i_{F,S}$), it must hold that at least one of the c_i's, say c, has to be contained in $\Delta^i_{F,S}$. By the induction hypothesis, we get $c \in \Delta^i_{F,S,C}$, a contradiction.

For the \supseteq-direction of the claim we proceed as follows. By Lemma 3.8, we know that $D_F(S) = \Delta^0_{F,S}$ and thus $D_F(S) \subseteq \Delta^i_{F,S}$. It remains to show that $\bigcup_{C \in SCC(F)} \Delta_{F|C \setminus D_F(S), (S \cap C)} \subseteq \Delta^i_{F,S}$. We show by induction over i that $\Delta^i_{F|C \setminus D_F(S), (S \cap C)} \subseteq \Delta^i_{F,S}$. Let $C \in SCC(F)$ and use $\hat{\Delta}_{F,S,C}$ as a shorthand for $\Delta^i_{F|C \setminus D_F(S), (S \cap C)}$.

Induction base. Let $a \in \Delta^i_{F,S,C}$. Then, there is a $b \in (S \cap C)$, such that attacks a in $F' = F|C \setminus D_F(S)$ and $a \not\in D^i_{F',S}$, where $A' = A \setminus \Delta^i_{F,S,C}$. For $C \in SCC(F)$, it follows that $a \not\in D^i_{F',S}$. Since $b \in (S \cap C)$, it follows that $a \not\in D^i_{F,S}$ (Lemma 3.8), we get $a \in \Delta^i_{F,s} \subseteq \Delta^i_{F,S}$.

Induction step. Let $i > 0$ and assume $\Delta^i_{F,S,C} \subseteq \Delta^i_{F,S}$ for all $j < i$. Let $a \in \Delta^i_{F,S,C}$. Then, there is a $b \in (S \cap C)$, such that attacks a in F' and $a \not\in D^i_{F',S}$, where $D' = A' \setminus \Delta^i_{F,S,C}$. Towards a contradiction, suppose $a \not\in \hat{\Delta}_{F,S,C}$. Since $b \in S$ and $(b,a) \in R$, it follows that there exist arguments c_1, \ldots, c_n $(n > 1)$ in $F \setminus \Delta^i_{F,S}$, such that $c_1 = a$, $c_n = b$, and $(c_i, c_{i+1}) \in R$, for all i with $1 \leq i < n$.

We are now able to obtain the desired relation.
LEMMA 3.10
For any AF $F = (A, R)$ and any set $S \in cf(F)$, $\Delta_{F,S} = RD_{F}(S)$.

PROOF. The proof is by induction over $\ell_{F}(S)$.

Induction base. For $\ell_{F}(S) = 1$, $|SCCs(F)| = 1$ by Definition 3.3. From this and Definition 3.4, we obtain $RD_{F}(S) = D_{F}(S) = \emptyset$. By Lemma 3.8, $\Delta_{F,S}^{0} = D_{F}(S) = \emptyset$. By definition, $\Delta_{F,S} = \emptyset$ follows from $\Delta_{F,S}^{0} = \emptyset$.

Induction step. Let $\ell_{F}(S) = n$ and assume the claim holds for all pairs $F', S' \in cf(F')$, such that $\ell_{F'}(S') < n$. In particular, this holds for $F' = F |_{C} - D_{F}(S)$ and $S' = (S \cap C)$, with $C \in SCCs(F)$. Note that $(S \cap C)$ is indeed conflict-free in $F |_{C} - D_{F}(S)$. By definition we have, $RD_{F}(S) = D_{F}(S) \cup \bigcup_{C \in SCCs(F)} RD_{F |_{C} - D_{F}(S)}(S \cap C)$ and by Lemma 3.9 we know that $\Delta_{F,S} = D_{F}(S) \cup \bigcup_{C \in SCCs(F)} \Delta_{F |_{C} - D_{F}(S), S \cap C}$. Using the induction hypothesis, i.e. $\Delta_{F |_{C} - D_{F}(S), S \cap C} = RD_{F |_{C} - D_{F}(S)}(S \cap C)$, the assertion follows.

We finally reached our main result in this section, i.e. an alternative characterization for cf2 semantics, where the need for recursion is delegated to a fixed-point operator.

THEOREM 3.11
For any AF F, $cf2(F) = \{S | S \in cf(F) \cap naive([F - \Delta_{F,S}])\}$.

PROOF. The result holds by the following observations. By Lemma 3.5, $S \in cf2(F)$ iff $S \in naive([F - RD_{F}(S)])$. Moreover, from Lemma 3.10, for any $S \in cf(F)$, $\Delta_{F,S} = RD_{F}(S)$. Finally, $S \in cf2(F)$ implies $S \in cf(F)$ (see [7], Proposition 47).

EXAMPLE 3.12
To exemplify the behaviour of $\Delta_{F,S}$ and $[F - \Delta_{F,S}]$, we consider the AF F and $S = \{a, d, e, g, i\}$ from Example 2.8. In the first iteration of computing the lfp of $\Delta_{F,S}$, we have $\Delta_{F,S}(\emptyset) = \{f\}$ because the argument f is the only one that is attacked by S but its attacker d is not reachable by f in F.

