

International Center for Computational Logic

Sebastian Rudolph International Center for Computational Logic TU Dresden

Existential Rules – Lecture 8

Adapted from slides by Andreas Pieris and Michaël Thomazo Summer Term 2023

BCQ-Answering: Our Main Decision Problem

decide whether $D \land \Sigma \vDash Q$

Existential Rules – Lecture 8 – Sebastian Rudolph

Sum Up

Û

	Data Complexity		
FULL	PTIME-c	Naïve algorithm	
		Reduction from Monotone Circuit Value problem	
ACYCLIC	LIC in LOGSPACE R	Second part of our course	
LINEAR		Second part of our course	

	Combined Complexity	
FULL	EXPTIME-c	Naïve algorithm
		Simulation of a deterministic exponential time TM
ACYCLIC	NEXPTIME-c	Small witness property
		Reduction from Tiling problem
	PSPACE-c	Level-by-level non-deterministic algorithm
		Simulation of a deterministic polynomial space TM
Existential Rules – Lecture 8 – Sebastian Rudolph		

Forward Chaining Techniques

Useful techniques for establishing optimal upper bounds

...but not practical - we need to store instances of very large size

Query Rewriting

 $\forall D : D \land \Sigma \vDash \mathbf{Q} \iff \mathbf{D} \vDash \mathbf{Q}_{\Sigma}$

evaluated and optimized by exploiting existing technology

Query Rewriting: Formal Definition

Consider a class of existential rules *L*, and a query language *Q*.

BCQ-Answering under \mathcal{L} is *Q*-rewritable if, for every $\Sigma \in \mathcal{L}$ and BCQ *Q*,

we can construct a query $Q_{\Sigma} \in Q$ such that,

for every database D, $D \land \Sigma \vDash Q$ iff $D \vDash Q_{\Sigma}$

NOTE: The construction of Q_{Σ} is database-independent – the pure approach to query rewriting

Target Query Language

we target the weakest query language

	CQ	UCQ	FO	Datalog
FULL	×	×	×	\checkmark
ACYCLIC	×	\checkmark	\checkmark	\checkmark
LINEAR	×	\checkmark	\checkmark	\checkmark

UCQ-Rewritings

- The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following two steps:
 - 1. Rewriting
 - 2. Minimization

• The standard algorithm is designed for normalized existential rules, where only one atom appears in the head

Normalization Procedure

$\forall X \forall Z (Auxiliary(X,Z) \rightarrow P_n(X,Z))$

. . .

NOTE 1: Acyclicity and linearity are preserved

NOTE 2: We obtain an equivalent set w.r.t. query answering (not logically equivalent)

UCQ-Rewritings

 The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where only one atom appears in the head

Rewriting Step

 $\Sigma = \{ \forall X \forall Y (project(X) \land inArea(X,Y) \rightarrow \exists Z hasCollaborator(Z,Y,X)) \}$

Thus, we can simulate a "backward chase step" by a resolution step

Q_Σ = ∃A∃B hasCollaborator(A,db,B) ∨

$\exists B (project(B) \land inArea(B,db))$

 $\Sigma = \{ \forall X \forall Y (project(X) \land inArea(X,Y) \rightarrow \exists Z hasCollaborator(Z,Y,X)) \}$

After applying the rewriting step we obtain the following UCQ

Q_Σ = ∃B hasCollaborator(c,db,B) ∨ ∃B (project(B) ∧ inArea(B,db))

- $\Sigma = \{ \forall X \forall Y (project(X) \land inArea(X,Y) \rightarrow \exists Z hasCollaborator(Z,Y,X)) \}$
- Q = ∃B hasCollaborator(c,db,B)

- Consider the database D = {project(a), inArea(a,db)}
- Clearly, $D \vDash Q_{\Sigma}$
- However, D ∧ Σ does not entail Q since there is no way to obtain an atom of the form hasCollaborator(c,db,_) during the chase

- $\Sigma = \{ \forall X \forall Y (project(X) \land inArea(X,Y) \rightarrow \exists Z hasCollaborator(Z,Y,X)) \}$
- Q = ∃B hasCollaborator(c,db,B)

the information about the constant c in the original query is lost after the application of the rewriting step since c is unified with an ∃-variable

 $\Sigma = \{ \forall X \forall Y (project(X) \land inArea(X,Y) \rightarrow \exists Z hasCollaborator(Z,Y,X)) \}$

