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ABSTRACT
Ontologies play a central role in semantic applications: by provid-
ing semantics to the given data, they support the integration and
automated processing of knowledge. Systems for ontology-based
data access do however not take into account both the fuzzy and the
temporal nature of the knowledge, which is often inherent in real-
world data. In this paper, we propose an approach for temporal
query answering over fuzzy data w.r.t. ontologies.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Miscellaneous; I.2.4
[Knowledge Representation Formalisms and Methods]: Repre-
sentation languages,Temporal logic

General Terms
Algorithms, Languages
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1. INTRODUCTION
Ontologies play a central role in semantic applications: by provid-
ing semantics to the given data, they support the integration and
automated processing of knowledge. Well-known medical domain
ontologies like SnomedCT1 and GALEN2 may, for example, cap-
ture the fact that there are several synonyms for the varicella zoster
virus (VZV) (e.g., HHV3) and that someone having chickenpox
is infected with VZV. This supports the integration of patient data
coming from several sources (e.g., if they address VZV differently)
and physicians querying patient records (e.g., if they ask if a patient
had been infected with VZV and the record states that he has had
chickenpox at some time). Hence, ontology-based query answering
(OBQA) may assist in finding appropriate participants for a clinical
study: by formulating the eligibility criteria (i.e., the requirements
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1http://www.ihtsdo.org/snomed-ct
2http://www.co-ode.org/ontologies/galen

to be met by the participants) as queries over the (probably linked)
patient data, appropriate candidates can be found. The following
are two such criteria, for example:3

• Either previously infected with VZV or previously vacci-
nated with VZV vaccine
• Karnofsky score of greater than or equal to 50

Note that the first criterion addresses data of the past, and that the
Karnofsky score4 captures the well-being of a patient and is thus
a rather vague measure with smooth transitions (e.g., 40 denotes
‘requires special assistance . . . ’, and 50 stands for ‘requires con-
siderable assistance . . . ’). A corresponding database storing the
patient data (i.e., their current Karnofsky score and past findings)
in two tables could look as follows.

PID Name Karnofsky
1 Ann 80
2 Bob 70
3 Chris 48
4 Dan 46
5 Eva 70

PID Finding Date
1 HHV3-Infection 13.08.2007
2 Chickenpox 22.01.2010
3 VZV-Infection 01.11.2011
4 VZV-Infection 13.06.2004
5 VZV-Infection 05.02.2012

Regarding the above data, OBQA could enhance standard database
query answering (e.g., in SQL) in that not only Eva, but also Ann
and Bob would be considered as appropriate candidates. How-
ever, only few state of the art systems for OBQA support tem-
poral queries—to the best of our knowledge, it is only [8]. Fur-
thermore, we sometimes might want to relax the query and also
consider Chris and Dan as being eligible, whose score is slightly
below 50.

In this paper, we therefore do not only apply ontologies to ac-
cess data, but explicitly integrate temporal and fuzzy aspects into
query answering. Specifically, we use fuzzy classes to model vague
information as the Karnofsky score. That is, instead of consid-
ering individuals to be either an instance of a class or not, we
specify a degree of instantiation, from the interval [0,1] (e.g., the
scores of Chris and Dan could, respectively, be considered to be
instances of a class EligibleKarnofskyScore with degrees 0.8 and
0.6, and degree 1 could be used for scores ≥ 50). Then, a given
query can be extended with a variable degree to obtain different
sets of answers (e.g., querying the example data for patients whose
score instantiates the class EligibleKarnofskyScore with degrees
3https://clinicaltrials.gov/ct2/show/
NCT01953900
4http://en.wikipedia.org/wiki/Performance_
status



EquivalentClasses(VZV,HHV3), ObjectPropertyDomain(hasFinding,Patient),
SubClassOf(VZV,Virus), ObjectPropertyRange(hasFinding,Finding),
SubClassOf(Chickenpox,VZVInfection), ObjectPropertyDomain(hasKarnofskyScore,Patient),
SubClassOf(VZVInfection,Finding), ObjectPropertyRange(hasKarnofskyScore,KarnofskyScore),
SubClassOf(EligibleKarnofskyScore,KarnofskyScore), . . .