In the second iteration, we obtain $\Delta_{F,S}(f) = \{f, h\}$, and in the third iteration we reach the lfp with $\Delta_{F,S}(f, h) = \{f, h\}$. Hence, $[F - \Delta_{F,S}]$ of the AF F wrt S is given by

$$[F - \Delta_{F,S}] = \{(a, b, c, d, e, g, i), (a, b), (b, c), (c, a)\}.$$

Figure 8 shows the graph of $[F - \Delta_{F,S}]$. It is easy to see that $S \in naive([F - \Delta_{F,S}])$ as expected, since $S \in cf2(F)$. For comparison, Figure 9 shows the graph of $[F - \Delta_{F,S'}]$ wrt the cf2 extension $S' = \{b, f, h\}$ consisting of two SCCs.

![Figure 8. Graph of instance $[F - \Delta_{F,S}]$ of Example 3.12.](image-url)
4 Complexity analysis

In this section, we investigate the computational complexity of the cf2 semantics. We consider the following decision problems for given $F=(A,R)$, $a \in A$ and $S \subseteq A$:

- Ver_{cf2}^{a}: is $S \in cf2(F)$?
- Cred_{cf2}^{a}: is a contained in at least one cf2 extension of F?
- Skep_{cf2}^{a}: is a contained in every cf2 extension of F?
- NE_{cf2}^{a}: is there any $S \in cf2(F)$ for which $S \neq \emptyset$?

So far, the only mentionable reference in this context is the article of Nieves et al. [19], where the authors state that the decision problem Ver_{cf2} is in P. In the following, we prove this statement with the help of our alternative characterization.

Theorem 4.1

Ver_{cf2} is in P.

Proof. For any AF $F=(A,R)$ and a set $S \subseteq A$, to check if $S \in cf2(F)$ can be computed in polynomial time. We show that all steps in Definition 3.11 are in P. Verifying if $S \in cf2(F)$ and $S \in naive(F)$ can be done in polynomial time. Given $\Delta_{F,S}$, computing the instance $[[F - \Delta_{F,S}]]$ can be done efficiently; this follows from known results about graph reachability and efficient algorithms for computing SCCs [22]. It remains to show that the operator $\Delta_{F,S}(D)$ reaches its fixed-point after a polynomial number of iterations. The operator is clearly monotonic, and it is easy to see that in every iteration less or equal connections between the arguments do exist. Hence, the computation terminates when no argument a is attacked from any $b \in S$, and $a \not\in A \setminus D \, b$.

For the hardness proofs of Cred_{cf2} and Skep_{cf2} we use the standard reduction from propositional formulas in conjunctive normal form (CNF) to AFs as in [10, 13].

Definition 4.2

Given a 3-CNF formula $\varphi = \bigwedge_{j=1}^{m} C_j$ over atoms Z with $C_j = l_1 \lor l_2 \lor l_3$ ($1 \leq j \leq m$) the corresponding AF $F_\varphi = (A_\varphi, R_\varphi)$ is built as follows:

- $A_\varphi = Z \cup \bar{Z} \cup \{C_1, \ldots, C_m\} \cup \{\varphi\} \cup \{\neg \varphi\}$
- $R_\varphi = \{(z, \bar{z}), (\bar{z}, z) | z \in Z\} \cup \{(C_j, \varphi) | j \in \{1, \ldots, m\}\} \cup \{(\varphi, \neg \varphi)\} \cup \{(\varphi, \neg \varphi)\} \cup \{(\bar{z}, C_j) | j \in \{1, \ldots, m\}, z \in \{l_1, l_2, l_3\}\} \cup \{(\bar{z}, C_j) | j \in \{1, \ldots, m\}, \neg z \in \{l_1, l_2, l_3\}\}$

Figure 10 illustrates the AF F_φ for the formula $\varphi = (z_1 \lor z_2 \lor z_3) \land (\neg z_2 \lor \neg z_3 \lor \neg z_4) \land (\neg z_1 \lor z_2 \lor z_4)$.
THEOREM 4.4

\(\varphi\) as in Definition 4.2 has a

PROOF. The AF \(F_\varphi\) has the following singleton SCCs \(\{\varphi\}, \{-\varphi\}\), and \(C_i \ (1 \leq i \leq m)\). The remaining SCCs are \(C_i \in \{C_1, \ldots, C_k\}\), with \(C_i = \{z_i, \bar{z}_i\}\). As all \(C_i\) are not attacked from outside their component they remain unchanged in \(\{F_\varphi - \Delta_{F_\varphi, E}\}\) and \(naive(F_\varphi | C_i) = \{\{z_i\}, \{\bar{z}_i\}\}\). Hence, either \(z_i \in E\) or \(\bar{z}_i \in E\) (but never both).

THEOREM 4.4

\(C_{\text{cred2}}\) is NP-complete.

PROOF. For hardness, we show that any 3-CNF formula \(\varphi\) is satisfied iff the corresponding AF \(F_\varphi\) as in Definition 4.2 has a \(c_{\text{f2}}\) extension containing \(\varphi\).

