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Relationships of Complexity Classes

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ Exp

= = = ? = = =

coL ⊆ coNL ⊆ coP ⊆ coNP ⊆ coPSpace = coNPSpace ⊆ coExp

Obvious question:

Are any of these ⊆ strict ⊊?
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Relationships of Complexity Classes

Relating different complexity classes is a central goal of complexity theory

Complexity classes differ by:

• Underlying machine model (e.g., DTM vs. NTM)

• Restricted resource (e.g., time or space)

• Resource bound (e.g., polynomial or exponential)

Some intuitions:

• Nondeterminism seems to add some more power

• Space seems to be more powerful than time

• More resources seem to add more power

However: it is often difficult to confirm these intuitive ideas formally
(and many of them remain unproven)
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Something we do know

At least one thing is known to be (mostly) true:

Intuition: If we allow a given Turing machine to use strictly more time or space,
then it can really solve strictly more problems.

• This is not always true, but it is true for “reasonable” ways of defining resource
bounds, such as polynomial or exponential

• We will formalise and prove it later today

• The proof method we will use is called diagonalisation
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Diagonalisation
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Review: Cantor’s Argument
Diagonalisation is the basis of a well known argument to show that the powerset 2S of a
countable set S is not countable

Proof: Suppose for a contradiction that 2S is countable.
• Then the sets in 2S can be enumerated in a list S1,S2,S3, . . . ⊆ S
• Let us write this list as boolean matrix with rows representing the sets
S1,S2,S3, . . ., columns representing a (countably infinite) enumeration of S, and
boolean entries encoding the ∈ relationship.

• For a contradiction, define a set Sd by diagonalisation to differ from all other Si in
the enumeration:

s1 s2 s3 . . .

S1 × . . .

S2 × . . .

S3 × × . . .
...

...
...

...
. . .

Sd × × . . .
□
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Review: The Halting Problem
We have used a similar argument to show undecidability of the Halting problem:

Proof: Suppose for a contradiction that Halting is decidable.
• Then set of all Turing machines can be enumerated in a listM1,M2,M3, . . .
• We are interested in their halting on inputs of the form ⟨M⟩ for some TMM
• We can write it as a boolean matrix with rows representing the TMs
M1,M2,M3, . . ., columns representing a (countably infinite) enumeration of strings
⟨M⟩, and boolean entries encoding if TM halts.

• Using a decider for the halting problem, we can define a TMMd by diagonalisation
to differ from all otherMi in the enumeration:

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ . . .

M1 × . . .

M2 × . . .

M3 × × . . .
...

...
...

...
. . .

Md × × . . .
□
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Generalising Diagonalisation

To generalise diagonalisation as a method for complexity classes, we consider arbitrary
resources (time, space, . . . ):

Definition 12.1: Given a class K of Turing machines (e.g., 2-tape determinis-
tic TMs), R is a resource (e.g., time or space) defined for all machines in K if
RM(w) ∈ N ∪ {∞} for all M ∈ K and all words w.

Then, any function f : N→ N gives rise to a class of languages:

R(f ) = {L | there is M ∈ K with L(M) = L and RM(w) ≤ f (|w|) for all w ∈ Σ∗}.

Example 12.2: We will use, e.g., the following resources:

• DTime time used by a deterministic 1-tape TM

• DTimek time used by a deterministic k-tape TM

• DTime∗ time used by a deterministic TM with any number of tapes
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Diagonalisation of Resources
Consider resources R1 and R2 for two classes of Turing machines K1 and K2, and two
functions f1, f2 : N→ N.

Definition 12.3: We say that R1(f1) allows diagonalisation over R2(f2) if there ex-
ists a Turing machine D ∈ K1 such that

• L(D) ∈ R1(f1), and

• for each M ∈ K2 that is R2-bounded by f2, there exists a word w such that
⟨M, w⟩ ∈ L(D) if and only if ⟨M, w⟩ < L(M).

Theorem 12.4: If R1(f1) allows diagonalisation over R2(f2), then R1(f1) \ R2(f2) , ∅.

Proof: Let D be as in Definition 12.3. We show L(D) < R2(f2).
(1) Suppose for a contradiction that there isM ∈ K2 that is R2-bounded by f2 with

L(D) = L(M).
(2) We obtain a contradiction, since, by Definition 12.3, there is a word w such that

⟨M, w⟩ ∈ L(D) = L(M) if and only if ⟨M, w⟩ < L(M) □
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Hierarchy Theorems
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Reasonable bounds

What kind of functions should we consider as resource bounds?

• Functions f : N→ N can be very weird

• The intuition “higher bound⇒ more power” turns out to be wrong in general

However, our intuition can be confirmed for “reasonable” functions:

Definition 12.5: A function t : N → N is time-constructible if t(n) ≥ n for all n and
there exists a TM that computes t(n) in unary in time O(t(n)).

