TECHNISCHE <& International Center @-?Computahonql

DRDERSTAT W for Computational Logic ‘,I-.D Logic - Group

Sebastian Rudolph
International Center for Computational Logic
TU Dresden

Existential Rules — Lecture 8

Adapted from slides by Andreas Pieris and Michaél Thomazo
Summer Term 2023

BCQ-Answering: Our Main Decision Problem

database (aka ABox)

knowledge base

YN

N

ontology (aka V @
s \i/

VXYY (o(X,Y) = 3Z (X,2Z))

decide whether DA 2 E Q

Existential Rules — Lecture 8 — Sebastian Rudolph Slide 2

Sum Up

Data Complexity
Naive algorithm
FULL PTIME-c
Reduction from Monotone Circuit Value problem
ACYCLIC
in LOGSPACE | Second part of our course
LINEAR
Combined Complexity
Naive algorithm
FULL EXPTIME-c
Simulation of a deterministic exponential time TM
Small witness property
ACYCLIC NEXPTIME-c
Reduction from Tiling problem
Level-by-level non-deterministic algorithm
LINEAR PSPACE-c
” Simulation of a deterministic polynomial space TM
fﬁﬁ" Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 3

Forward Chaining Techniques

D

chase(D,2)

Useful techniques for establishing optimal upper bounds

...but not practical - we need to store instances of very large size

Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 4

Query Rewriting

compilation

Qs [~ . evaluation

First-order query

Union of CQs \
SQL query
Datalog query

evaluated and optimized by
VD : DAN2ZEQ <
exploiting existing technology

Existential Rules — Lecture 8 — Sebastian Rudolph Slide 5

Query Rewriting: Formal Definition

Consider a class of existential rules £, and a query language Q.
BCQ-Answering under Lis Q-rewritable if, for every 2 € £ and BCQ Q,

we can construct a query Qs € Q such that,

for every database D, DA 2 E Qiff D F Qs

NOTE: The construction of Qs is database-independent — the pure approach

to query rewriting

7'
P .
[Existential Rules — Lecture 8 — Sebastian Rudolph Slide 6

Target Query Language

we target the weakest query language

Datalog
CQ ucQ FO Datalog
FULL X X X v
ACYCLIC X v v v
LINEAR X v v v

Existential Rules — Lecture 8 — Sebastian Rudolph Slide 7

UCQ-Rewritings

« The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:
1. Rewriting

2. Minimization

« The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 8

Normalization Procedure

VXYY (0(X,Y) = 3Z (Py(X,Z) A ... A P(X,Z)))

VXYY (0(X,Y) = 3Z Auxiliary(X,Z))
VXVZ (Auxiliary(X,Z) — P1(X,Z))

VXVZ (Auxiliary(X,Z) — P(X,Z))

VXVZ (Auxiliary(X,Z) — P,(X,Z))

NOTE 1: Acyclicity and linearity are preserved

NOTE 2: We obtain an equivalent set w.r.t. query answering (not logically equivalent)

7'
P .
[Existential Rules — Lecture 8 — Sebastian Rudolph Slide 9

UCQ-Rewritings

« The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:
1. Rewriting

2. Minimization

« The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 10

Rewriting Step

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3JA3IB hasCollaborator(A,db,B)

g={X—B,Y—>db,Z— A}

hasCollaborator(A,db,B)

Thus, we can simulate a “backward chase step” by a resolution step

Qs = 3A3B hasCollaborator(A,db,B)

V
1B (project(B) A inArea(B,db))

7
[Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 11

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(c,db,B)

g={X—B,Y—>db,Z— c}

hasCollaborator(c,db,B)

After applying the rewriting step we obtain the following UCQ

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 12

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(c,db,B)

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

« Consider the database D = {project(a), inArea(a,db)}
« Clearly, DE Qs

« However, D A Z does not entail Q since there is no way to obtain an atom of
the form hasCollaborator(c,db,) during the chase

7'
P |
[Existential Rules — Lecture 8 — Sebastian Rudolph Slide 13

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(c,db,B)

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

the information about the constant c in the original query is lost after the

application of the rewriting step since c is unified with an 3-variable

Existential Rules — Lecture 8 — Sebastian Rudolph Slide 14

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(B,db,B)

g={X—B,Y—>db, Z— B}

hasCollaborator(B,db,B)

After applying the rewriting step we obtain the following UCQ

Qs = 3B hasCollaborator(B,db,B)
V
1B (project(B) A inArea(B,db))

Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 15

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(B,db,B)

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

« Consider the database D = {project(a), inArea(a,db)}
« Clearly, DE Qs

« However, D A Z does not entail Q since there is no way to obtain an atom of
the form hasCollaborator(t,db,t) during the chase

7'
P |
[Existential Rules — Lecture 8 — Sebastian Rudolph Slide 16

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(B,db,B)

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

the fact that B in the original query participates in a join is lost after the application

of the rewriting step since B is unified with an 3-variable

Existential Rules — Lecture 8 — Sebastian Rudolph Slide 17

Applicability Condition
Consider a BCQ Q, an atom a in Q, and a (normalized) rule o.

We say that o is applicable to a if the following conditions hold:

1. head(o) and a unify via h : terms(head(o)) — terms(a)

2. For every variable X in head(o), if h(X) is a constant, then X is a V-
variable

3. For every variable X in head(o), if h(X) = h(Y), where Y is a shared
variable of a, then X is a V-variable

4. If Xis an 3-variable of head(o), and Y is a variable in head(o) such
that X #Y, then h(X) # h(Y)

...but, although this is crucial for soundness, it may destroy completeness

7'
P |
[Existential Rules — Lecture 8 — Sebastian Rudolph Slide 18

Incomplete Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VYXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = JA3B4C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B3C (hasCollaborator(A,B,C) A collaborator(A))
V
JAIB3C3EdF (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))

« Consider the database D = {project(a), inArea(a,db)}

» Clearly, chase(D,2) = D U {hasCollaborator(z,db,a), collaborator(z)} E
Qs

j-g‘.;'However, D does not entail Qs

Existential Rules — Lecture 8 — Sebastian Rudolph Slide 19

Incomplete Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VYXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = JA3B4C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B4C (hasCollaborator(A,B,C) A collaborator(A))
V
JA3IBdC3E3F (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))
V
dB3C (project(C) A inArea(C,B))

...but, we cannot obtain the last query due to the applicablity condition

Existential Rules — Lecture 8 — Sebastian Rudolph Slide 20

Minimization Step

= {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = 3JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

V
JA3IBJC3EdF (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))

N/

hasCollaborator(A,B,C)

7
[Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 21

Minimization Step

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VYXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = 3JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B3C (hasCollaborator(A,B,C) A collaborator(A))
V
JAIBJC3EdF (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))
V
JAIB4C (hasCollaborator(A,B,C)) - by minimization

7
[Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 22

Minimization Step

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VYXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = 3JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

V

JAIB3C3EdF (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))
V

JAIB4C (hasCollaborator(A,B,C)) - by minimization
V

IB4C (project(C) A inArea(C,B)) - by rewriting

7
[Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 23

UCQ-Rewritings

« The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:
1. Rewriting

2. Minimization

« The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 24

The Rewriting Algorithm

Qs = Q;
repeat
Qaux == Qx;
foreach disjunct g of Q,,, do
/IRewriting Step
foreach atom a in g do
foreach rule o in 2 do
if 0 is applicable to a then
Qrew .= rewrite(q,a,0); // resolve a using o
if .., does not appear in Qs (modulo variable renaming) then
Qs = Qs V Qrew;
/IMinimization Step
foreach pair of atoms a,3 in g that unify do
Qmin := Minimize(q,a,B); // apply most general unifier of a and B on q
if 9.ni» does not appear in Qs (modulo variable renaming) then
Qs = Qs V Qminy

until Qaux = QZ;

return Qz;
G
1!-"

Existential Rules — Lecture 8 — Sebastian Rudolph Slide 25

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (ACYCLIC):

« Key observation: after arranging the disjuncts of the rewriting in a tree T, the
branching of T is finite, and the depth of T is at most the number of predicates
occurring in the rule set

« Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

[9 Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 26

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (LINEAR):

« Key observation: the size of each partial rewriting is at most the size of the
given CQ Q

« Thus, each partial rewriting can be transformed into an equivalent query that
contains at most |Q| - maxarity variables

« The number of queries that can be constructed using a finite number of
predicates and a finite number of variables is finite

« Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

7'
[Existential Rules — Lecture 8 — Sebastian Rudolph Slide 27

Complexity of BCQ-Answering

Data Complexity

Naive algorithm
FULL PTIME-c
Reduction from Monotone Circuit Value problem
ACYCLIC
in LOGSPACE | UCQ-rewriting
LINEAR
Combined Complexity
Naive algorithm
FULL EXPTIME-c
Simulation of a deterministic exponential time TM
Small witness property
ACYCLIC NEXPTIME-c
Reduction from Tiling problem
Level-by-level non-deterministic algorithm
LINEAR PSPACE-c
” Simulation of a deterministic polynomial space TM
fﬂﬁ" Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 28

Size of the Rewriting

 Ideally, we would like to construct UCQ-rewritings of polynomial size
« But, the standard rewriting algorithm produces rewritings of exponential size

e« Can we do better? NO!!!