Let \(F_\varphi\) be a 3-CNF formula over \(Z\) and \(M \subseteq Z\) a model of \(\varphi\). We show that \(E = \{\{z_i\} \mid z_i \in M\} \cup \{\bar{z}_i \mid z_i \in Z\} \setminus M\} \cup \{\varphi\}\) is a \(c_{\text{f2}}\) extension of \(F_\varphi\). We need to show that (i) \(E\) is conflict-free in \(F_\varphi\) and (ii) \(E\) is naive(\(\{F_\varphi - \Delta_{F_\varphi, E}\}\)). As to (i), from Lemma 4.3 we know that for all \(i \in \{1, \ldots, n\}\) either \(z_i\) or \(\bar{z}_i\) is in \(E\), so there are no conflicts between the arguments in \(Z\) and \(\bar{Z}\). The argument \(\varphi\) is not attacked by any \(z_i\) at all. Hence, \(E \in c_{\text{f2}}(F_\varphi)\). As to (ii), let us first compute \(\Delta_{F_\varphi, E}\), where \(\Delta_{F_\varphi, E}(\theta) = \{x \in A_\varphi \mid \exists y \in E : l \neq x, l(x) \in R_\varphi, x \neq l \}\). As \(M\) is a model of \(\varphi\), all clauses in \(\varphi\) are satisfied, hence, \(\forall \exists \exists\) such that \((l, C_j) \in R_\varphi\), where \(l_i \in \{z_i, \bar{z}_i\}\) for \(j = \{1, \ldots, n\}\). Furthermore, \(E \in (\varphi, \neg \varphi) \in R_\varphi\) and \(\neg \varphi \not\in F_\varphi\). Therefore, we obtain \(\Delta_{F_\varphi, E}(\theta) = \{C_1, \ldots, C_m, \neg \varphi\}\), which is also the ifp \(\Delta_{F_\varphi, E}\). Finally, we compute the instance \([F_\varphi - \Delta_{F_\varphi, E}]=[A_\varphi \setminus \{C_1, \ldots, C_m, \neg \varphi\}, (\varphi, \neg \varphi) \in Z]\). It is easy to see that \(E \in naive([F_\varphi - \Delta_{F_\varphi, E}])\) holds.

Only if: Let \(E \in c_{\text{f2}}(F_\varphi)\) such that \(\varphi \in E\). We show that \(M = \{z_i \mid z_i \in E\} \cup \{-z_i \mid z_i \in E\}\) is a model of \(\varphi\). As \(E \in E\) we know that it is not attacked by any \(d \in \Delta_{F_\varphi, E}\). Assume there exists a \(C_j \notin \Delta_{F_\varphi, E}\) with \((C_j, \varphi) \in R_\varphi\). We know \(C_j \notin E\) because \(E \in c_{\text{f2}}(F_\varphi)\), hence from Definition 3.7 we conclude there is no \(x \in E\) such that \((x, C_j) \in R_\varphi\). In this case, the argument \(C_j\) is contained in \([F_\varphi - \Delta_{F_\varphi, E}])\), but this is a contradiction to \(E \in naive([F_\varphi - \Delta_{F_\varphi, E}])\), because the set \(E = E \cup \{C_j\}\) is conflict-free in \([F_\varphi - \Delta_{F_\varphi, E}])\). It follows that for each \(C_j\) there exists a \(l_i \in \{z_i, \bar{z}_i\}\) such that \((l_i, C_j) \in R_\varphi\), for \(j = \{1, \ldots, m\}\). This means that for every clause \(C_j\) there exists a literal \(l_i \in M\). Hence, \(M\) is a model of \(\varphi\).

For membership one can construct an algorithm as follows. For any AF \(F = (A, R)\) and \(a \in A\), guess \(S \subseteq A\) with \(a \in S\) and check \(S \in c_{\text{f2}}(F)\). As \(V_{\text{cred2}}\) is in \(P\), this yields an NP algorithm.
The cf2 argumentation semantics revisited

Table 1. Complexity of decision problems (C-c denotes completeness for class C)

<table>
<thead>
<tr>
<th></th>
<th>cf2</th>
<th>stable</th>
<th>stage</th>
<th>adm</th>
<th>pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver_σ</td>
<td>in P</td>
<td>in P</td>
<td>coNP-c</td>
<td>in P</td>
<td>coNP-c</td>
</tr>
<tr>
<td>Cred_σ</td>
<td>NP-c</td>
<td>NP-c</td>
<td>Σ^P_2-c</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>Skept_σ</td>
<td>coNP-c</td>
<td>coNP-c</td>
<td>Π^P_2-c</td>
<td>Trivial</td>
<td>Π^P_2-c</td>
</tr>
<tr>
<td>NE_σ</td>
<td>in P</td>
<td>NP-c</td>
<td>in L</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
</tbody>
</table>

Theorem 4.5
Skept_{cf2} is coNP-complete.

Proof. For hardness, we show that a given 3-CNF formula \(\varphi \) is unsatisfiable iff \(\neg \varphi \) is contained in every cf2 extension of \(F_\varphi \), where \(F_\varphi \) is constructed following Definition 4.2. From the proof of Theorem 4.4, we already know that \(\varphi \) is contained in a cf2 extension iff \(\varphi \) is satisfiable. By definition of the cf2 semantics, it is easily seen that each cf2 extension of \(F_\varphi \) which does not contain argument \(\varphi \), has to contain \(\neg \varphi \). Thus, in case \(\varphi \) is unsatisfiable, argument \(\neg \varphi \) is indeed skeptically accepted.