Figure 1: OWL 2 QL-axioms that capture terminological knowledge of the running example.

≥ 0.8 and ≥ 0.5 would result in answers {Chris, Eva} and
{Chris,Dan,Eva}, respectively). Next to the possibility to spec-
ify degrees, we use a recently proposed temporal query language
that applies the operators of the well-known propositional temporal
logic LTL (e.g., to express the ‘previously’ in the first criterion). We
hence integrate two extensions of classical ontology-based query
answering, motivated by the often temporal and/or fuzzy nature
of real-world data. We also propose an algorithm to answer these
queries and describe a prototypical implementation.

2. KNOWLEDGE REPRESENTATION AND
THE QUERIES

We start specifying the ontologies, the data model, and the queries
we focus on. In particular, we regard ontologies written in the on-
tology language DL-LiteR, a subset of the OWL 2 QL profile [1].
This language allows for capturing the conceptual features of rela-
tional databases and has been tailored for efficient query answering.
The terminological information mentioned in the introduction can
be, for example, represented by the axioms given in Figure 1.

To make the ontology applicable, the given data has to be linked to
the classes and properties of the ontology. This is commonly done
via mappings [13], which point out the data representing individu-
als (e.g., such a mapping may describe that every PID pid in the
example database represents an individual :pdb/patient/pid, and
that every Karnofsky score associated with a specific PID pid and
date date represents a unique individual :pdb/karnofsky/pid/-
date, too) and specify the instantiation of classes and properties
(e.g., that an individual :pdb/karnofsky/1/13.08.2007 is an in-
stance of class EligibleKarnofskyScore if the corresponding score
is ≥ 50). Since we want to consider some data to be fuzzy, and
thus to be explicitly annotated with a degree, we extend this usual
mapping. In particular, we apply a function fuzzifyS which, for
each class (property) S defines how the degree—to which the (tuple
of) individual(s) instantiates the class (property)—is obtained from
the database content (e.g., fuzzifyEligibleKarnofskyScore may map a
given Karnofsky score v to degree 1 if v ≥ 50, to 0 if v ≤ 40,
and to (v − 40)/10, otherwise). Note that, alternatively, the class
EligibleKarnofskyScore could be populated differently, in different
scenarios, by using the common approach and adapting the map-
ping linking the data to the ontology. However, then, the degree
would not be explicitly represented and thus could not be addressed
in the queries, which are described later in this section.

We specifically integrate the temporal nature of the data by pop-
ulating the property hasTimeStamp for all data of temporal con-
text (e.g., assuming the current date ′01.06.2015′, we would define
the mapping such that the tuple (:pdb/karnofsky/1/01.06.2015,
′01.06.2015′) instantiates the property to degree 1).

As query language, we basically apply the language TSPARQL we
proposed in [21]; it is described in Figure 2 and basically extends
SPARQL by the Boolean and temporal operators of LTL. The eligi-

q := q1 AND q2 | q1 OR q2 |
PREVIOUS q1 | NEXT q1 |
ALWAYS_IN_PAST q1 | ALWAYS q1 |
SOMETIMES_IN_PAST q1 | SOMETIMES q1 |
q1 SINCE q2 | q1 UNTIL q2

Figure 2: The syntax of our TSPARQL queries, which are built
from conjunctive SPARQL queries q1 and q2 using the Boolean
and temporal LTL operators.

bility criteria from the example could be formulated in TSPARQL
as the below query, asking for all patients that meet the criteria:56

( ( SOMETIMES_IN_PAST
SELECT ? p WHERE {
? p a : P a t i e n t .
? p : h a s F i n d i n g ? f .
? f a : VZVInfec t ion } )

OR
(SOMETIMES_IN_PAST

SELECT ? p WHERE {
? p a : P a t i e n t .
? p : i s V a c c i n a t e d W i t h ? v .
? v a : VZVVaccine } ) )

AND
SELECT ? p WHERE {

? p a : P a t i e n t .
? p : h a s K a r n o f s k y S c o r e ? s .
? s a : E l i g i b l e K a r n o f s k y S c o r e }

Additionally, we assume a degree to be given with every TSPARQL
query to be answered—to finally restrict the set of answers. In the
next section, we propose an algorithm to answer such queries.

