
Efficient Rule-Based Inferencing for OWL EL

Markus Krötzsch
Oxford University Computing Laboratory
markus.kroetzsch@comlab.ox.ac.uk

Abstract

We review recent results on inferencing for
SROEL(×), a description logic that subsumes
the main features of the W3C recommendation
OWL EL. Rule-based deduction systems are devel-
oped for various reasoning tasks and logical sub-
languages. Certain feature combinations lead to
increased space upper bounds for materialisation,
suggesting that efficient implementations are easier
to obtain for suitable fragments of OWL EL.

1 Introduction
Created in 2004 and updated in 2009, the Web Ontology Lan-
guage OWL is a prominent knowledge representation stan-
dard of the World Wide Web Consortium[OWL, 2009]. Its
Direct Semanticsis based on description logics (DLs) that
have a long tradition in knowledge representation and reason-
ing [Baaderet al., 2007]. To cater for a wide range of practi-
cal needs, OWL has been based on the particularly expressive
DL SROIQ(D), but the resulting high complexity of reason-
ing is prohibitive in many applications. To solve this conflict,
OWL introduced three lightweightprofilesEL, QL, and RL
as sublanguages of OWL[Motik et al., 2009].

OWL RL is conceived as a “rule-based” OWL frag-
ment that suggests inferencing with bottom-up materialisa-
tion rules. OWL QL was designed as a “query language” to
support Ontology-Based Data Access, where inferencing is
implemented by suitable query rewriting. OWL EL in turn
is intended for conceptual modelling, a typical example be-
ing the medical ontology SNOMED CT that has no instance
data but about 3× 105 classes[James and Spackman, 2008].
While there are well-documented algorithms and various im-
plementations for inferencing in RL and QL, a first compre-
hensive algorithm for EL has only been published recently
[Krötzsch, 2010]. Moreover, this work also studies the rela-
tive “difficulty” of inferencing with some features in EL. Both
aspects are summarised in this invited paper.

Semantically, OWL EL is an extension of the DLEL++

[Baaderet al., 2005]. This type of DLs is based onconjunc-
tion and existential quantification, allowing statements like
ColourBlind ⊓ Female ⊑ ∃hasFather.ColourBlind (“Colour
blind women must have a colour blind father”).EL++ also
supportsrole chains(e.g.hasParent◦hasBrother ⊑ hasUncle)

and nominal classes(classes with a single named element,
like italy in Italian ⊑ ∃citizenOf.{italy}). Moreover, one can
add some forms ofrange restrictions, e.g. to state thatMale
is the range ofhasFather [Baaderet al., 2008].

OWL EL further allowslocal reflexivityto model classes
of individuals with some relation to themselves, e.g. to state
Narcist ⊑ ∃adores.Self, and theuniversal (top) role Uthat
relates all individuals. Both features can be combined with
role chains to indirectly modelconcept productssuch as
Elephant × Mouse ⊑ biggerThan. We collect these features
in the DLSROEL(×) as defined in Section2. One can also
allow role conjunctions(a generalisation of OWL property
disjointness), omitted here for reasons of space and since
they are not part of OWL EL[Krötzsch, 2010]. OWL EL fur-
ther includes support fordatatype propertiescorresponding
to concrete roles in DL. We omit this aspect here as datatypes
in OWL EL can largely be treated like abstract classes.

Our contribution is twofold: (1) we introduce rule-based
reasoning procedures forSROEL(×), and (2) we show that
some features of EL have a negative effect on the efficiency of
such procedures. The significance of (1) is to provide the first
comprehensive EL algorithm that copes with concept prod-
ucts and local reflexivity. We discuss cacluli both for instance
retrieval (Section3) and for classification (Section4). Our
use of rules to express deductions emphasises that implemen-
tations for EL can follow similar patterns as implementations
for RL, even though the use of our rules in a general-purpose
rule engine would hardly be as efficient as a specifically opti-
mised algorithm.

All the calculi we present run in polynomial time, so it is
not clear how to differentiate their “efficiency” (2). To this
end, we consider the amounts of intermediate facts that cor-
rect rule-based bottom-up algorithms must compute (Sec-
tion 5). Formally, we use the simple rule language Datalog,
and we consider the requiredminimal arityof derived pred-
icates in rule systems that are sound and complete for frag-
ments ofSROEL(×). Since upper space bounds for Datalog
are exponential in thearity of inferred predicates, our goal is
to find materialisation calculi where these arities are low.A
maximal arity of 2, e.g., establishes a quadratic upper bound
on the number of derived facts. We find that this is enough for
classification inSROEL(×) fragments without role chains
and nominals. But adding either feature to the DL increases
the required arity by one, soSROEL(×) does not admit any

markus.kroetzsch@comlab.ox.ac.uk

sound and complete classification calculus of arity below 4.
We obtain these results by studying possible derivations in

Datalog. Our methods are novel but have some relations to
studies on Datalogwidth andparameterised complexitythat
we outline in Section6. Our optimality results refer to the
syntactic form of rule-based algorithms, and have no immedi-
ate complexity-theoretic implications. Yet, experience shows
that the problem of space efficiency w.r.t. nominals and role
chains is relevant in practice, and it is not surprising thatex-
isting implementations tend to omit one or more of these fea-
tures[Baaderet al., 2006; Delaitre and Kazakov, 2009]. Our
results immediately apply to these works since it is not hardto
state their inference rules in Datalog. In particular, our results
imply that the algorithm ofBaaderet al.[2005] is incomplete
in the presence of nominals.