Membership can be shown as follows via the complementary problem. Thus, for given AF \(F = (A, R) \) and \(a \in A \) we guess a set \(S \) with \(a \notin S \) and check \(S \in cf2(F) \). As Ver_{cf2} \(\in \) P, this yields an NP algorithm for the complementary problem of Skept_{cf2}. Hence, Skept_{cf2} is in coNP.

Theorem 4.6
NE_{cf2} \(\in \) P.

Proof. Recall, that for every AF \(F \) it holds that each cf2 extension of \(F \) is also a naive extension of \(F \). Thus, in case we have that \(F \) possesses only the empty set as its cf2 extension, we know that the empty set is also the only naive extension of \(F \). However, this is only the case if all arguments of \(F \) are self-attacking. Thus to decide whether there exists a non-empty cf2 extension, of an AF \(F = (A, R) \), it is sufficient to check if there exists any argument \(a \in A \) such that \((a, a) \notin R \). This can be done in polynomial time.

Our results are summarized in the first column of Table 1 together with results of the other semantics used in this context ([10, 13–15]). We observe that the complexity of the cf2 semantics behaves slightly different to these semantics.

5 Strong equivalence of argumentation semantics

So far, we have focused exclusively on the cf2 semantics. In this section, we will show a distinguished feature of the cf2 semantics, which separates it from all other important semantics proposed for abstract argumentation. In a nutshell, this particular property states that each attack in an AF has a potential ‘meaning’ under the cf2 semantics, while this is not the case for other semantics where attacks may be redundant as the following example illustrates.
Example 5.1
Consider the following AFs F and G.

For both AFs there does not exist any stable extension, hence $\text{stable}(F) = \text{stable}(G) = \emptyset$. Now, we add the new AF $H = ((b, e), ((b, e)))$, then they still have the same stable extensions $\text{stable}(F \cup H) = \text{stable}(G \cup H) = \{(b, d)\}$, as highlighted in the following graphs.

In fact, the attacks $\{(a, b), (e, b)\}$ in F as well as the attacks $\{(a, d), (e, c), (e, d)\}$ in G are redundant under the stable semantics. Furthermore, it can be shown that no matter which framework H one adds to F and G they will always posses the same stable extensions.

The concept described in Example 5.1 has been analysed by Oikarinen and Woltran in [20] and is defined as strong equivalence.

Definition 5.2
Two AFs F and G are strongly equivalent to each other wrt a semantics σ, in symbols $F \equiv^\sigma G$, iff for each AF H, $\sigma(F \cup H) = \sigma(G \cup H)$.

By definition, $F \equiv^\sigma G$ implies $\sigma(F) = \sigma(G)$, but the other direction is not true in general.

In what follows, we show that for the $cf2$ semantics strong equivalence coincides with syntactic equivalence. Afterwards, we characterize strong equivalence for the stage and naive semantics, both of them have not been considered in [20].

5.1 Strong equivalence wrt $cf2$ semantics
Interestingly, it turns out that for this semantics there are no redundant attacks at all. In fact, even in the case where an attack links two self-attacking arguments, this attack might play a role by gluing two components together. Having no redundant attacks means that strong equivalence coincides with...
syntactic equivalence. Before we give the next theorem we provide two lemmata that will also be useful later.

Lemma 5.3
For any AFs F and G with $A(F) \neq A(G)$, there exists an AF H such that $A(H) \subseteq A(F) \cup A(G)$ and

$\sigma(F \cup H) \neq \sigma(G \cup H)$,

for the semantics $\sigma \in \{\text{naive}, \text{stage}, \text{cf}\}$.

Proof. In case $\sigma(F) \neq \sigma(G)$, we just consider $H = (\emptyset, \emptyset)$ and get $\sigma(F \cup H) \neq \sigma(G \cup H)$. Thus assume $\sigma(F) = \sigma(G)$ and let wlog. $a \in A(F) \setminus A(G)$. Thus for all $E \in \sigma(F)$, $a \notin E$. Consider the framework $H = ([a], \emptyset)$, then, for all $E' \in \sigma(G \cup H)$, we have $a \in E'$. On the other hand, $F \cup H = $ and also $\sigma(F \cup H) = \sigma(F)$. Hence, a is not contained in any $E \in \sigma(F \cup H)$, and we obtain $\sigma(F \cup H) \neq \sigma(G \cup H)$.

Lemma 5.4
For any AFs F and G such that $(a, a) \in R(F) \setminus R(G)$ or $(a, a) \in R(G) \setminus R(F)$, there exists an AF H such that $A(H) \subseteq A(F) \cup A(G)$ and $\sigma(F \cup H) \neq \sigma(G \cup H)$, for $\sigma \in \{\text{naive}, \text{stage}, \text{cf}\}$.

