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Abstract. Knowledge graphs have become an essential source of entity-
centric information for modern applications. Today’s KGs have reached
a size of billions of RDF triples extracted from a variety of sources, in-
cluding structured sources and text. While this definitely improves com-
pleteness, the inherent variety of sources leads to severe heterogeneity,
negatively affecting data quality by introducing duplicate information.
We present a novel technique for detecting synonymous properties in
large knowledge graphs by mining interpretable definitions of properties
using association rule mining. Relying on such shared definitions, our
technique is able to mine even synonym rules that have only little sup-
port in the data. In particular, our extensive experiments on DBpedia
and Wikidata show that our rule-based approach can outperform state-
of-the-art knowledge graph embedding techniques, while offering good
interpretability through shared logical rules.

Keywords: Synonym Detection · Association Rule Mining · Knowledge
Graphs

1 Introduction

In recent years, knowledge graphs have gained more attention because of the
popularity of projects like the Google Knowledge Graph [5], Wikidata [25], DB-
pedia [2], Freebase [3], and YAGO [22]. The size of these knowledge graphs
nowadays comprises hundreds of millions of entities associated by ten thousands
of properties, providing a comprehensive knowledge repository for several mod-
ern applications, e. g., semantic search, question answering and natural language
understanding.

The size of these knowledge graphs has steadily been growing over the last
years, due to advances in relation extraction and open information extraction.
Often large knowledge graphs are created manually in collaborative knowledge
graph projects [25], automatically by extracting information from text or ta-
bles [2], by integrating existing knowledge into a single ontology, or by a com-
bination of these three methods. However, integrating knowledge from various
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sources and by different curators into a single knowledge graph comes with seri-
ous heterogeneity issues in practice. Particularly, duplicate concepts, either en-
tities, classes or properties, may cause problems in subsequent querying. As an
example, DBpedia contains at least 19 different IRIs for the property birthplace
ranging from synonymous properties as placeOfBirth to French-named prop-
erties like lieuDeNaissance. Some of them are can be found in thousands of
triples, whereas others are very rare, only being used in a couple of triples. But
all of them hamper applications working with the data and may lead to incorrect
and incomplete query results.

These synonyms may either be prevented by controlled vocabularies or strict
manual supervision mechanisms as for example seen in Wikidata, or by data
cleaning methods that are able to automatically identify synonyms from the data
in an efficient way. Previous work has shown that property synonyms can auto-
matically be identified by either frequent item set mining-based techniques [1]
or by knowledge graph embedding-based techniques as in one of our previous
works [14]. Whereas frequent item set mining lacks in precision, embedding-
based techniques usually show a high quality, but are not interpretable. Fur-
thermore, knowledge graph embeddings have been shown to have difficulties in
correctly representing closely related properties: most embeddings for example
will identify north and south as synonymous. Also the lack of interpretability is
problematic, when the approach is used in a semi-automatic manner to support
manual data cleaning.

In this work, we present an interpretable and scalable method for data-driven
synonym detection in large-scale knowledge graphs that mines equivalent prop-
erty definitions using rule mining techniques. We have developed a procedure
that mines logical rules in the form of birthplace(x, y)⇔ placeOfBirth(x, y)
indirectly, such that the rule does not need to be directly supported by triples.
That means birthplace and placeOfBirth do not need to occur for the same
entity pairs, but the respective represented concepts need to have a shared defini-
tion. Our mining technique is thus able to find synonyms that occur in thousands
of triples as well as very rare synonyms with quite high quality. In fact, our syn-
onym detection quality outperforms existing embedding-based techniques, while
offering good explainability. For every synonym pair that has been found, our
method provides similarities and dissimilarities of the properties in the form of
logical rules.

The contributions of this work can be shortly summarized as follows:

– We develop a novel technique for synonym detection based on rule mining,
finding and matching property definitions in a data-driven fashion.

– We perform extensive experiments on Wikidata and DBpedia outperforming
state-of-the-art techniques for synonym detection, while offering explainable
results in the form of shared definitions.

– For reproducibility, we provide all our source code, datasets, and results in
a publicly available Github repository 1.