After applying the rewriting step we obtain the following UCQ

 $Q_{\Sigma} = \exists B hasCollaborator(B,db,B)$

∀ ∃B (*project*(B) ∧ *inArea*(B,db))

- $\Sigma = \{ \forall X \forall Y (project(X) \land inArea(X,Y) \rightarrow \exists Z hasCollaborator(Z,Y,X)) \}$
- Q = ∃B hasCollaborator(B,db,B)

- Consider the database D = {project(a), inArea(a,db)}
- Clearly, $D \vDash Q_{\Sigma}$
- However, D ∧ Σ does not entail Q since there is no way to obtain an atom of the form hasCollaborator(t,db,t) during the chase

- $\Sigma = \{ \forall X \forall Y (project(X) \land inArea(X,Y) \rightarrow \exists Z hasCollaborator(Z,Y,X)) \}$
- Q = ∃B hasCollaborator(B,db,B)

the fact that B in the original query participates in a join is lost after the application of the rewriting step since B is unified with an ∃-variable

Applicability Condition

Consider a BCQ Q, an atom α in Q, and a (normalized) rule σ .

We say that σ is applicable to α if the following conditions hold:

- 1. head(σ) and α unify via h : terms(head(σ)) \rightarrow terms(α)
- For every variable X in head(o), if h(X) is a constant, then X is a ∀variable
- For every variable X in head(σ), if h(X) = h(Y), where Y is a shared variable of α, then X is a ∀-variable
- If X is an ∃-variable of head(σ), and Y is a variable in head(σ) such that X ≠ Y, then h(X) ≠ h(Y)

...but, although this is crucial for soundness, it may destroy completeness

Incomplete Rewritings

- $$\begin{split} \Sigma &= \{ \forall X \forall Y \ (\textit{project}(X) \land \textit{inArea}(X,Y) \rightarrow \exists Z \ \textit{hasCollaborator}(Z,Y,X)), \\ &\forall X \forall Y \forall Z \ (\textit{hasCollaborator}(X,Y,Z) \rightarrow \textit{collaborator}(X)) \} \end{split}$$
- $Q = \exists A \exists B \exists C (hasCollaborator(A,B,C) \land collaborator(A))$

 $Q_{\Sigma} = \exists A \exists B \exists C (hasCollaborator(A,B,C) \land collaborator(A))$ \lor $\exists A \exists B \exists C \exists E \exists F (hasCollaborator(A,B,C) \land hasCollaborator(A,E,F))$

- Consider the database D = {project(a), inArea(a,db)}
- Clearly, chase(D,Σ) = D ∪ {hasCollaborator(z,db,a), collaborator(z)} ⊨ Q_Σ

Incomplete Rewritings

- $$\begin{split} \Sigma &= \{ \forall X \forall Y \ (\textit{project}(X) \land \textit{inArea}(X,Y) \rightarrow \exists Z \ \textit{hasCollaborator}(Z,Y,X)), \\ &\forall X \forall Y \forall Z \ (\textit{hasCollaborator}(X,Y,Z) \rightarrow \textit{collaborator}(X)) \} \end{split}$$
- $Q = \exists A \exists B \exists C (hasCollaborator(A,B,C) \land collaborator(A))$

 $Q_{\Sigma} = \exists A \exists B \exists C (hasCollaborator(A,B,C) \land collaborator(A))$ \lor $\exists A \exists B \exists C \exists E \exists F (hasCollaborator(A,B,C) \land hasCollaborator(A,E,F))$ \lor $\exists B \exists C (project(C) \land inArea(C,B))$

...but, we cannot obtain the last query due to the applicablity condition

Minimization Step

- $$\begin{split} \Sigma &= \{ \forall X \forall Y \ (\textit{project}(X) \land \textit{inArea}(X,Y) \rightarrow \exists Z \ \textit{hasCollaborator}(Z,Y,X)), \\ &\forall X \forall Y \forall Z \ (\textit{hasCollaborator}(X,Y,Z) \rightarrow \textit{collaborator}(X)) \} \end{split}$$
- $Q = \exists A \exists B \exists C (hasCollaborator(A,B,C) \land collaborator(A))$

Minimization Step

- $$\begin{split} \Sigma &= \{ \forall X \forall Y \ (\textit{project}(X) \land \textit{inArea}(X,Y) \rightarrow \exists Z \ \textit{hasCollaborator}(Z,Y,X)), \\ &\forall X \forall Y \forall Z \ (\textit{hasCollaborator}(X,Y,Z) \rightarrow \textit{collaborator}(X)) \} \end{split}$$
- $Q = \exists A \exists B \exists C (hasCollaborator(A,B,C) \land collaborator(A))$