Proof. Let the self-attack $(a, a) \in R(F) \setminus R(G)$ and consider the framework $H = (A, [(a, b), (b, b) \mid a, b \in A, a \neq b])$ with $A = A(F) \cup A(G)$. Then $\sigma(G \cup H) = \{a\}$ while $\sigma(F \cup H) = \emptyset$ for all considered semantics $\sigma \in \{\text{naive}, \text{stage}, \text{cf}\}$. For example, in case $\sigma = \text{cf}$ we obtain $\Delta_{G \cup H, E} = \{b \mid b \in A \setminus \{a\}\}$. Moreover, $\{a\}$ is conflict-free in $G \cup H$ and $[a] \in \text{naive}(G')$, where $G' = (G \cup H) - \Delta_{G \cup H, E} = ([a], \emptyset)$. On the other hand, $\text{cf}(F \cup H) = \emptyset$ since all arguments in $F \cup H$ are self-attacking. The case for $(a, a) \in R(G) \setminus R(F)$ is similar.

Theorem 5.5
For any AFs F and G, $F \equiv_{\text{cf}} G$ iff $F = G$.

Proof. Since for any AFs $F \equiv G$ obviously implies for all AFs H, $\text{cf}(F \cup H) = \text{cf}(G \cup H)$, we only have to show that if $F \neq G$ there exists an AF H such that $\text{cf}(F \cup H) \neq \text{cf}(G \cup H)$.

From Lemma 5.3 and Lemma 5.4 we know that in case the arguments or the self-loops are not equal in both frameworks, there exists an AF H such that $\text{cf}(F \cup H) \neq \text{cf}(G \cup H)$. We thus assume that $A = A(F) = A(G)$ and $(a, a) \in R(F) \setminus R(G)$, for each $a \in A$. Let us thus suppose wlog. an attack $(a, b) \in R(F) \setminus R(G)$ and consider the AF

$H = (A \cup \{d, x, y, z\}, \{(a, a), (b, b), (b, x), (x, a), (a, y), (y, z), (z, a), (d, c) \mid c \in A \setminus \{a, b\}\})$,

see also Figures 11 and 12 for illustration. Then, there exists a set $E = \{d, x, z\}$, such that $E \in \text{cf}(F \cup H)$ but $E \notin \text{cf}(G \cup H)$. To show that $E \in \text{cf}(F \cup H)$, we first compute $\Delta_{F \cup H, E} = \{c \mid c \in A \setminus \{a, b\}\}$. Thus, in the instance $\{[(F \cup H) - \Delta_{F \cup H, E}]\}$ we have two SCCs left, namely $C_1 = \{d\}$ and $C_2 = \{a, b, x, y, z\}$ as illustrated in Figure 13. Furthermore, all attacks among the arguments of C_2 are preserved, and we obtain that $E \notin \text{naive}([[(F \cup H) - \Delta_{F \cup H, E}]])$, and as it is also conflict-free we have that $E \in \text{cf}(F \cup H)$ as well. On the other hand, we obtain $\Delta_{G \cup H, E} = \{c \mid c \in A \setminus \{a, b\}\}$, and the instance $G' = [[(G \cup H) - \Delta_{G \cup H, E}]]$ consists of five SCCs, namely $C_1 = \{d\}$, $C_2 = \{b\}$, $C_3 = \{x\}$, $C_4 = \{y\}$ and $C_5 = \{z\}$, with b being self-attacking as illustrated in Figure 14.

Thus, the set $E' = \{d, x, y, z\}$ is conflict-free in G'. Therefore, we obtain $E \notin \text{naive}(G')$, and hence, $E \notin \text{cf}(G \cup H)$. $F \equiv_{\text{cf}} G$ follows.

In other words, the proof of Theorem 5.5 shows that no matter which AFs $F \neq G$ are given, we can always construct a framework H such that $\text{cf}(F \cup H) \neq \text{cf}(G \cup H)$. In particular, we can always add new arguments and attacks such that the missing attack in one of the original frameworks leads
to different SCCs in the modified ones and therefore to different cf2 extensions, when suitably augmenting the two AFs under comparison.

The cf2 semantics is the only semantics considered so far, where strong equivalence coincides with syntactic equivalence. This can be seen as another special property of the cf2 semantics that gives raise to a more formal investigation. Therefore, we introduce a new property for argumentation semantics that we call the succinctness property. In contrast to strong equivalence that considers particular AFs, the succinctness property denotes a general property for argumentation semantics.
An argumentation semantics to complete the picture about strong equivalence and succinctness, we give characterizations for

Theorem 5.8

The following theorem gives the link between the succinctness property and strong equivalence.

For an AF \(F = (A, R) \) and semantics \(\sigma \) we call an attack \((a, b) \in R \) redundant in \(F \) wrt \(\sigma \) if for all \(F' \) with \(F \subseteq F' \), \(\sigma(F') = \sigma(F \setminus (a, b)) \).

The succinctness property identifies to which extended attacks contribute in terms of a given semantics. In other words, we are interested here in how many attacks are possibly ignored in the computation of a semantics. The concept of succinctness is now captured as follows.