3. THE ALGORITHM
Our algorithm is a so-called rewriting approach. In general, such
an approach rewrites a given query, written in the abstract vocabu-
lary of an ontology, into a standard database query (e.g., in SQL)
that encodes the relevant ontological knowledge but addresses a
general database; the latter can then be used to store the data and
efficiently answer the (rewritten) queries.7

Algorithm 1 gives an overview of the rewriting algorithm sql. Its
input consists of a temporal query φt in TSPARQL and an on-
5Note that the ‘previously’, which occurs in the eligibility crite-
rion of the example, does not only refer to the time point directly
preceding the current moment, but to the past in general. For that
reason, we use the LTL operator SOMETIMES_IN_PAST instead
of the PREVIOUS operator.
6Please note that negation is not considered in TSPARQL.
7An introduction of the approach is given in [6], for example.



tology O, and the output is a basic SQL query. The algorithm
processes the temporal subqueries in φt recursively until no tem-
poral operators are present any more; that is, until the considered
subquery is a plain conjunctive query (CQ) in SPARQL. The then
considered CQ ψ is first extended with the terminological knowl-
edge contained in the ontology (e.g., if ψ asks for findings that
are instances of the class VZVInfection, it is extended such that
it also asks for all instances of class Chickenpox) and afterwards
fuzzified to add the membership degrees (e.g., if ψ asks for in-
stances of EligibleKarnofskyScore, then the above described func-
tion fuzzifyEligibleKarnofskyScore is included into the SQL to gener-
ate the corresponding membership degree from the data). Sub-
sequently, the extended and fuzzified CQs are recombined by the
given temporal operators.

Algorithm 1 TSPARQL to SQL rewriting

1: function SQL(φt, T )
2: φ′ ← ∅
3: . Retrieve list of temporal operators
4: t′ ← operators(φt)
5: for all subqueries ψ in TCQ φt do
6: if ψ contains temporal operator then
7: . Recursively resolve temporal operator
8: φ′ ← append(φ′, sql(ψ, T ))
9: else

10: . Extend ψ by information of T
11: ψT ← extend(ψ, T )
12: . Annotate ψT with fuzzy information
13: ψf

T ← fuzzify(ψT )
14: . Append the fuzzyfied CQ to φ′

15: φ′ ← append(φ′, ψf
T ))

16: end if
17: end for
18: . Connects a list of queries by temporal operators
19: φt,f

T ← temporalize(φ′, t′)

20: return φt,f
T

21: end function

For the running example, an abstract representation of the query
could look as below.

φt = ((SOMETIMES_IN_PAST ψ1) OR
(SOMETIMES_IN_PAST ψ2)) AND ψ3

Recall that the function sql separates the temporal operators and
thus splits the given query. As an example, we regard the rewriting
sql(SOMETIMES_IN_PAST ψ1) (i.e., ψ1 denotes the SPARQL
query asking for a patient that has a finding which is an instance
of class VZVInfection). Since ψ1 is a plain CQ, it is extended
and fuzzified as described above. The SQL statement in Listing 1
shows the result of sql(SOMETIMES_IN_PAST ψ1,O), assum-
ing O to be our corresponding ontology. This SQL is then com-
bined with the SQL generated for the other subqueries. The final
rewriting sql(φt,O) can then be evaluated over a common rela-
tional database, and the obtained answers represent the answers to
the query φt w.r.t. O, with the consideration of fuzzy data. Some
more detail on the implementation is given next.