 $Q_{\Sigma} = \exists A \exists B \exists C (hasCollaborator(A,B,C) \land collaborator(A))$ \lor $\exists A \exists B \exists C \exists E \exists F (hasCollaborator(A,B,C) \land hasCollaborator(A,E,F))$ \lor $\exists A \exists B \exists C (hasCollaborator(A,B,C)) - by minimization$

Minimization Step

- $$\begin{split} \Sigma &= \{ \forall X \forall Y \ (\textit{project}(X) \land \textit{inArea}(X,Y) \rightarrow \exists Z \ \textit{hasCollaborator}(Z,Y,X)), \\ &\forall X \forall Y \forall Z \ (\textit{hasCollaborator}(X,Y,Z) \rightarrow \textit{collaborator}(X)) \} \end{split}$$
- $Q = \exists A \exists B \exists C (hasCollaborator(A,B,C) \land collaborator(A))$

 $\begin{array}{l} Q_{\Sigma} = \exists A \exists B \exists C \ (hasCollaborator(A,B,C) \land collaborator(A)) \\ & \lor \\ \\ \exists A \exists B \exists C \exists E \exists F \ (hasCollaborator(A,B,C) \land hasCollaborator(A,E,F)) \\ & \lor \\ \\ \\ \exists A \exists B \exists C \ (hasCollaborator(A,B,C)) \ - \ by \ minimization \\ & \lor \\ \\ \\ \\ \\ \end{bmatrix} \exists B \exists C \ (project(C) \land inArea(C,B)) \ - \ by \ rewriting \end{array}$

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where only one atom appears in the head

The Rewriting Algorithm

 $Q_{\Sigma} := Q;$ repeat $Q_{aux} := Q_{\Sigma};$ foreach disjunct q of Q_{aux} do //Rewriting Step foreach atom α in q do foreach rule σ in Σ do if σ is applicable to α then $q_{rew} := rewrite(q, \alpha, \sigma);$ // resolve α using σ if q_{rew} does not appear in Q_{Σ} (modulo variable renaming) then $Q_{\Sigma} := Q_{\Sigma} \vee q_{row}$

//Minimization Step

foreach pair of atoms α,β in q that <u>unify</u> do

 $q_{min} := minimize(q, \alpha, \beta);$ // apply most general unifier of α and β on q if q_{min} does not appear in Q_{Σ} (modulo variable renaming) then

 $Q_{\Sigma} := Q_{\Sigma} \vee q_{min};$

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (ACYCLIC):

- Key observation: after arranging the disjuncts of the rewriting in a tree T, the branching of T is finite, and the depth of T is at most the number of predicates occurring in the rule set
- Therefore, only finitely many partial rewritings can be constructed in general, exponentially many

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (LINEAR):

- Key observation: the size of each partial rewriting is at most the size of the given CQ Q
- Thus, each partial rewriting can be transformed into an equivalent query that contains at most |Q| · maxarity variables
- The number of queries that can be constructed using a finite number of predicates and a finite number of variables is finite
- Therefore, only finitely many partial rewritings can be constructed in general, exponentially many

Complexity of BCQ-Answering

(ju

	Data Complexity		
FULL	PTIME-c	Naïve algorithm	
		Reduction from Monotone Circuit Value problem	
ACYCLIC	- in LOGSPACE		
LINEAR		UCQ-rewriting	

	Combined Complexity	
FULL	EXPTIME-c	Naïve algorithm
		Simulation of a deterministic exponential time TM
ACYCLIC	NEXPTIME-c	Small witness property
		Reduction from Tiling problem
	PSPACE-c	Level-by-level non-deterministic algorithm
		Simulation of a deterministic polynomial space TM
Evistential Rules – Lecture 8 – Sebastian Rudolph		

Size of the Rewriting

- Ideally, we would like to construct UCQ-rewritings of polynomial size
- But, the standard rewriting algorithm produces rewritings of exponential size
- Can we do better? NO!!!

