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Abstract
Answer set programming (ASP) is a logic programming formalism used in various areas of artificial intelligence like combinatorial
problem solving and knowledge representation and reasoning. It is known that enhancing ASP with function symbols makes basic
reasoning problems highly undecidable. However, even in simple cases, state of the art reasoners, specifically those relying on a
ground-and-solve approach, fail to produce a result. Therefore, we reconsider consistency as a basic reasoning problem for ASP. We
show reductions that give an intuition for the high level of undecidability. These insights allow for a more fine-grained analysis where
we characterize ASP programs as “frugal” and “non-proliferous”. For such programs, we are not only able to semi-decide consistency
but we also propose a grounding procedure that yields finite groundings on more ASP programs with the concept of “forbidden” facts.
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1. Introduction
Answer set programming (ASP) [1, 2] is an established non-
monotonic reasoning formalism in the fields of knowledge-
representation and reasoning as well as combinatorial prob-
lem solving. State-of-the-art ASP systems such as clasp [3]
or wasp [4] utilize a ground-and-solve approach to compute
answer sets of a given program. In the stage of grounding,
the given program is instantiated with all relevant terms.
Afterwards, the ground program can be efficiently solved
usually with a SAT solver extended by unfounded set prop-
agation, excluding sets of atoms that lack foundation (i.e.
unfounded sets), thereby efficiently computing answer sets.

When function symbols occur in ASP programs, the
grounding step will often not terminate and approach an
infinite ground program. This is also a problem when us-
ing numbers, which we consider to merely be syntactic
sugar around a successor function. While this behavior
is in principle not incorrect as there are indeed programs
that have infinite answer sets or infinitely many answer
sets, for many programs it is clear that they only admit
finite answer sets and only finitely many of them. In this
case, we should always be able to give a large enough but
finite ground program. There is a lot of related work dis-
cussing function symbols in ASP or logic programming
in general [5, 6, 7], also classifying programs according
to conditions that guarantee finite groundings [8, 9], and
different works on ASP grounding and solving techniques
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Still, these approaches
do not have support for function symbols as their primary
goal. In practice, the problem of infinite ground programs
is often counteracted by using auxiliary predicates to artifi-
cially limit the size of the grounding.
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Figure 1: Wolf, Goat, Cabbage Puzzle

Example 1. We consider the famous puzzle of a farmer who
needs to cross a river with a wolf, a goat, and a cabbage. They
may only take one item at a time and must not leave the wolf
and the goat or the goat and the cabbage alone since then the
former will eat the latter (see Figure 1). One essential part
of the considered modeling is a rule as the following together
with enough generated atoms, e.g. steps(0...100).

position(𝑋,𝐶,𝑁 + 1)← transport(𝑋,𝑁),

position(𝑋,𝐵,𝑁), opposite(𝐵,𝐶), steps(𝑁 + 1).

That is, if we guess that item 𝑋 is transported in step 𝑁 ,
then its position is updated to the opposite river bank if we
are not out of steps yet. Additional rules are introduced to
detect and avoid redundant positions. However, despite the
redundancy check, we need to bound (guard) the term 𝑁+1,
as otherwise the grounding is infinite.

The goal of our work is to make the artificial limit on the
number of steps obsolete in the above example. We aim to
define a grounding procedure that is guaranteed to termi-
nate on programs that can only have finitely many finite
answer sets. It turns out that such a procedure must be un-
computable but we also outline a computable relaxation still
reflecting the key idea. In this extended abstract, we give
a brief overview of the main ideas introduced in our previ-
ously published paper [20], where we make the following
contributions. (1) We classify ASP programs as frugal, if they
only have finite answer sets, and non-proliferous, if they only
have finitely many finite answer sets. (2) We show that both
properties are highly undecidable using novel reductions
based on reconsiderations of the problem of consistency, i.e.
checking if an ASP program has an answer set. (3) We pro-
pose a novel grounding procedure that ignores forbidden
atoms. While deciding if an atom is forbidden is also unde-
cidable, we give a sufficient condition able to capture cases
like the redundancy check in Example 1.
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2. Preliminaries
We define Preds, Funs, Cons, and Vars to be mutually
disjoint and countably infinite sets of predicates, func-
tion symbols, constants, and variables, respectively. Ev-
ery 𝑠 ∈ Preds ∪ Funs is associated with some arity
ar(𝑠) ≥ 0. For every 𝑖 ≥ 0, both Preds𝑖 = {𝑃 ∈
Preds | ar(𝑃 ) = 𝑖} and Funs𝑖 = {𝑓 ∈ Funs |
ar(𝑓) = 𝑖} are countably infinite. The set Terms of terms
includes Cons and Vars; and contains 𝑓(𝑡1, . . . , 𝑡𝑖) for
every 𝑖 ≥ 1, every 𝑓 ∈ Funs𝑖, and every 𝑡1, . . . , 𝑡𝑖 ∈
Terms. A term 𝑡 /∈ Vars ∪ Cons is functional. An
ASP program 𝑃 is a set of (non-ground) rules of the form
𝐻 ← 𝑝1(𝑇1), . . . , 𝑝𝑚(𝑇𝑚),¬𝑝𝑚+1(𝑇𝑚+1), . . . ,¬𝑝𝑛(𝑇𝑛)
where 𝐻 = 𝑞1(𝑆1), . . . , 𝑞ℓ(𝑆ℓ) with 0 ≤ ℓ ≤ 1,
|𝑆𝑖|=ar(𝑞𝑖) for every 1 ≤ 𝑖 ≤ ℓ, and |𝑇𝑖|=ar(𝑝𝑖) for every
1 ≤ 𝑖 ≤ 𝑛. In the above, 𝑞1, . . . , 𝑞ℓ, 𝑝1, . . . , 𝑝𝑛 ∈ Preds