Definition 5.6

For an AF \(F = (A, R) \) and semantics \(\sigma \) we call an attack \((a, b) \in R \) redundant in \(F \) wrt \(\sigma \) if for all \(F' \) with \(F \subseteq F' \), \(\sigma(F') = \sigma(F \setminus (a, b)) \).

The succinctness property identifies to which extended attacks contribute in terms of a given semantics. In other words, we are interested here in how many attacks are possibly ignored in the computation of a semantics. The concept of succinctness is now captured as follows.

Definition 5.7

An argumentation semantics \(\sigma \) satisfies the succinctness property or is maximal succinct iff no AF contains a redundant attack wrt \(\sigma \).

The following theorem gives the link between the succinctness property and strong equivalence.\(^1\)

Theorem 5.8

An argumentation semantics \(\sigma \) satisfies the succinctness property iff for any AFs \(F, G \) with \(\text{A}(F) = \text{A}(G) \) that holds strong equivalence between \(F \) and \(G \) wrt \(\sigma \) (\(F \equiv \sigma G \)) coincides with syntactic equivalence, i.e. \(F = G \).

Proof. Suppose \(\sigma \) does not satisfy the the succinctness property, i.e. there exists an AF \(F \) and an attack \((a, b) \) in \(F \) such that \(\sigma(F \cup H) = \sigma(F \setminus (a, b)) \cup H \) for any AF \(H \). Obviously, \(F \) and \(F \setminus (a, b) \) are given over the same arguments and we have \(F \equiv \sigma G \setminus (a, b) \) but \(F \neq G \).

Suppose we have AFs \(F, G \) with \(\text{A}(F) = \text{A}(G) \) such that \(F \neq G \) and \(F \equiv \sigma G \). And wlog let \((a, b) \) be an attack in \(F \) which does not occur in \(G \). Since \(F \equiv \sigma G \), \(\text{A}(F \cup H) = \text{A}(G \cup H) \), in particular for all \(H \) not containing \((a, b) \). Since \(F \cup H \cap (a, b) = F \cup H \), we get that \(\sigma(G \cup (a, b)) \cup H = \sigma(G \cup H) \) for all \(H \). By setting \(G' = G \cup (a, b) \), we observe that \((a, b) \) is redundant in \(G' \) wrt. \(\sigma \). Hence, \(\sigma \) cannot be maximal succinct.

From Theorems 5.5 and 5.8 we conclude that the cf2 semantics satisfies the succinctness property.

5.2 Strong equivalence wrt other semantics

To complete the picture about strong equivalence and succinctness, we give characterizations for strong equivalence wrt the stage and the naive semantics. As it turns out, these characterizations will be different to syntactical equivalence. By Theorem 5.8, these two semantics are thus not maximal succinct. Recall that the results in [20] in combination with Theorem 5.8 show that many other semantics are not maximal succinct, as well.

To characterize strong equivalence, Oikarinen and Woltran used in [20] so-called kernels for different semantics that implicitly remove the redundant attacks of the compared frameworks. As

\(^1\)The result as stated here requires \(\text{A}(F) = \text{A}(G) \), since we do not impose any prerequisites on the given semantics \(\sigma \).

However, in case \(\text{A}(F) \neq \text{A}(G) \) implies \(F \not\equiv \sigma G \) (as it is the case for all semantics studied in terms of strong equivalence so far, see also Lemma 5.3), the result is even stronger saying that succinctness holds, if and only if, strong and syntactic equivalence coincide.
shown in [20], deciding strong equivalence then amounts to checking the syntactic equivalence of the kernels of the two compared frameworks. More precisely, such kernels have been provided for many important semantics, viz. for admissible, preferred, ideal, semi-stable, eager, complete and grounded semantics. All these kernels are non-trivial in the sense that certain attacks are removed.

In order to characterize strong equivalence wrt stage semantics, we require here exactly the same kernel as already used in [20] to characterize strong equivalence wrt stable semantics.

Example 5.9
Consider the frameworks F and G:

They only differ in the attacks outgoing from the argument a which is self-attacking and yield the same single stage extension, namely $\{c\}$, for both frameworks. We can now add, for instance, $H = (\{a, c\}, (c, a))$ and the stage extensions for $F \cup H$ and $G \cup H$ still remain the same. In fact, no matter how H looks like, $\text{stage}(F \cup H) = \text{stage}(G \cup H)$ will hold.

The following kernel reflects the intuition given in the previous example.

Definition 5.10
For an AF $F = (A, R)$, define $F^{sk} = (A, R^{sk})$ where

$$R^{sk} = R \setminus \{(a, b) | a \neq b, (a, a) \in R\}.$$

Theorem 5.11
For any AFs F and G, $F \equiv^{stage} G$ iff $F^{sk} = G^{sk}$.