A function s : N → N is space-constructible if s(n) ≥ log n and there exists a TM
that computes s(n) in unary in space O(s(n)).

Note 1: We do consider arbitrary deterministic multi-tape TMs here.

Note 2: A TM that computes f (n) “in unary” takes n as input and writes a symbol (say x)
f (n) times before terminating

Markus Krötzsch; 26 Nov 2024 Complexity Theory slide 13 of 23



Reasonable bounds

What kind of functions should we consider as resource bounds?

• Functions f : N→ N can be very weird

• The intuition “higher bound⇒ more power” turns out to be wrong in general

However, our intuition can be confirmed for “reasonable” functions:

Definition 12.5: A function t : N → N is time-constructible if t(n) ≥ n for all n and
there exists a TM that computes t(n) in unary in time O(t(n)).

A function s : N → N is space-constructible if s(n) ≥ log n and there exists a TM
that computes s(n) in unary in space O(s(n)).

Note 1: We do consider arbitrary deterministic multi-tape TMs here.

Note 2: A TM that computes f (n) “in unary” takes n as input and writes a symbol (say x)
f (n) times before terminating

Markus Krötzsch; 26 Nov 2024 Complexity Theory slide 13 of 23



Time and space constructible functions

There are alternative definitions of time and space constructibility in the literature, but
the general intuition is similar:

• Time-constructible: Computing f does not require significantly more time than the
resulting value of f

• Space-constructible: Computing f does not require significantly more space than
the resulting value of f

All functions commonly used to bound time or space satisfy these criteria:

Theorem 12.6: If f and g are time-constructible (space-constructible), then so
are f + g, f · g, 2f , and f g. Moreover, the following common functions have these
properties:

• nd (d ≥ 1), bn (b ≥ 2), and n! are time-constructible

• log n, nd (d ≥ 1), bn (b ≥ 2), and n! are space-constructible
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Using Constructibility to Halt
We had required time-bounded nondeterministic TMs to halt on all computation paths,
even if not accepting. — Is this really necessary?

Theorem 12.7: Given a time-constructible function f and an NTM M, one can
construct an O(f )-time bounded NTM M′ that accepts exactly those words w that
M accepts in f (|w|) steps.

Consequences: (1) we can enforce timely termination on unsuccessful paths; (2) if we
have at least polynomial time, this can also be achieved with only one tape.

Proof: On input w,M′ operates as follows:

(1) Compute f (|w|) on a separate tape (creating f (|w|) symbols). This can be done in
O(f (|w|)) time.

(2) Perform the same transitions asM (on dedicated tapes) while “counting down” the
f (|w|) symbols in each step

(3) Terminate if eitherM terminates (in this case return its result) or if the countdown
reaches 0 (in this case reject). □
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Doing more by using more tapes

We first show a preliminary result: “more time + more tapes = more power”

Theorem 12.8: Let f , g : N → N such that f is time-constructible, and g ∈ o(f ).
Then, for all k ∈ N, we have

DTimek(g) ⊊ DTime∗(f )

Proof: Clearly, DTimek(g) ⊆ DTimek(f ) ⊆ DTime∗(f ). We get DTime∗(f ) , DTimek(g) by
showing that DTime∗(f ) allows diagonalisation over DTimek(g).

We define a multi-tape TM D for inputs of the form ⟨M, w⟩ (other cases do not matter):
• Compute f (|⟨M, w⟩|) in unary on a separate “countdown” tape
• SimulateM on ⟨M, w⟩, using an appropriate number of tapes (see Theorem 3.8).
• Time-bound the simulation by f (|⟨M, w⟩|) using the countdown tape as in

Theorem 12.7
• IfM rejects (in this time bound), then accept;

otherwise, ifM accepts or fails to stop (in the bounded time), reject
The countdown ensures that D runs in O(f ) time, i.e. L(D) ∈ DTime∗(f ).
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Doing more by using more tapes (2)

We first show a preliminary result: “more time + more tapes = more power”

Theorem 12.8: Let f , g : N → N such that f is time-constructible, and g ∈ o(f ).
Then, for all k ∈ N, we have

DTimek(g) ⊊ DTime∗(f )

Proof (continued): To invoke Theorem 12.4, we still have to show that, for every k-tape
TMM that is g-time bounded, there is a word w such that

⟨M, w⟩ ∈ L(D) if and only if ⟨M, w⟩ < L(M)

For this, we need to show that there is a word w for which D’s simulation ofM will
terminate on time:
• For allM, there is a constant number cM of steps that D will at most need to

simulate one step ofM (this depends on the size ofM)
• Since g ∈ o(f ) there is a number n0 such that f (n) ≥ cM · g(n) for all n ≥ n0.
• Therefore, for all (infinitely many) words w with |⟨M, w⟩| ≥ n0, D’s simulation ofM

will terminate. □
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A Time Hierarchy Theorem

We can now show that (sufficiently) more time always allows us to solve strictly more
problems, even if we are allowed to use any number of tapes (i.e., the advantage of
having more time cannot be compensated by adding more tapes):

Time Hierarchy Theorem (weaker version) 12.9: If f , g : N → N are such that f
is time-constructible, and g2 ∈ o(f ), then

DTime∗(g) ⊊ DTime∗(f )

Proof: Since DTimek(g) ⊆ DTime∗(f ) for all k, it is clear that DTime∗(g) ⊆ DTime∗(f ).