Technical details and proofs are found in[Krötzsch, 2010].

2 The DL SROEL(×) and Datalog
We chiefly summarise the required basic notions from DL
and Datalog; see[Krötzsch, 2010] for formal definitions, and
[Hitzler et al., 2009] for a textbook introduction on the rela-
tion of DL and OWL. The DLSROEL(×) is based on three
disjoint finite sets ofindividual namesNI , concept namesNC,
androle namesNR. Semantically, these parts are interpreted
as individuals, sets of individuals, and binary relations.The
setC of SROEL(×) conceptsis given as

CF ⊤ | ⊥ | NC | C ⊓ C | ∃NR.C | ∃NR.Self | {NI }.

Concepts are interpreted as sets:⊤/⊥ as the whole/empty set,
conjunctions⊓ as a set intersection, and existential restric-
tions as sets of individuals with some particular role succes-
sor. Nominals{a} encode singleton sets. Now aSROEL(×)
axiomcan be anassertion C(a) or R(a, b), ageneral concept
inclusion C ⊑ D, or a role inclusionof one of the forms
R ⊑ T, R◦ S ⊑ T, C × D ⊑ T, R ⊑ C × D whereC,D ∈ C,
R,S,T ∈ NR, a, b ∈ NI . Semantically, each axiom describes
an according set-theoretic relationship, where◦ encodes re-
lational composition and× stands for the Cartesian product.
Concept products allow us to define the universal (top) role
U with an axiom⊤ × ⊤ ⊑ U, while the empty (bottom) role
N can be defined using∃N.⊤ ⊑ ⊥. Knowledge bases KB
are sets ofSROEL(×) axioms that satisfy some additional
properties regardingsimplicity or rolesandadmissibility of
range restrictions. A restriction toregular role inclusions as
in OWL DL (and OWL EL) is not needed. Entailment of
SROEL(×) is defined model theoretically, as usual.

Our formalisation of inferencing calculi is based onData-
logwhich we consider as standard first-order Horn logic with-
out function symbols. As in deductive databases, we distin-
guish extensional (EDB) and intensional (IDB) predicates.
EDB predicates can only occur in ground (variable-free)
facts, and in premises of rules (bodies), so they are merely
used to encode the original input. IDB predicates can occur
without restrictions and are used for all derivations.

3 Instance Checking forSROEL(×)
We now present a calculus for instance checking – deciding
if C(a) is entailed forC ∈ NC, a ∈ NI – for SROEL(×). In

C(a) 7→ SubClass(a,C) R(a,b) 7→ Ex−(a,R,b, b)
A ⊑ C 7→ SubClass(A,C) A⊓ B ⊑ C 7→ Conj−(A,B,C)
⊤ ⊑ C 7→ Top(C) A ⊑ ∃R.Self 7→ Self+(A,R)
A ⊑ ⊥ 7→ Bot(A) ∃R.Self ⊑ C 7→ Self−(R,C)

∃R.A ⊑ C 7→ Ex−(R,A,C) {a} ⊑ C 7→ SubClass(a,C)
A ⊑ ∃R.B 7→ Ex+(A,R, B,eA⊑∃R.B) A ⊑ {c} 7→ SubClass(A, c)

R⊑ T 7→ SubRole(R,T) R⊑ C × D 7→ RProd+(R,C,D)
R◦ S ⊑ T 7→ RChain−(R,S,T) A× B ⊑ R 7→ RProd−(A, B,R)

a ∈ NI 7→ Nom(a) A ∈ NC 7→ Cls(A) R ∈ NR 7→ Rol(R)
A, B,C,D ∈ NC, R,S,T ∈ NR, a,b, c ∈ NI

Figure 1: Input translationI inst

Section5 we show its optimality in terms of certain charac-
teristics. This study of calculi requires a uniform presentation
for deduction calculi that have been proposed forEL-type
DLs, e.g., byBaaderet al. [2005] andDelaitre and Kazakov
[2009]. This motivates our use of Datalog in this section.