Proof. Only-if: Suppose $F^{sk} \neq G^{sk}$, we show that $F \not\equiv^{stage} G$. From Lemmas 5.3 and 5.4 we know that in case the arguments or the self-loops are not equal in both frameworks, $F \equiv^{stage} G$ does not hold. We thus assume that $A = A(F) = A(G)$ and $(a, a) \in F$ iff $(a, a) \in G$, for each $a \in A$. Let thus wlog $(a, b) \in F^{sk} \setminus G^{sk}$. We can conclude $(a, b) \in F$ and $(a, a) \notin F$, thus $(a, a) \notin G$ and $(a, b) \notin G$. Let c be a fresh argument and take

$$H = (A \cup \{c\}, ((b, b)) \cup \{(c, d) | d \in A\} \cup \{(a, d) | d \in A \cup \{c\} \setminus \{b\}\}).$$

Then, $\{a\}$ is a stage extension of $F \cup H$ (it attacks all other arguments) but not of $G \cup H$ (b is not attacked by $\{a\}$); see also Figures 15 and 16 for illustration.
For the if-direction, suppose \(F^k = G^k \). Let us first show that \(F^k = G^k \) implies \(cf(F \cup H) = cf(G \cup H) \), for each AF \(H \). Towards a contradiction, suppose such an \(H \) exists and wlog let \(T \in cf(F \cup H) \setminus cf(G \cup H) \). Since \(F^k = G^k \), we know \(A(F) = A(G) \). Thus there exist \(a, b \in T \) (not necessarily \(a \neq b \)) such that \((a, b) \in G \cup H \) or \((b, a) \in G \cup H \). On the other hand \((a, b) \notin F \cup H \) and \((b, a) \notin F \cup H \) hold since \(a, b \in T \) and \(T \notin cf(F \cup H) \). Thus, in particular, \((a, b) \notin F \) and \((b, a) \notin F \) as well as \((a, b) \notin H \) and \((b, a) \notin H \); the latter implies \((a, b) \notin G \) or \((b, a) \notin G \). Suppose \((a, b) \notin G \) (the other case is symmetric). If \((a, a) \in G \) then \((a, a) \in G^k \), but \((a, a) \notin F^k \) (since \(a \in T \) and thus \((a, a) \notin F \)). If \((a, a) \notin G \), \((a, b) \in G^k \) but \((a, b) \notin F^k \) (since \((a, b) \notin F \)). In either case \(F^k \neq G^k \), a contradiction.

We next show that \(F^k = G^k \) implies \((F \cup H)^k = (G \cup H)^k \) for any AF \(H \). Thus, let \((a, b) \in (F \cup H)^k \), and assume \(F^k = G^k \); we show \((a, b) \in (G \cup H)^k \). Since, \((a, b) \in (F \cup H)^k \) we know \((a, a) \notin F \cup H \) and therefore, \((a, a) \notin F^k \), \((a, a) \notin G^k \) and \((a, a) \notin H^k \). Hence, we have either \((a, b) \in F^k \) or \((a, b) \in H^k \). In the later case, \((a, b) \in (G \cup H)^k \) follows because \((a, a) \notin G^k \) and \((a, a) \notin H^k \). In case \((a, b) \in F^k \), we get by the assumption \(F^k = G^k \), that \((a, b) \in G^k \) and since \((a, a) \notin H^k \) it follows that \((a, b) \in (G \cup H)^k \).

Finally we show that for any frameworks \(K \) and \(L \) such that \(K^k = L^k \), and any \(S \in cf(K) \cap cf(L) \), \(S^+_R(K) = S^+_R(L) \). This follows from the fact that for each \(s \in S \), \((s, s) \) is neither contained in \(K \) nor in \(L \). But then each attack \((s, b) \in K \) is also in \(K^k \), and likewise, each attack \((s, b) \in L \) is also in \(L^k \). Now since \(K^k = L^k \), \(S^+_R(K) = S^+_R(L) \) is obvious.

Thus, we showed that, given \(F^k = G^k \), the following relations hold for each AF \(H \): \(cf(F \cup H) = cf(G \cup H) \); \((F \cup H)^k = (G \cup H)^k \); and \(S^+_R(K) = S^+_R(L) \) holds for each \(S \in cf(F \cup H) = cf(G \cup H) \) (taking \(K = F \cup H \) and \(L = G \cup H \)). Thus, \(stage(F \cup H) = stage(G \cup H) \), for each AF \(H \). Consequently, \(F \equiv_{stage} G \).

The second semantics we consider here is the naïve semantics, as it is closely related to the \(cf^2 \) semantics and has not yet been included in [20]. Here, strong equivalence is only a marginally more restricted concept than standard equivalence, namely in case the two compared AFs are not given over the same arguments. To prove the next theorem we need the following lemma.

Lemma 5.12

Let \(F \) and \(H \) be AFs and \(S \) be a set of arguments. Then, \(S \in cf(F \cup H) \) iff, jointly \((S \cap A(F)) \in cf(F) \) and \((S \cap A(H)) \in cf(H) \).

Proof. The only-if direction is clear. Thus suppose \(S \notin cf(F \cup H) \). Then, there exist \(a, b \in S \), such that \((a, b) \notin F \cup H \). By our definition of \(\cup \), then \((a, b) \in F \) or \((a, b) \in H \). But then \((S \cap A(F)) \notin cf(F) \) or \((S \cap A(H)) \notin cf(H) \) follows. \(\square \)
Theorem 5.13
The following statements are equivalent: (1) \(F \equiv_s^{\text{naive}} G \); (2) naive\((F) = \text{naive}(G) \) and \(A(F) = A(G) \); (3) \(\text{cf}(F) = \text{cf}(G) \) and \(A(F) = A(G) \).