But Theorem 12.8 does not show DTime∗(g) , DTime∗(f ): it could be that every problem in DTime∗(f ) is also in DTimek(g) for a big enough k.

• Multi-tape TMs can be transformed into single tape TMs with quadratic time
overhead (Theorem 5.10), hence DTime∗(g) ⊆ DTime1(g2).

• By Theorem 12.8, DTime1(g2) ⊊ DTime∗(f ) since g2 ∈ o(f )
• Hence DTime∗(g) ⊊ DTime∗(f ) □
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Exponential jumps make a difference

Corollary 12.10: P ⊊ ExpTime.

Proof:

• For every polynomial p, we have p(n) ∈ o(2n), so P ⊆ DTime(2n) ⊆ ExpTime
Note: of course, we also have p2 ∈ o(2n), but this only shows that DTime(p) ⊊ ExpTime holds for specific polynomials, rather than
P ⊊ ExpTime for the union over all polynomials.

• For proper inclusion, note (2n)2 = 22n ∈ o(2n2
), so DTime(2n) ⊊ DTime(2n2

)
• In summary:

P ⊆ DTime(2n) ⊊ DTime(2n2
) ⊆ ExpTime

□

Note: Simliar results hold for any exponential time gap, e.g., ExpTime ⊊ 2ExpTime.
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)
• In summary:

P ⊆ DTime(2n) ⊊ DTime(2n2
) ⊆ ExpTime

□

Note: Simliar results hold for any exponential time gap, e.g., ExpTime ⊊ 2ExpTime.
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Tighter Bounds
We have shown our Time Hierarchy Theorem using the fact that 1-tape DTMs can
simulate k-tape DTMs with quadratic overhead.

Better results for reducing tapes are known:

Theorem 12.11 (Hennie and Stearns, 1966): For any f with f (n) ≥ n, we have
DTime∗(f ) ⊆ DTime2(f · log f ).

(without proof; see, e.g., Hopcroft & Ullman, p. 292ff for details)

Our first proof of the Time Hierarchy Theorem can use this 2-tape encoding to get the
following result:

Time Hierarchy Theorem 12.12: If f , g : N → N are such that f is time-
constructible, and g · log g ∈ o(f ), then

DTime∗(g) ⊊ DTime∗(f )

This improvement was discovered soon after the first Time Hierarchy Theorem was
found by Hartmanis and Stearns (1965).
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Polynomial Time revisited

The stronger version of the Time Hierarchy Theorem can even separate different
degrees of polynomials:

Corollary 12.13: For all d ≥ 1, DTime∗(nd) ⊊ DTime∗(nd+1).

Proof: Polynomial functions are time-constructible and we have:

nd ∈ O(nd · log nd) = O(nd · log n) = o(nd+1)

Hence the Time Hierarchy Theorem applies. □

One can view this as an argument against Cobham’s Thesis (“P = practically
tractable”) since it shows that P has problems that require arbitrarily high degrees
of polynomials, and are therefore most likely not practically tractable.
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Nondeterminism

The results so far are for deterministic TMs only. One can find analogous results for
NTMs . . .

• as expected, following our intuition that more time enables more computations

• surprisingly, since our earlier proof that simply flips the answer for diagonalisation
does not work for NTMs

Nondeterministic Time Hierarchy Theorem (Cook, 1972) 12.14: If f , g : N → N
are such that f is time-constructible, and g(n + 1) ∈ o(f (n)), then

NTime∗(g) ⊊ NTime∗(f )

(without proof; see, e.g., Arora & Barak, Section 3.2 for a sketch)

One can therefore get similar separation results as for deterministic time, e.g.,
NP ⊊ NExpTime.
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Summary and Outlook
The time hierarchy theorems tell us that more time leads to more power:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

,

,

However, they don’t help us in comparing different resources and machine types
(P vs. NP, or PSpace vs. ExpTime)

The diagram shows that in sequences such as P ⊆ NP ⊆ PSpace ⊆ ExpTime, one of
the inclusions must be proper – but we don’t know which (expectation: all!)

What’s next?

• The space hierarchy theorem

• Do we need time and space constructibility? What could possibly go wrong . . . ?

• The limits of diagonalisation, proved by diagonalisation
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