Intuitively speaking, a materialisation calculus is a sys-
tem of deduction rules for deriving logical consequences.
As opposed to a complete inference algorithm, it does not
specify a control flow for evaluating these rules. Deduc-
tion rules can be denoted in many forms, e.g. using tex-
tual if-then descriptions[Baaderet al., 2005], in tabular form
[Motik et al., 2009], or as sequent calculus style derivation
rules [Delaitre and Kazakov, 2009]. Premises and conclu-
sions of rules often consist of logical formulae, but may also
contain auxiliary expressions.Baaderet al. [2005], e.g., use
auxiliary statementsA{RB for A, B ∈ NC. A deduction rule
can then be viewed as a schema for deriving new expressions
from a finite set of given expressions. In particular, the appli-
cability of rules is normally not affected by uniform renam-
ings of signature symbols in premise and conclusion.

Deduction rules in this sense can be denoted as Data-
log rules where concrete logical sentences are representedas
ground facts that use signature symbols in term positions. For
example, we can representA ⊑ B assubclassOf(A, B), and
introduce a rulesubclassOf(x, y) ∧ subclassOf(y, z) →
subclassOf(x, z). This unifies the presentation of calculi,
and lets us exploit techniques from deductive databases. For
connecting Datalog to DL, we require an input translation
from individual DL axioms to (sets of) Datalog EDB facts.
This translation is also defined for signature symbols, since
symbols must generally be “loaded” into Datalog to be able
to derive conclusions about them, regardless of whether the
symbols occurred in input axioms or not. A formalisation of
these ideas is given later in Definition1.

Rule-based calculi suggest materialisation-based (or con-
sequence-driven) reasoning: after translating a knowledge
base to Datalog facts, all consequences of these facts under
the deduction rules can be computed in a bottom-up fashion,
and all supported entailments can then be checked without
further recursive computation. This contrasts with other rea-
soning principles such as the tableaux method where typically
just a single entailment is checked in one run of the algorithm.

It is not hard to formulate the deduction algorithms that
were presented forEL-type logics in[Baaderet al., 2005]
and [Delaitre and Kazakov, 2009] using Datalog rules. The
calculus we present here, however, is derived from a Data-

(1) Nom(x)→ isa(x, x)
(2) Nom(x) ∧ spo(x, v, x)→ self(x, v)
(3) Top(z) ∧ isa(x, z′)→ isa(x, z)
(4) Bot(z) ∧ isa(u, z) ∧ isa(x, z′) ∧ Cls(y)→ isa(x, y)
(5) SubClass(y, z) ∧ isa(x, y)→ isa(x, z)
(6) Conj−(y1, y2, z) ∧ isa(x, y1) ∧ isa(x, y2)→ isa(x, z)
(7) Ex−(v, y, z) ∧ spo(x, v, x′) ∧ isa(x′, y)→ isa(x, z)
(8) Ex−(v, y, z) ∧ self(x, v) ∧ isa(x, y)→ isa(x, z)
(9) Ex+(y, v, z, x′) ∧ isa(x, y)→ spo(x, v, x′)
(10) Ex+(y, v, z, x′) ∧ isa(x, y)→ isa(x′, z)
(11) Self−(v, z) ∧ self(x, v)→ isa(x, z)
(12) Self+(y, v) ∧ isa(x, y)→ self(x, v)
(13) SubRole(v,w) ∧ spo(x, v, x′)→ spo(x,w, x′)
(14) SubRole(v,w) ∧ self(x, v)→ self(x,w)
(15) RChain−(u, v,w) ∧ spo(x, u, y) ∧ spo(y, v, z)→ spo(x,w, z)
(16) RChain−(u, v,w) ∧ self(x,u) ∧ spo(x, v, x′)→ spo(x,w, x′)
(17) RChain−(u, v,w) ∧ spo(x,u, x′) ∧ self(x′, v)→ spo(x,w, x′)
(18) RChain−(u, v,w) ∧ self(x,u) ∧ self(x, v)→ spo(x,w, x)
(19) RProd−(y1, y2,w) ∧ isa(x, y1) ∧ isa(x′, y2)→ spo(x,w, x′)
(20) RProd−(y1, y2,w) ∧ isa(x, y1) ∧ isa(x, y2)→ self(x,w)
(21) RProd+(v, z1, z2) ∧ spo(x, v, x′)→ isa(x, z1)
(22) RProd+(v, z1, z2) ∧ self(x, v)→ isa(x, z1)
(23) RProd+(v, z1, z2) ∧ spo(x, v, x′)→ isa(x′, z2)
(24) RProd+(v, z1, z2) ∧ self(x, v)→ isa(x, z2)
(25) isa(x, y) ∧ Nom(y) ∧ isa(x, z)→ isa(y, z)
(26) isa(x, y) ∧ Nom(y) ∧ isa(y, z)→ isa(x, z)
(27) isa(x, y) ∧ Nom(y) ∧ spo(z,u, x)→ spo(z,u, y)