Proof. (1) implies (2): basically by the definition of strong equivalence and Lemma 5.3.

(2) implies (3): Assume naive\((F) = \text{naive}(G) \) but \(\text{cf}(F) \neq \text{cf}(G) \). Wlog let \(S \in \text{cf}(F) \setminus \text{cf}(G) \). Then, there exists a set \(S' \supseteq S \) such that \(S' \in \text{naive}(F) \) and by assumption then \(S' \in \text{naive}(G) \). However, as \(S \notin \text{cf}(G) \) there exists an attack \((a, b) \in R(G) \), such that \(a, b \in S \). But as \(S \subseteq S' \), we have \(S' \notin \text{cf}(G) \) as well; a contradiction to \(S' \in \text{naive}(G) \).

(3) implies (1): Suppose \(F \neq_s^{\text{naive}} G \), i.e. there exists a framework \(H \) such that \(\text{naive}(F \cup H) \neq \text{naive}(G \cup H) \). Wlog let now \(S \in \text{naive}(F \setminus H) \setminus \text{naive}(G \cup H) \). From Lemma 5.12 one can show that \((S \cap \text{A}(F)) \in \text{naive}(F) \) and \((S \cap \text{A}(H)) \in \text{naive}(H) \), as well as \((S \cap \text{A}(G)) \notin \text{naive}(G) \). Let us assume \(S' = S \cap \text{A}(F) = S \cap \text{A}(G) \), otherwise we are done yielding \(\text{A}(F) \neq \text{A}(G) \). If \(S' \notin \text{cf}(G) \) we are also done (since \(S' \in \text{cf}(F) \) follows from \(S' \in \text{naive}(F) \)); otherwise, there exists an \(S'' \supseteq S' \), such that \(S'' \notin \text{cf}(G) \). But \(S'' \notin \text{cf}(F) \), since \(S' \in \text{naive}(F) \). Again we obtain \(\text{cf}(F) \neq \text{cf}(G) \) which concludes the proof.

It follows that the stage and naive semantics are not maximal succinct due to Theorem 5.8.

6 Discussion
In this article, we investigated the cf2 semantics in several ways. We introduced an alternative characterization that is based on a certain fixed-point operator in order to avoid the more involved recursions from the original definition [7]. With this new characterization we were able to prove complexity results for the reasoning problems Ver_{cf2}, Cred_{cf2} and Skept_{cf2}. While the former two problems can be decided in polynomial time we obtained that Cred_{cf2} is NP-complete and Skept_{cf2} is coNP-complete. Except for NE_{cf2}, the cf2 semantics thus has the same complexity as the stable semantics. Let us mention here also that the behaviour of the cf2 semantics is similar to the stage semantics. Both semantics are based on the computation of conflict-free sets, they can select arguments out of an odd-length cycle and they are not influenced by self-attacking arguments. However, for the stage semantics both, credulous and skeptical acceptance are on the second level of the polynomial hierarchy. This mirrors the benefit of using graph-theoretic properties for the computation of extensions. Furthermore, it shows that the graph representation is not only useful for illustrating the frameworks, but also for using the structural properties in the characterization of the semantics. Additionally, our new characterization of the cf2 semantics allowed us to provide a relatively compact encoding for computing cf2 extensions in terms of logic programs; these reductions have been incorporated to the ASP-based argumentation system ASPARTIX, see [16, 17] for details.

The newly introduced succinctness property allows to relate the semantics according to how much meaning every attack has for the computation of the extensions. It can be seen as an additional possibility to compare argumentation semantics. Amgoud and Vesic criticized in [2] that the notion of strong equivalence as introduced in [20] is too strong and has no practical application at all. We do agree that for logic-based argumentation systems no self-attacking arguments exist, but if one uses a different formalism for the instantiation process, like the ASPIC+ system [21] or ASP (as proposed by Dung in [11]), self-attacking arguments can occur. Therefore, knowing about redundant attacks for specific semantics, and the classification of them in terms of succinctness, is useful and can make the evaluation easier. As redundant attacks have no influence, they can be omitted already during the instantiation process that can be a useful optimization step.
For future work, we will investigate the option to adapt the cf2 semantics by replacing the naive semantics by stage semantics as a base function; recall Example 2.10 where we illustrated a certain undesired behaviour of the cf2 semantics for even cycles. Concerning the newly introduced succinctness property, we have already classified most of the argumentation semantics that are considered important nowadays. So far, cf2 semantics is the only one that satisfies this property. As a next step, an investigation of the resolution-based semantics [5] is planned. In particular, we claim that the resolution-based grounded semantics behaves here like the grounded semantics itself, which, as we already know from [20] and Theorem 5.8, violates the succinctness property. Finally, it also would be interesting to consider different levels of succinctness to have a more fine-grained classification of different semantics.

Acknowledgements

The authors would like to thank Wolfgang Dvořák and the anonymos reviewers for their valuable comments.

Funding

This work has been funded by the Vienna Science and Technology Fund (WWTF) through project ICT08-028.

References

The cf2 argumentation semantics revisited

Received 28 December 2011