 $\Sigma = \{ \forall X (R_k(X) \to P_k(X)) \}_{k \in \{1, \dots, n\}} \qquad Q = \exists X (P_1(X) \land \dots \land P_n(X))$

$$\exists X (P_1(X) \land \dots \land P_n(X))$$

$$P_1(X) \lor R_1(X) \qquad P_n(X) \lor R_n(X)$$

thus, we need to consider 2ⁿ disjuncts

Size of the Rewriting

- Ideally, we would like to construct UCQ-rewritings of polynomial size
- But, the standard rewriting algorithm produces rewritings of exponential size
- Can we do better? NO!!!

- Although the standard rewriting algorithm is worst-case optimal, it can be significantly improved
- Optimization techniques can be applied in order to compute efficiently small rewritings - field of intense research

Minimization Step Revisited

 $\Sigma = \{ \forall X \ (P(X) \rightarrow \exists Y \ R(X,Y)) \}$

 $Q = \exists A_1 \dots \exists A_n \exists B (S_1(A_1) \land R(A_1,B) \land \dots \land S_n(A_n) \land R(A_n,B))$

exponentially many minimization steps must be applied in order to get the query

 $\exists \mathsf{A} \exists \mathsf{B} (S_1(\mathsf{A}) \land \ldots \land S_n(\mathsf{A}) \land R(\mathsf{A},\mathsf{B}))$

and then apply the rewriting step, which will lead to the query

 $\exists A (S_1(A) \land \ldots \land S_n(A) \land P(A))$

Minimization Step Revisited

 $\Sigma = \{ \forall X \ (P(X) \rightarrow \exists Y \ R(X,Y)) \}$

 $Q = \exists A_1 \dots \exists A_n \exists B (S_1(A_1) \land R(A_1,B) \land \dots \land S_n(A_n) \land R(A_n,B))$

Piece-based Rewriting

- Instead of rewriting a single atom
- Rewrite a set of atoms that have to be rewritten together

Computing the Piece

```
Input: CQ q, atom \alpha = R(t_1,...,t_n) in q, rule \sigma
Output: piece of \alpha in q w.r.t. \sigma
```

```
Piece := {R(t_1,...,t_n)};
```

```
while TRUE do
```

```
if Piece and head(\sigma) do not unify then
```

return Ø;

```
h := most general unifier of Piece and head(\sigma);
```

```
if h violates points 2 or 4 of the applicability condition then
```

return Ø;

if h violates point 3 of the applicability condition then

```
Piece := Piece \cup {atoms containing a variable that unifies with an \exists-variable}; else
```

return Piece;

The Piece-based Rewriting Algorithm

 $Q_{\Sigma} := Q;$ repeat $Q_{aux} := Q_{\Sigma};$ foreach disjunct q of Q_{aux} do foreach atom α in q do foreach rule σ in Σ do //Rewriting Step if σ is applicable to α then $q_{rew} := rewrite(q, \alpha, \sigma);$ // resolve α using σ if q_{rew} does not appear in Q_{Σ} (modulo variable renaming) then $Q_{\Sigma} := Q_{\Sigma} \vee q_{rew}$ //Minimization Step P := piece of α in q w.r.t. σ ; $q_{min} := minimize(q, P);$ // apply the most general unifier of P on q if q_{min} does not appear in Q_{Σ} (modulo variable renaming) then $Q_{\Sigma} := Q_{\Sigma} \vee q_{min};$ until $Q_{aux} = Q_{\Sigma}$; return Q_{Σ} ;

Termination

 $\Sigma = \{ \forall X \forall Y (R(X,Y) \land P(Y) \rightarrow P(X)) \}$ $Q_{\Sigma} = \exists X P(X)$ $Q = \exists X P(X)$ \mathbf{V} $\exists X \exists Y_1 (R(c,Y_1) \land P(Y_1))$ $\exists X \exists Y_1 \exists Y_2 (R(c,Y_1) \land R(Y_1,Y_2) \land P(Y_2))$ V $\exists X \exists Y_1 \exists Y_2 \exists Y_3 (R(c,Y_1) \land R(Y_1,Y_2) \land R(Y_2,Y_3) \land P(Y_3))$ V

- The piece-based rewriting algorithm does not terminate
- However, there exists a finite UCQ-rewritings, that is, $\exists X P(X)$

...careful application of the homomorphism check

. . .

Limitations of UCQ-Rewritability

$$\forall D : D \land \Sigma \vDash \mathsf{Q} \iff D \vDash \mathsf{Q}_{\Sigma}$$

evaluated and optimized by exploiting existing technology

- What about the size of Q_{Σ} ? very large, no rewritings of polynomial size
- What kind of ontology languages can be used for $\Sigma ?$ below PTIME