Figure 2: Deduction rulesPinst

log reduction introduced in[Krötzschet al., 2008] for a rule
language based onEL++. This approach can be modified to
coverSROEL(×) and to use a fixed set of Datalog rules to
yield a materialisation calculus in our sense. For simplicity,
the following calculus only considersSROEL(×) axioms of
the basic forms in Fig.1 (left of 7→). OtherSROEL(×) ax-
ioms can easily be normalised in linear time while preserving
the original entailments[Krötzsch, 2010]. For a normalised
knowledge base KB, we define a Datalog theoryP(KB) ≔
Pinst ∪ {I inst(α) | α ∈ KB} ∪ {I inst(s) | s ∈ NI ∪ NC ∪ NR},
wherePinst are the deduction rules in Fig.2. This gives rise
to a derivation calculusKinst: we say thatKinst derives a fact
C(a) from KB if P(KB) entailsisa(a,C).

Theorem 1 The calculus Kinst is sound and complete.

The IDB predicatesisa, spo, andself in Pinst correspond
to ABox axioms for atomic concepts, roles, and concepts
∃R.Self, respectively. Rule (1) serves as an initialisation rule
that accounts for the firstisa facts to be derived. Rule (2) spec-
ifies the (only) case where reflexivespo facts lead toself facts.
The rules (3) to (24) capture expected derivations for each of
the axiom types as encoded by the EDB predicates. Rule (4)
checks for global inconsistencies, and would typically notbe
materialised in implementations since its effect can directly
be taken into account during entailment checking. Rules (9)
and (10) make use of auxiliary constantseA⊑∃R.B for han-
dling existentials. Roughly speaking, each such constant rep-
resents the class of all role successors generated by the ax-
iom from which it originates; see[Krötzsch, 2010] for details.
The remaining rules (25) to (27) encode equality reasoning
that is relevant in the presence of nominals where statements

isa(a, b) with a, b ∈ NI encode equality ofa andb.
Axiom normalisation and the computation ofI inst can

be accomplished in linear time, and the time for reason-
ing in Datalog is polynomial w.r.t. the size of the col-
lection of ground facts. Using the known P-hardness of
EL++ [Baaderet al., 2005], we obtain that instance check-
ing in SROEL(×) and in OWL EL without datatype prop-
erties is P-complete w.r.t. the size of the knowledge base.
Strictly speaking, our treatment does not cover OWL ELkeys
[Motik et al., 2009]. Conceived as a special form ofDL-safe
rules, they are easy to incorporate into our rule-based ap-
proach. OWL EL datatype properties could be treated like ab-
stract roles in our algorithm, but with a reduced set of expres-
sive features. This is possible since all EL datatypes arecon-
vexin the sense of[Baaderet al., 2005]. The main implemen-
tation burden is to evaluate the syntactic forms of datatype
constants in the various OWL EL datatypes. The only ad-
ditional feature isfunctional datatype propertiesfor which
another inference rule is required. The main work here is to
observe that a naive implementation does not lead to wrong
inferences, in contrast to functional concrete roles whichcan-
not be captured by a rule-based calculus in our sense.

4 Classification inSROEL(×)

The materialisation calculusKinst of Theorem1 solves the
instance checking problem forSROEL(×). A calculus for
checking satisfiability is easily derived since aSROEL(×)
knowledge base is inconsistent if and only ifKinst infers a
fact isa(x, z) whereBot(z) holds. In this section, we ask how
to obtain calculi forclassification– the computation of all
subsumptions of atomic classes implied by a knowledge base.

Class subsumption, too, can be reduced to instance re-
trieval: KB |= A ⊑ B holds if KB∪ {A(c)} |= B(c) for a fresh
c. This reduction requires the knowledge base to be modified,
leading to new entailments, possibly even to global incon-
sistency. ThusKinst cannot directly be used for classification.
Rather, one needs a separate run ofKinst for each assumption
A(c) to compute all entailments of the formA ⊑ B.

One can derive a materialisation calculus for classification
in SROEL(×) by “internalising” the runs ofKinst, extending
all IDB predicates with an extra parameter to encode the test
assumption under which an entailment holds. The name ofc
is not essential in assumptionsA(c), so one can simply re-use
the Datalog constantA as the test instance of classA (Datalog
does not care about the sort ofA in DL). Following this dis-
cussion, it is straightforward to obtain a sound and complete
classification calculus[Krötzsch, 2010].

This calculus is not very efficient since deductions that are
globally true are inferred under each test assumptionA(c).
So the number of globally derived facts can multiply by the
number of class names, which can easily be 105 or more.
This increase is reflected in our formalisation of materialisa-
tion calculi: the maximal arity of derived predicates would
now be 4 while it had been 3 inKinst, leading to poten-
tially higher space requirements for materialised derivations.
Implementations may achieve lower space bounds by suit-
able optimisations. Yet standard implementation techniques
for Datalog, such as semi-naive materialisation, are sensitive

to the arity of IDB predicates. In developing theOrel rea-
soner[Krötzschet al., 2010], we also experienced majortime
penalties for higher arities due to the larger numbers of infer-
ences considered in each derivation step.