are predicates and 𝑆1, . . . , 𝑆ℓ, 𝑇1, . . . , 𝑇𝑛 are vectors over
terms, i.e. variables, constants or functional terms (featuring
variables or constants). We assume that rules are safe; that is,
every variable in a rule occurs in some 𝑇𝑖 with 1 ≤ 𝑖 ≤ 𝑚.
For such a rule 𝑟, we define 𝐻𝑟 = 𝐻 , 𝐵+

𝑟 as the set of
all positive atoms, and 𝐵−

𝑟 as the set of all negative atoms
in the antecedent. We call a program ground if it does not
feature variables. The ground program Ground(𝑃 ) results
from a (non-ground) program 𝑃 by creating all possible in-
stantiations of rules where variables are replaced by terms
from the herbrand universe of 𝑃 . An interpretation 𝐼 , i.e. a
set of atoms, is a model for a ground program 𝑃 if it satisfies
all rules in 𝑃 . That is, (𝐻𝑟 ∪ 𝐵−

𝑟 ) ∩ 𝐼 ̸= ∅ or 𝐵+
𝑟 ∖ 𝐼 ̸= ∅.

Furthermore, 𝐼 is an answer set of 𝑃 , if additionally, every
atom 𝑎 in 𝐼 is proven, meaning that {𝑎} = 𝐻𝑟 for some
rule 𝑟 ∈ 𝑃 such that 𝐼 contains 𝐵+

𝑟 but no atom in 𝐵−
𝑟 and

there is an ordering of atoms over 𝐼 such that the order of
atoms in 𝐵+

𝑟 is strictly smaller than the order of 𝑎.

3. Characterization of Programs
with Infinite Groundings

There are essentially two high level reasons why a given
ASP program does not admit a finite ground program that
would allow to solve it reliably. They can have (1) at least
one infinite answer set or (2) infinitely many finite answer
sets. The intuition here is that a valid ground program
needs to overestimate all possible answer sets of a program.
Formally, a ground program 𝑃𝑔 is a valid grounding for a
program 𝑃 if 𝑃𝑔 and 𝑃 have the same answer sets. To
be able to obtain valid groundings that are finite, we limit
ourselves to programs, which are frugal and non-proliferous.

Definition 1. A program is frugal if it only admits finite
answer sets; it is non-proliferous if it only admits finitely
many finite answer sets (but arbitrarily many infinite ones).

Both conditions are independent of each other. For exam-
ple, a program that has no finite answer sets but at least one
infinite one is non-proliferous but not frugal. The existence
of program that is frugal and proliferous is less obvious.

Example 2. The following ASP program admits infinitely
many finite answer sets but no infinite one.

next(𝑌, 𝑓(𝑌 ))←next(𝑋,𝑌 ),¬last(𝑌 ).

last(𝑌 )←next(𝑋,𝑌 ),¬next(𝑌, 𝑓(𝑌 )).

done ←last(𝑌 ). ← ¬done. next(𝑐, 𝑑).

Clearly, {next(𝑐, 𝑑), last(𝑑), done} is an answer set. Also,
any finite chain of next relations terminated by last is an
answer set. However, an infinite next-chain is not an answer
set as it cannot contain any last atom, hence does not feature
done , and therefore violates the constraint.

Unfortunately, checking if a program is frugal or non-
proliferous is highly undecidable. Both checks are complete
for respective levels in the arithmetical or even analytical
hierarchy (see [21] for an introduction). The specific defini-
tions of the classes are not vital as we show reductions from
and to problems already known to be complete. Checking
if a program is non-proliferous is comparably easy.

Theorem 1 ([22, Theorem 2]). Deciding if a program is
non-proliferous is Σ0

2-complete.