SELECT
/∗ ∗ p a t i e n t ∗ /
VIEW_A . p ,
/∗ ∗ Membership de gr e e ∗ /
Degree . d ,
/∗ ∗ Time p o i n t i n t h e f u t u r e ∗ /
TVIEW_A . timestamp

FROM
e x t e n d (ψ1 ) AS VIEW_A,
f u z z i f y (ψ1 ) AS Degree ,
(SELECT

DISTINCT timestamp
FROM

t i m e t a b l e ) AS TVIEW_A
WHERE

/∗ ∗ VIEW_A . t i m e s t a m p i s t h e p a s t t i m e
p o i n t where ψ1 h o l d s ∗ ∗ /
TVIEW_A . timestamp > VIEW_A . timestamp

Listing 1: The SQL rewriting of the TSPARQL query
(SOMETIMES_IN_PAST ψ1)

4. IMPLEMENTATION
To provide a fast and efficient solution, we implemented our ap-
proach based on existing systems, including algorithms we devel-
oped previously. Specifically, we integrated the algorithm imple-
mented in QuAnTOn [21], a system for answering temporal queries
over temporal knowledge bases, with the FLite approach [10], which
allows for OBQA over fuzzy data. For rewriting the plain SPARQL
queries into SQL, we apply the highly optimized Ontop system [15].
Our implementation is written in Java 1.7 and uses a MySQL8 data-
base for data storage. An overview is given in Figure 3.

The system input consists of (i) (possibly fuzzy) data referencing
different time points; (ii) a pair (qt, d) containing a TSPARQL
query qt and a degree d; the vector ~x represents the variable tuple
which is to be instantiated by the answers; and (iii) an ontology O.
Our system then rewrites the query as described in the previous
section and evaluates the rewritten query, qf,tO , over the MySQL
database. This evaluation yields a set of answers with correspond-
ing degrees. Finally, those of the answers whose degree is ≥ d are
returned as output.

Fuzzy databases

Ontology

Query in 
TSparQL 

+
Degree

QuAnTOn

Reintroduce 
Temporal Operators 

by

SQL Engine

Add 
Membership
Degrees by

FLite

Separate Temporal
Operators from 

Query

Answers

SQL Query

...

...

...

...

Query Rewriting to
SQL by

Figure 3: Overview of our implementation for temporal query
answering w.r.t. an ontology and fuzzy data.

8http://www.mysql.com



5. RELATED WORK
There is a lot of active research on both temporal and fuzzy OBQA.
However, the fields are yet separated and, even in theory, the inte-
gration of the two aspects has not been considered so far.

Although there is a growing interest of research on the temporal as-
pects of ontology-based data access, recently, freely available im-
plementations that answer temporal queries are still rare [8, 21]. [8]
describe a system tailored to answering rather expressive queries
over data streams. [21] prototypically evaluate three different im-
plementations of temporal OBQA, but do not provide fully fledged
systems, yet.

Apart from the FLite reasoner, several approaches for answering
fuzzy queries in practice have been proposed in the past [18, 19,
11, 22, 5, 17, 4, 12, 20]. However, several of them have been im-
plemented only prototypically [18, 19, 11] or could not be obtained/
installed [12, 20]. In contrast to the fuzzy DL-LiteR reasoner FLite,
[22, 5, 17, 4] support more expressive ontology languages; on the
other hand, they allow only for class queries as query language (i.e.,
instead of the more expressive conjunctive queries).

6. SUMMARY & OUTLOOK
We presented an approach for answering temporal queries w.r.t. on-
tologies that allows to explicitly represent vagueness in the data and
the queries. We assume these queries to be useful in many applica-
tions, given the fact that temporal and/or fuzzy aspects are usually
inherent in real-world data. Based on existing reasoning systems,
we implemented our algorithm prototypically.

Future plans include a thorough evaluation targeting specific appli-
cation scenarios. The latter could also motivate the extension of our
approach. In particular, it would be interesting to see if DL-LiteR
is expressive enough in practice, or if we have to regard more ex-
pressive ontology languages.
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