The maximal arity of IDB predicates thus is an important
measure for the efficiency of a materialisation calculus. We
call this thearity of a calculusand speak of binary/ternary/n-
ary materialisation calculi. The search for efficient material-
isation calculi can thus be formalised as the task of finding
a ternary or binary calculus that is sound and complete for
SROEL(×) classification. Unfortunately, as shown in Sec-
tion 5, no such calculus exists. To show that this is not ob-
vious, we now give such a calculus for a slightly smaller DL.

We present a ternary classification calculus that supports
role chains but no⊤, ⊥, nominals, and no concept products
on the left-hand side of axioms. The input translation is as in
Fig. 1 but restricted to the remaining features. So EDB predi-
catesTop, Bot, andRProd− are no longer used.

A set of rules is developed by restricting the rules to the
remaining features. We refer to rules obtained fromKinst by
the numbers in Fig.2. Rules (3), (4), (19), and (20) are obso-
lete due to the omitted EDB predicates. Without nominals, we
find that all derivationsisa(x, y) are such thaty is a DL class
name, ory is a DL individual name andx = y. This is not hard
to verify inductively by considering each rule, and the sym-
bols used in relevant EDB facts. Therefore rules (25), (26),
and (27) can be dropped. As shown in[Krötzsch, 2010], we
do not need to introduce an extra parameter for keeping track
of the assumption under which a subsumption was derived:

Theorem 2 Consider the materialisation calculus Kscc with
Isccdefined like Iinst in Fig. 1 but undefined for all axioms that
use nominal classes,⊤, ⊥, or concept products on the left-
hand side, and the program Pscc consisting of the rules(1),
(2), (5)–(18), and(21)–(24) of Fig.2 together with a new rule
Cls(z)→ isa(z, z).

For a knowledge baseKB such that Iscc(α) is defined for
all α ∈ KB, set P(KB) ≔ Pscc∪ {Iscc(α) | α ∈ KB} ∪ {Iscc(s) |
s ∈ NI ∪ NC ∪ NR}. Then for all A, B ∈ NC, KB entails
A ⊑ B if and only if P(KB) entailsisa(A, B), whenever P(KB)
is defined. Thus Kscc provides a materialisation calculus for
subsumption checking forSROEL(×) knowledge bases that
contain only⊓ (for concepts and roles),∃, Self, ◦, and con-
cept products on the right-hand side.

This theorem covers all OWL EL ontologies without
datatype properties and any ofowl:Thing, owl:Nothing,
owl:topObjectProperty, owl:bottomObjectProperty,
ObjectHasValue,ObjectOneOf, andHasKey.

If no role chains occur, one can further simplifyKscc
to obtain a binary classification calculus for normalised
SROEL(×) knowledge bases that contain only⊓ (for con-
cepts and roles),∃, Self, and concept products on the
right-hand side. This is spelled out in[Krötzsch, 2010].
Delaitre and Kazakov[2009] used a similar approach to opti-
mise a classification calculus forELH .

5 Minimal Arities of Materialisation Calculi
The arities of the above calculi forSROEL(×) range from 2
to 4. We argued that low arities are important for efficiency,

so one should develop calculi of minimal arity. Next, we es-
tablish lower bounds on the arity of materialisation calculi
for various reasoning problems. We formalise materialisation
calculi to generalise the calculi discussed above:

Definition 1 A materialisation calculusK is a tuple K =
〈I ,P,O〉 where I and O are partial functions, and P is a set of
Datalog rules without constant symbols, such that

1. given an axiom or signature symbolα, I(α) is either un-
defined or a set of Datalog facts over EDB predicates,

2. given an axiomα, O(α) is either undefined or a Datalog
fact over an IDB predicate,

3. the set of EDB and IDB predicates used by I, P, and O
is fixed and finite,

4. all constant symbols used in I(α) or O(α) for some axiom
(or signature symbol)α are either signature symbols that
appear in (or are equal to)α, or constants of the form
eαi with i ≥ 0, where all constant nameseαi are mutually
distinct and unequal to any DL signature symbol,

5. I and O do not depend on concrete signature symbols,
i.e. for a renamingρ of signature symbols that maps
individual/concept/role names to individual/concept/role
names, we find I(ρ(α)) = ρ(I (α)) and O(ρ(α)) = ρ(O(α))
if ρ(eαi) = eρ(α)i .

For knowledge basesKB we set I(KB) ≔
⋃
β∈KB I (β) if I (β)

is defined for allβ ∈ KB and undefined otherwise. We ex-
tend I to sets of signature symbols S by setting I(S) ≔⋃

s∈S,I (s) definedI (s). K induces anentailment relation⊢K be-
tween knowledge basesKB and axiomsα over a signature
〈NI ,NC,NR〉, defined by settingKB ⊢K α whenever I(KB)
and O(α) are defined and I(KB)∪I (NI∪NC∪NR)∪P |= O(α).