1 https://github.com/JanKalo/RuleAlign

https://github.com/JanKalo/RuleAlign
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2 Related Work

Synonym Detection in Knowledge Graphs So far there is only little research on
detecting synonyms in knowledge graphs or RDF data. An early work, on syn-
onymous predicates for query expansion uses frequent item set mining [1]. Given
a knowledge graph, for each property, they mine frequent item sets, consisting
of object entities. Properties with high overlap with regard to their objects, but
low overlap in their subjects are identified as synonym. However, another work
has shown that synonyms often cannot be identified by this approach, because
they have no overlap in their extension [14].

To tackle this problem, in a previous work, we have proposed a technique
based on knowledge graph embeddings [14]. We trained knowledge graph embed-
dings and compute similarities between properties and use an outlier detection to
separate synonyms from only similar properties. This approach is highly depen-
dent on the quality of the embeddings, which varies massively from property to
property, from knowledge graph to knowledge graph and from embedding model
to embedding model. Furthermore, the results are not interpretable and there-
fore it is hardly foreseeable for properties, whether synonym detection works
well and where it does not. To overcome these drawbacks, we have developed
a technique going back to using a symbolic approach based on explicit feature
representations in the form of logical rules.

Both approaches, frequent item set mining [1] and knowledge graph embed-
dings [14] are evaluated and compared to our technique in the experimental
section of the paper.

Ontology Matching is about identifying corresponding concepts in two (or more)
ontologies or knowledge graphs. Particularly the Ontology Alignment Evaluation
Initiative (OAEI) at the Ontology Matching Workshop co-located with the In-
ternational Semantic Web Conference plays an important role in advancing on-
tology matching research 2. Ontology matching systems are primarily concerned
with matching corresponding entities and classes from two or more distinct RDF
datasets [13,10,12]. Some systems are also capable of matching properties [21,9].
Techniques often heavily rely on string metrics between URLs and labels, but
also on structural graph measures.

In contrast to synonym detection, ontology matching systems usually can
only align two distinct knowledge graphs and heavily rely on some existing cor-
respondences between these two [21]. Finding duplicate information (e.g. prop-
erty synonyms) within a single knowledge graph is therefore often not possi-
ble. Furthermore, several techniques are relying on manually built ontologies in
OWL [13,12]. Heterogeneous real-world knowledge graphs however, often do not
provide high quality ontological information.

Open Knowledge Graph Canonicalization Building knowledge graphs from text
is a well researched topic in the natural language processing community. One ap-
proach is to rely on open information extraction techniques that extract triples
2 http://om2019.ontologymatching.org/

http://om2019.ontologymatching.org/
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directly from text, without sticking to some fixed vocabulary provided by an
ontology or knowledge graph [17]. However, this often leads to heterogeneity is-
sues like duplicate entities and paraphrased properties. Cleaning the extracted
entity and property mentions from text is known under the term knowledge
graph canonicalization [6,24]. In [6], synonym property mentions from text are
identified by equivalence rules among these properties. But in contrast to our
approach, their technique only mines rules that are supported by the data. This
indeed works well for canonicalization where triple stem directly from text, but
not for synonym detection in existing knowledge graphs. Also CESI [24] mines
this kind of synonym rules as side information. Their main method however uses
knowledge graph embeddings on the textual mentions of properties to canoni-
calize them. A comparable technique has been explored in our previous work for
synonym detection in knowledge graphs and is evaluated in our experimental
section [14].

Relational Learning Representing properties in some feature space is an impor-
tant topic in the relational learning domain. Relational learning in general is
about machine learning from relational data. In context of knowledge graphs,
relational learning techniques are usually used for knowledge base completion,
i.e. predicting triples from existing knowledge [18].

Recent works in knowledge graph completion rely on so called knowledge
graph embeddings [19,23,4]. Entities and properties are represented as vectors/-
matrices satisfying mathematical expressions given by a model. They are usu-
ally used to predict new triples. Furthermore, the semantic similarity between
properties may be measured by computing similarity metrics between these em-
beddings. As previously mentioned, these embeddings may be used for synonym
detection, but have some problems [14].