2 = {VX(RX) = PX)}ket,..n) Q = AX(P1(X) A ... A Py(X))

IX (P4(X) A ... A Py(X))

/ N\

P1(X) v Ri(X) Pn(X) vV Ry(X)

thus, we need to consider 2" disjuncts

7
[Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 29

Size of the Rewriting

|deally, we would like to construct UCQ-rewritings of polynomial size

But, the standard rewriting algorithm produces rewritings of exponential size

Can we do better? NO!!!

Although the standard rewriting algorithm is worst-case optimal, it can

be significantly improved

Optimization techniques can be applied in order to compute efficiently

small rewritings - field of intense research

Existential Rules — Lecture 8 — Sebastian Rudolph Slide 30

Minimization Step Revisited

2 = {VX(P(X) - 3Y R(X,Y))}

Q =3JA,...3A,3B (S1(A)) A R(A1,B) A ... A S(An) A R(A,,B))

exponentially many minimization steps must be applied in order to get the query
JA3B (S1(A) A ... A S,(A) A R(A,B))
and then apply the rewriting step, which will lead to the query

IA (S1(A) A ... A Sy(A) A P(A))

Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 31

Minimization Step Revisited
S = (VX (P(X) - 3Y RX,Y))}

Q =3A;...3A,3B (S1(A1) A R(A1,B) A ... A Si(A,) A R(A,,B))

Piece-based Rewriting
» Instead of rewriting a single atom

» Rewrite a set of atoms that have to be rewritten together

Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 32

Computing the Piece

Input: CQ g, atom a = R(t4,...,t,) in g, rule o
Output: piece of ain gw.rt. o

Piece = {R(t;,....t,)};
while TRUE do
if Piece and head(o) do not unify then
return J;
h := most general unifier of Piece and head(o);
if h violates points 2 or 4 of the applicability condition then
return J;
if h violates point 3 of the applicability condition then
Piece := Piece U {atoms containing a variable that unifies with an 3-variable};
else
return Piece;

7'
P |
[Existential Rules — Lecture 8 — Sebastian Rudolph Slide 33

The Piece-based Rewriting Algorithm

Qs = Q;
repeat
Qaux = QZ;
foreach disjunct g of Q,,, do
foreach atom a in g do
foreach rule o in < do
[/IRewriting Step
if 0 is applicable to a then

Qrew .= rewrite(q,a,0); // resolve a using o
if .., does not appear in Qs (modulo variable renaming) then
Qs = Qs V Qrew;
/IMinimization Step
P .= piece of a in g w.r.t. o;
Qmin := minimize(q,P); [/ apply the most general unifier of P on g
if g.ni» does not appear in Qs (modulo variable renaming) then
Qs == Qs V Qmin;

until Qaux = QZ;

return Qz;
G
1!-"

Existential Rules — Lecture 8 — Sebastian Rudolph

Slide 34

Termination

2 = {VXYY (R(X,Y) A P(Y) - P(X))}

Q = X PX) @ =3XPX)
3IX3Y, (R(c,vw) A P(Y4))
IX3Y43Y; (R(C,Y1) A I\R’/(Y1,Y2) A P(Y5))
IX3Y,43Y,3Y; (R(C,Y4) A R(Y\:,Yz) A R(Y2,Y3) A P(Y3))
V

» The piece-based rewriting algorithm does not terminate

* However, there exists a finite UCQ-rewritings, that is, X P(X)

...careful application of the homomorphism check

7'
P |
[Existential Rules — Lecture 8 — Sebastian Rudolph Slide 35

Limitations of UCQ-Rewritability
@ evaluated and optimized by
VD : DAN2ZEFQ <
exploiting existing technology

« What about the size of Qs? - very large, no rewritings of polynomial size

« What kind of ontology languages can be used for 2?7 - below PTIME

7'
P |
[Existential Rules — Lecture 8 — Sebastian Rudolph Slide 36