We say that K issound (complete)if KB ⊢K α implies (is
implied by)KB |= α for all knowledge basesKB and axioms
α for which I(KB) and O(α) are defined.

This allows the Datalog transformationI to introduce ar-
bitrarily many auxiliary constantseαi . Syntactic normalisa-
tions that use auxiliary concept names could thus also be
part of the translation. Yet, the input translation is limited,
since it depends only on individual axioms and signature
symbols. This precludes complex Datalog translations as in
[Motik and Sattler, 2006; Rudolphet al., 2008]. We make no
assumptions on the computability or complexity ofI andO,
but both functions are typically very simple.

Now our general proof strategy is as follows. For a contra-
diction, we suppose a materialisation calculus of lower arity
for a given reasoning problem. We then consider a particular
instance of that problem, given by a knowledge base KB that
entails some consequenceα. Since the calculus is assumed to
be complete, we find an according Datalog derivation with a
corresponding proof tree. This proof tree is then modified by
renaming constants, leading to a variant of the proof tree that
is still valid for the given materialisation calculus, but based
on different (renamed) assumptions. The modified assump-
tions correspond to a modified knowledge base KB′, where
we find that the materialisation calculus still derivesα on the
input KB′. We then show that KB6|= α, so that the calculus

n1: isa(A,C)

n11: Cls(A)

n8: isa(A,A) n10: isa(A,A)

n2: SubClass(B ,C)n1 n3: isa(A,B)n1

n7: Ex (A,R ,C ,e) n3n3 α

n4: Ex (R ,C ,B)n3 n3 n1

n12: Cls(A)

n6: isa(e ,C) n3α

n9: Ex (A,R ,C ,e) n3n3 α

n5: spo(A,R ,e)n3 α

+

-

+

Figure 3: A diversifiedKscc proof (α denotesA ⊑ ∃Rn3.Cn3)

cannot be sound. Some graph theoretic arguments are used
to establish this last step. The essential modification of proof
trees works as follows:

Definition 2 Consider a materialisation calculus K=
〈I ,P,O〉, a knowledge baseKB such that I(KB) is defined,
and a proof tree T= 〈N,E, λ〉 for I (KB)∪I (NI∪NC∪NR)∪P.
We say that a DL signature symbolσ occursin a ground atom
F if F containsσ as a constant, or if F contains some aux-
iliary constanteαi such thatσ occurs inα. Theinterfaceof a
node n∈ N is the set of signature symbols that occur inλ(n).

The (labels of the) tree T can bediversifiedrecursively:

• replace all signature symbols s that do not occur in the
interface of the root node by a fresh symbol s′ that has
not yet been used in T or in this construction,

• recursively diversify the subtrees below each of the di-
rect child nodes of the root.

So T is diversified by replacing some (occurrences of) sig-
nature symbols with fresh symbols. We use sn to denote the
symbol by which s is replaced in node n. The renaming may
affect auxiliary constants by renaming symbols in the axioms
that are part of their name.

Intuitively, diversification removes all re-use of constants
in a proof tree that is not essential for applying the rules ofP.
This is captured by each node’sinterface: constants not in the
interface of a rule application can be renamed uniformly be-
low the node without affecting applicability of the rule. So the
arity of a calculus determines the amount of renaming during
diversification. Figure3 shows a diversification of a proof for
{A ⊑ ∃R.C,∃R.C ⊑ B, B ⊑ C} |= A ⊑ C in the calculusKscc
of Theorem2. Note howC is renamed toCn3 in some labels
only. No further renamings occur below the nodesn5 andn6
since all relevant symbols occur in their interface due to the
auxiliary constanteα.

Leaf nodesn in proof trees relate to input symbols or
axioms. In the latter case we find an axiomαn such that
λ(n) ∈ I (αn). By suitably renaming symbols in the axioms
αn, one can find adiversified knowledge basefor which the di-
versified proof tree encodes a valid derivation. The diversified
knowledge base for Fig.3, e.g., is{A ⊑ ∃Rn3.Cn3,∃Rn3.Cn3 ⊑

Bn1, Bn1 ⊑ C}, which clearly entailsA ⊑ C as before.
The structure of a diversified proof treeT is mirrored in the

corresponding diversified knowledge base KB. An axiom of
form αn ∈ KB is belowa nodem if n is belowm, and we set
KBm ≔ {αn ∈ KB | n belowm}. Diversification ensures that
symbols occurring in both KBm and KB\ KBm must belong
to the interface ofm. This interface includes all DL symbols
in λ(m). If auxiliary constantseα occur, this encompassesall

symbols of a given input axiomα. Yet, the arity limits the
number of such axioms: for a calculus of aritya, the interface
of any node can comprise no more than the set of DL symbols
that occur ina axioms of the input knowledge base.