Other techniques for knowledge graph completion rely on symbolic represen-
tations, usually logical rules or graph features [8,15]. Here, it has been shown that
logical rules, in particular Horn rules, can compete with embedding based tech-
niques for knowledge graph completion. In this work, we analyze whether these
logical representations of properties are also well suited for detecting synonyms.

3 Preliminaries

Without limiting the generality of our approach, we assume an arbitrary knowl-
edge graph (KG) to be represented in the Resource Description Framework
(RDF) [20]. Thus, a KG consists of a set of facts being subject, predicate, object
triples: (s, p, o) ∈ E × R × (E ∪ L). A subject is an entity or concept from E,
a predicate from a universe of properties R and an object is either an entity
(i. e., from E) or a literal value from L. Although entities and predicates are
technically represented through IRIs, we use suggestive identifiers for the sake
of readability.

Our notation of logical rules over KGs stems from Galárraga et al. [8].
An atom for the triple (s, p, o) is written as p(s, o). Beyond the RDF format

for subject s and object o, rule atoms allow for variables x, y, z, z1, z2, . . . from
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Abraham Einstein

Hermann Einstein

father

Albert Einstein

father
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Karl Marx
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Gottfried Leibniz

Friedrich Leibniz
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Catharina Leibniz
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Ambrosius Leibniz

father
granddad

Wilhelm Schmuck

father

Fig. 1: An example knowledge graph about persons and their ancestors. Nodes
are entities and edges are relationships.

a universe of variables V . A rule is a logical implication from a body term to a
head term, where the body is a conjunction of multiple atoms bi (i ∈ {1, ..., k})
while the head is a single atom: b1 ∧ ... ∧ bk ⇒ r(s, o). Throughout this paper,
our rules follow strictly this format, i. e., they are Horn rules. A rule in which
every variable occurs at least twice is a closed rule. As an example, consider the
following rule:

father(x,y) ∧ father(y,z)⇒ granddad(x,z) (1)

The meaning of such a rule w. r. t. a KG is whatever matches the body of the
rule (i. e., an assignment of actual KG subjects/objects to the variables) also
matches the head. Regarding (1), if y is the father of x and z is the father of y,
then z is the granddad of x. We can use this closed rule to predict new facts or
to justify existing ones in a KG, like the one depicted in Fig. 1. The KG delivers
the facts father(Karl M., Heinreich M.) and father(Heinrich M., Mordechai
M.L.), which implies the fact granddad(Karl M., Mordechai M.L.) according to
(1). Similarly, we can infer the granddad property between Gottfried Leibniz
and Ambrosius Leibniz.

Since rules are usually mined for prediction purposes from an incomplete
real-world KG, we need a way to assess their quality. Galárraga et al. use two
measures for assessing the quality of a rule B ⇒ r(x, y) [8]. First, the support of
a rule is the absolute number of instances the rule is correct in the KG:

supp(B ⇒ r(x, y)) = #(x, y) : ∃z1, . . . , zn : B ∧ r(x, y), (2)

where z1, . . . , zn are the variables occurring in B distinct from x and y. Thus,
the support quantifies the number of predictions that are already instances of
the KG (true positives). For our example rule (1) and KG in Fig. 1, the support
is 2 because the rule can only be instantiated by Karl Marx, Gottfried Leib-
niz and their ancestors. We count granddad(Karl M., Mordechai M. L.) and
granddad(Gottfried L., Ambrosius L.) exactly once. The absolute support value
is difficult to interpret if the frequency of a property in the KG and the size of
the KG itself is unknown [8]. A support of 1 has a totally different meaning if
there are thousands of properties in the KG, as opposed to only a single one
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in our example. For father(x,y) ∧ father(y,z) ⇒ grandfather(x,z), the
support is only 1 but grandfather also only occurs once in the KG.

To become independent of the size of the KG and the frequency of property
occurrences, the head coverage was introduced as a relative support. It measures
the support of a rule relative to the number of occurrences of the respective head
relation in the given KG:

hc(B ⇒ r(x, y)) =
supp(B ⇒ r(x, y))

#(x′, y′) : r(x′, y′)
(3)

The head coverage for (1) is thus 0.66 because its support is 2 and the granddad
relation occurs three times in Fig. 1.