Membership is achieved as follows. Note that we can
semi-decide whether a given ASP program has at least 𝑛
answer sets for a given 𝑛. We can now semi-decide if the
program is non-proliferous by using an oracle for the previ-
ous problem: we enumerate all natural numbers 𝑖 and check
with the oracle if the program has at least 𝑖 answer sets; if
the oracle rejects, we accept, otherwise we continue.

Hardness follows by a reduction from the complement
of the universal halting problem of Turing machines (TM),
i.e. the question whether a given TM halts on all inputs,
which is known to be Π0

2-complete. The main idea of the
proof is to generate all arbitrarily long but finite inputs to
a TM with a construction similar to Example 2. We then
mount a standard TM simulation on top. Another important
ingredient is the realization that we can reduce universal
halting to checking if a TM halts on infinitely many inputs.
For details, see [22].

Checking if a program is frugal is much harder, namely
Π1

1-complete. Luckily, we can reuse reductions that we can
also use to (re-)prove that consistency of ASP programs is
Σ1

1-complete (for other existing proofs see Corollary 5.12 in
[5] and Theorem 5.9 in [6]).

Theorem 2 ([22, Theorem 1]). Deciding program consis-
tency is Σ1

1-complete.

In this extended abstract we only briefly present the re-
ductions in both directions. For correctness arguments, we
refer the interested reader to our technical report [22]. We
obtain membership by reducing to the following problem.

Proposition 1 ([23, Corollary 6.2]1). Checking if some run
of a non-deterministic Turing machine on the empty word
visits the start state infinitely many times is in Σ1

1.

For a program 𝑃 and an interpretation 𝐼 , let Active𝐼(𝑃 )
be the set of all rules in Ground(𝑃 ) that are not satisfied
by 𝐼 . If 𝐼 is finite, then so is Active𝐼(𝑃 ) and Active𝐼 is
computable.

Definition 2. For a program 𝑃 , let 𝑀𝑃 be the non-
deterministic TM that, regardless of the input, executes the
following instructions:

1. Initialize an empty set 𝐿0 of literals, and some coun-
ters 𝑖 := 0 and 𝑗 := 0.

2. If 𝐿+
𝑖 and 𝐿−

𝑖 are not disjoint, halt.

3. If 𝐿+
𝑖 is an answer set of 𝑃 , loop on the start state.

1The original result shows Π1
1-completeness for the complement.



4. Initialize 𝐿𝑖+1 := 𝐿𝑖 ∪ 𝐻𝑟 ∪ {¬𝑎 | 𝑎 ∈ 𝐵−
𝑟 }

where 𝑟 is some non-deterministically chosen rule in
Active

𝐿+
𝑖
(𝑃 ).

5. If 𝐿𝑖 satisfies all of the rules in Active
𝐿+

𝑗
(𝑃 ), then

increment 𝑗 := 𝑗 + 1 and visit the start state once.

6. Increment 𝑖 := 𝑖+ 1 and go to Step 2.

Now the program𝑃 is consistent if and only if𝑀𝑃 admits
a run on the empty word that visits its start state infinitely
many times. For hardness, we reduce to the following.

Definition 3. A tiling system is a tuple ⟨𝑇,HI,VI, 𝑡0⟩where
𝑇 is a finite set of tiles, HI and VI are subsets of 𝑇 ×𝑇 , and 𝑡0
is a tile in 𝑇 . Such a tiling system admits a recurring solution
if there is a function 𝑓 : N× N→ 𝑇 such that:

1. For every 𝑖, 𝑗 ≥ 0, we have that ⟨𝑓(𝑖, 𝑗), 𝑓(𝑖 +
1, 𝑗)⟩ /∈ HI and ⟨𝑓(𝑖, 𝑗), 𝑓(𝑖, 𝑗 + 1)⟩ /∈ VI.

2. There is an infinite subset 𝑆 of N such that 𝑓(0, 𝑗) =
𝑡0 for every 𝑗 ∈ 𝑆.

Proposition 2 ([23, Theorem 6.4]2). Checking if a tiling
system admits a recurring solution is Σ1

1-hard.

We can encode this problem with the following program.

Definition 4. For a tiling system T = ⟨𝑇,HI,VI, 𝑡0⟩, let
𝑃T be the program that contains the ground atom Dom(𝑐0)
and all of the following rules:

Dom(𝑠(𝑋))← Dom(𝑋)

Tile𝑡(𝑋,𝑌 )← Dom(𝑋),Dom(𝑌 ),

{¬Tile𝑡′(𝑋,𝑌 ) | 𝑡′ ∈ 𝑇 ∖ {𝑡}} ∀𝑡 ∈ 𝑇

← Tile𝑡(𝑋,𝑌 ), Tile𝑡′(𝑠(𝑋), 𝑌 ) ∀⟨𝑡, 𝑡′⟩ ∈ HI

← Tile𝑡(𝑋,𝑌 ), Tile𝑡′(𝑋, 𝑠(𝑌 )) ∀⟨𝑡, 𝑡′⟩ ∈ VI
Below𝑡0(𝑌 )← Tile𝑡0(𝑐0, 𝑠(𝑌 ))

Below𝑡0(𝑌 )← Below𝑡0(𝑠(𝑌 ))

← Dom(𝑌 ),¬Below𝑡0(𝑌 )

We obtain that T has a recurring solution if and only if
𝑃T is consistent. This concludes that consistency for ASP
programs is Σ1

1-complete. To show that frugality is Π1
1-

complete, we essentially use the same reductions but for the
complement of frugality.