This can be interpreted graphically based on thedepen-
dency graphof KB – the graph that has the signature symbols
in KB as its nodes, and, for each axiom of KB with exactly
n symbols, ann-ary hyperedge connecting thesen symbols.
The set KBm induces a subgraph of a dependency graph, and
the interface ofm describes the nodes that this subgraph is
allowed to share with the remaining graph.

One can use this machinery to prove the following theo-
rems. The key in each case is to show that a conclusion that
a supposed materialisation calculus of lower arity produces is
not entailed by a diversified knowledge base. Namely, for the
entailment to hold, the latter would need to contain a set of
axioms that cannot possibly be distributed over the structure
of a proof tree without violating the interface constraints. See
[Krötzsch, 2010] for detailed proofs.

Theorem 3 LetL be a DL with general concept inclusions,
existential quantification, and role chains. Every materialisa-
tion calculus that is sound and complete for classification or
instance retrieval inL has arity three or more.

Theorem 4 LetL be a DL with general concept inclusions,
existential quantification, and nominal classes. Every materi-
alisation calculus that is sound and complete for classifica-
tion inL has arity three or more.

Theorem 5 LetL be a DL with general concept inclusions,
existential quantification, role chains, and nominal classes.
Every materialisation calculus that is sound and complete for
classification inL has arity four or more.

The latter two results do not extend to instance retrieval,
so in a sense classification is harder to implement efficiently.
Indeed, Theorem1 shows that a ternary instance retrieval cal-
culus exists for a DL that includes existentials, nominals,and
role chains. For DLs as in Theorem4, we have not presented
calculi of optimal arity. A ternary (binary) calculus for clas-
sification (instance retrieval) in this case can be obtainedby
using similar techniques as for the binary calculusKsc- pre-
sented in[Krötzsch, 2010]. Theorem5 may be surprising,
given that theEL++ calculus in[Baaderet al., 2005] would
be ternary in our notation. The explanation is that this algo-
rithm is incomplete for classification; the proof of Theorem5
can be used to find a counter example[Krötzsch, 2010].

6 Datalog Width and Complexity Theory
The presented work focusses on practical tasks of reasoning
in OWL EL, and studies the arity of materialisation calculi
mainly as a tool for optimising inferencing systems. Yet, the
work can be related to foundational studies in complexity the-
ory and deductive databases.

It is known that the arity of IDB predicates affects Data-
log expressivity in the sense that, for any natural numbern,
one can find problems that cannot be expressed in Datalog
of IDB arity ≤n [Afrati and Cosmadakis, 1989]. Arity in this
work is calledwidth, and has later been related topersistency
numbers[Afrati et al., 2005].

Feder and Vardi[1999] study Datalog in the context of
complexity theory to classify the difficulty of certain con-
straint satisfaction problems. There a problem is said to have
width (l, k) if it can be solved using a Datalog program of at
most k variables per rule and at mostl variables per head.
In this sense, our work details how DL inferencing can be re-
duced to bounded width constraint satisfaction problems. The
results of Section5 then establish a minimal width of the con-
straint satisfaction problems that are obtained when restrict-
ing the initial translation as in Definition1. This also connects
to parameterised complexitysince proof trees of (l, k) pro-
grams provide a tree decomposition of treewidthk− 1 for the
dependency graph of EDB facts. Our arity, however, corre-
sponds tol – the maximal number of elements that are shared
between adjacent bubbles of a tree decomposition. An upper
bound onk suffices to establish tractability, but the consider-
ation of l as a practically relevant measure appears to be new.

7 Summary and Conclusions
We presented various inferencing calculi forSROEL(×) and
its fragments, including the first sound and complete polyno-
mial time calculus for inferencing in a DL that largely cap-
tures the OWL EL ontology language. Using a simple frame-
work for expressing materialisation calculi in Datalog, the ar-
ity of IDB predicates is an interesting measure for the worst-
case space requirements of materialisation-based algorithms.
We have shown that role chains and nominals cause this mea-
sure to increase, while other features do not have this impact.

Hence we can differentiateSROEL(×) fragments and in-
ferencing tasks based on a measure that relates to the effi-
ciency of actual implementations. The findings agree with
practical experiences that especially nominals and role chains
are harder to implement efficiently than basicEL features.
Results on worst-case complexity so far have not been able
to explain such discrepancies, since all reasoning problems
we consider are P-complete. Conversely, some advanced fea-
tures of OWL EL do not seem to make inferencing any harder.
Overall, such results can guide the decision which featuresto
implement or to use in an application.

Although there are standard implementation strategies for
Datalog, these insights are independent of actual algorithms.
The design and implementation of optimised “pay as you go”
strategies for EL inferencing is an important goal that we
will further pursue in developing the ELK reasoner1. Further-
more, we conjecture that our results about Datalog arity can
be strengthened to obtain more direct statements about space
complexity of almost arbitrary monotone calculi.

Acknowledgements The author thanks Yevgeny Kazakov
and the anonymous reviewers for valuable input. This work
was supported by DFG in projectExpresSTand by EPSRC
in projectConDOR(EP/G02085X/1).

References
[Afrati and Cosmadakis, 1989] Foto N. Afrati and Stavros S. Cos-

madakis. Expressiveness of restricted recursive queries.In
STOC’89, pages 113–126. ACM, 1989.

1http://code.google.com/p/elk-reasoner/

[Afrati et al., 2005] Foto N. Afrati, Stavros S. Cosmadakis, and Eu-
génie Foustoucos. Datalog programs and their persistency num-
bers.ACM Trans. Comput. Log., 6(3):481–518, 2005.

[Baaderet al., 2005] Franz Baader, Sebastian Brandt, and Carsten
Lutz. Pushing theEL envelope. InIJCAI’05, pages 364–369.
Professional Book Center, 2005.

[Baaderet al., 2006] Franz Baader, Carsten Lutz, and Boontawee
Suntisrivaraporn. CEL—a polynomial-time reasoner for life sci-
ence ontologies. InIJCAR’06, volume 4130 ofLNCS, pages 287–
291. Springer, 2006.

[Baaderet al., 2007] Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, second edition, 2007.

[Baaderet al., 2008] Franz Baader, Sebastian Brandt, and Carsten
Lutz. Pushing theEL envelope further. InOWLED 2008 Work-
shop, volume 496 ofCEUR, 2008.

[Delaitre and Kazakov, 2009] Vincent Delaitre and Yevgeny Kaza-
kov. ClassifyingELH ontologies in SQL databases. InOWLED
2009 Workshop, volume 529 ofCEUR, 2009.

[Feder and Vardi, 1999] Tomás Feder and Moshe Y. Vardi. The
computational structure of monotone monadic SNP and con-
straint satisfaction: A study through Datalog and group theory.
SIAM J. Comput., 28:57–104, 1999.

[Hitzler et al., 2009] Pascal Hitzler, Markus Krötzsch, and Sebas-
tian Rudolph.Foundations of Semantic Web Technologies. Chap-
man & Hall/CRC, 2009.

[James and Spackman, 2008] Andrew G. James and Kent A.
Spackman. Representation of disorders of the newborn infant by
SNOMED CT. InProc. 21st Int. Congress of the European Fed-
eration for Medical Informatics (MIE’08), pages 833–838, 2008.

[Krötzschet al., 2008] Markus Krötzsch, Sebastian Rudolph, and
Pascal Hitzler. ELP: Tractable rules for OWL 2. InISWC’08,
volume 5318 ofLNCS, pages 649–664. Springer, 2008.

[Krötzschet al., 2010] Markus Krötzsch, Anees Mehdi, and Sebas-
tian Rudolph. Orel: Database-driven reasoning for OWL 2 pro-
files. In23rd Int. Workshop on Description Logics (DL’10), 2010.

[Krötzsch, 2010] Markus Krötzsch. Efficient inferencing for
OWL EL. In JELIA’10, volume 6341 ofLNAI, pages 234–
246. Springer, 2010. Extended technical report available at
http://www.aifb.kit.edu/web/Techreport3005.

[Motik and Sattler, 2006] Boris Motik and Ulrike Sattler. A com-
parison of reasoning techniques for querying large description
logic ABoxes. InLPAR’01, volume 4246 ofLNCS, pages 227–
241. Springer, 2006.

[Motik et al., 2009] Boris Motik, Bernardo Cuenca Grau, Ian Hor-
rocks, Zhe Wu, Achille Fokoue, and Carsten Lutz, editors.OWL 2
Web Ontology Language: Profiles. W3C Recommendation, 2009.
Available athttp://www.w3.org/TR/owl2-profiles/.

[OWL, 2009] W3C Working Group OWL.OWL 2 Web Ontology
Language: Document Overview. W3C Recommendation, 2009.
Available athttp://www.w3.org/TR/owl2-overview/.

[Rudolphet al., 2008] Sebastian Rudolph, Markus Krötzsch, and
Pascal Hitzler. Description logic reasoning with decisiondia-
grams: CompilingSHIQ to disjunctive datalog. InISWC’08,
volume 5318 ofLNCS, pages 435–450. Springer, 2008.

http://code.google.com/p/elk-reasoner/
http://www.aifb.kit.edu/web/Techreport3005
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-overview/

	1 Introduction
	2 The DL SROEL(x) and Datalog
	3 Instance Checking for SROEL(x)
	4 Classification in SROEL(x)
	5 Minimal Arities of Materialisation Calculi
	6 Datalog Width and Complexity Theory
	7 Summary and Conclusions