Theorem 3 ([22, Theorem 3]). Deciding if a program is
frugal is Π1

1-complete.

For membership, we need to slightly change the machine
𝑀𝑃 to halt in step 3 instead of looping on the start state.
Then, the modified machine admits a run on the empty word
that visits the start state infinitely many times if and only
if the program has an infinite answer set, i.e. the program
is not frugal. The hardness reduction works as is since 𝑃T

either has an infinite answer set or none at all. Therefore
it is not frugal if and only if it admits an answer set if and
only if the tiling-system has a recurring solution.

Even if a program is both frugal and non-proliferous,
consistency is still undecidable.

Theorem 4 ([22, Theorem 5]). Consistency for frugal and
non-proliferous programs is Σ0

1-hard.

Still, whenever a program is frugal, we can semi-decide
consistency by enumerating all answer set candidates.

Theorem 5 ([22, Theorem 4]). Consistency for frugal pro-
grams is in Σ0

1.
2The original result shows Σ1

1-completeness.

4. Finite Groundings for Frugal and
Non-Proliferous Programs

Based on the results from the previous section, we cannot
hope to obtain a procedure that produces finite valid ground-
ings for all frugal and non-proliferous programs. If this was
the case, we could decide consistency for such programs. In-
stead, we sketch a procedure that requires to check if atoms
are forbidden. While this property is undecidable itself, we
give a checkable sufficient condition.

An atom is forbidden in the context of a program 𝑃 , if
it does not occur in any answer set of 𝑃 . Undecidability
follows by reducing from the halting problem of TMs, which
is also done in Theorem 4. For a sufficient condition, the
idea is to check all possible ways in which a given atom
could be proven. If each of these ways is unsuccessful, e.g.
by requiring contradictory literals, then the atom must be
forbidden (see [22]). With the notion of forbidden atoms in
place, we define the following grounding procedure.

Definition 5. Define GroundNotForbidden(·) that takes a
program 𝑃 as input and executes the following instructions:

1. Initialize 𝑖 := 1, 𝐴0 := ∅, and 𝑃𝑔 := ∅.

2. Initialize 𝐴𝑖 := 𝐴𝑖−1 and for each 𝑟 ∈ Ground(𝑃 )
with 𝐵+

𝑟 ⊆ 𝐴𝑖−1, do the following. If all atoms in
𝐻𝑟 are forbidden in 𝑃 , add← 𝐵𝑟 to 𝑃𝑔 . Otherwise,
add 𝑟 to 𝑃𝑔 and add the single atom in 𝐻𝑟 to 𝐴𝑖.

3. Stop if 𝐴𝑖 = 𝐴𝑖−1; else set 𝑖 := 𝑖+ 1 and go to 2.

The output of the procedure is 𝑃𝑔 .

Correctness of the procedure is not hard to verify.

Theorem 6 ([22, Theorem 7]). For a program 𝑃 ,
GroundNotForbidden(𝑃 ) is a valid grounding, i.e. 𝑃 and
GroundNotForbidden(𝑃 ) have the same answer sets.

Indeed, we also obtain that the procedure always termi-
nates for frugal and non-proliferous programs.

Proposition 3 ([22, Proposition 5]). For a frugal and non-
proliferous program 𝑃 , GroundNotForbidden(𝑃 ) is finite.

However, we need to stress again that the procedure is
not computable. To obtain a computable version, we need to
exchange the check for forbidden atoms with a computable
sufficient condition. While this retains correctness, it might
not retain termination of the procedure.

5. Outlook
We hope that our results inspire further theoretical and
practical research on support for function symbols in ASP.
In particular, we hope that common workarounds like ar-
tificially limiting the size of the grounding with a “step”
predicate as in Example 1 will become obsolete in the future.
Obvious future work revolves around implementing our
proposed grounding approach. An efficient implementation
including a viable sufficient check for forbidden atoms re-
quires in-depth considerations. Boosting generality of such
a sufficient condition or taking disjunctions into account are
interesting directions for theoretical research. In practice, a
tradeoff between generality and performance needs to be
found. Our work can be a reference for a first prototypical
implementation that enables further experiments. Ideally,
sufficient checks for forbidden atoms could then directly be
integrated into existing grounders and ASP systems.
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