Since rules are usually mined from the data, we need a second measure as-
sessing the prediction quality of a rule by means of its standard confidence:

conf (B ⇒ r(x, y)) =
supp(B ⇒ r(x, y))

#(x, y) : ∃z1, . . . , zn : B
(4)

The number of true positives relative to the number of all predictions (due to the
rule) shows us how many of the predictions are part of the current knowledge
graph. Hence, a high confidence entails that the rule is justified by the data in
the KG. Regarding (1), the confidence w. r. t. Fig. 1 is 0.66 because the rule’s
body matches three times while the whole rule comes with a support of 2.

We restrict ourselves to closed Horn rules because this allows the mining
process to finish in reasonable time [8].

4 Rule Mining for Synonym Detection

From an RDF point of view, two distinct properties refer to two distinct con-
cepts [20], as described by distinct resources. However, as KGs grow at an
enormous pace, extraction and/or human error bring forth properties, such as
birthPlace, born, or placeOfBirth, which refer to the same real-world con-
cept. Therefore, we qualify such properties as synonymous. Even at this informal
stage, synonymity is recognized as an equivalence relation. Hence, if two or more
properties r1, . . . , rm ∈ R are synonymous, they can be united to a single URI.

This section is devoted to characterizing synonymous properties in a way that
enables us to use existing rule mining techniques, e. g., AMIE+ [7], to identify
them as equivalence rules

r1(x, y)⇔ r2(x, y), (5)

i. e., r1 may be replaced by r2 and vice versa. For properties r1, r2 ∈ R, we call
(5) a synonym rule. An obvious rule mining-based solution tries to find two rules
r1(x, y)⇒ r2(x, y) and r2(x, y)⇒ r1(x, y) which culminates to synonymity of r1
and r2. Confidence values greater than 0 would require r1 and r2 to co-occur for
the same subject-object pairs: In Fig. 1, rules bornIn(x,y)⇒ birthPlace(x,y)
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and birthPlace(x,y) ⇒ bornIn(x,y) may be inferred with confidence val-
ues of 0.5 and 1.0. Since both rules have high confidence values, we could take
them as being correct and therefore infer the synonym rule bornIn(x,y) ⇔
birthPlace(x,y). Mining this kind of synonym rules is the classical approach
to detect synonyms using rule mining [6,24].

However, the just stated scenario is quite artificial: In real-world KGs, syn-
onyms often stem from integrated triples from multiple sources, e. g., different
extraction tools or persons. Often these triples have totally different domains
and share no entities at all. In such cases, rule mining solely relying on the
data instances is not very helpful. As another example, we observe that we have
no support for the rule grandfather(x,y) ⇒ granddad(x,y) in our example.
They simply occur for totally different entities, although a unification of both
properties is appropriate.

4.1 Mining Property Definitions

Instead, we try to indirectly mine synonym rules by first mining property defi-
nitions. Intuitively speaking, a definition is a paraphrase of a property through
other properties. Thus, it is an equivalent logical formula to some property. In
case of granddad, we may find

granddad(x,z)⇔(father(x,y) ∧ father(y,z))∨
(mother(x,y) ∧ father(y,z))

(6)

an appropriate definition. We identify synonymous properties r1 and r2 indirectly
by mining their property definitions. More formally, we mine property definitions
D such that

r1(x, y)⇔ D ⇔ r2(x, y),

which lets us conclude (5) by transitivity of logical equivalence.
Since state-of-the-art rule induction systems usually are only able to mine

Horn rules, due to performance reasons, we adapt our notion of property def-
initions accordingly. Applying a standard rule mining system on the KG from
Fig. 1, using the granddad relation as a head relation, we mine two rules culmi-
nating to the definition given in (6): (a) the paternal granddad

father(x,y) ∧ father(y,z)⇒ granddad(x,z)

but also (b) the maternal granddad

mother(x,y) ∧ father(y,z)⇒ granddad(x,z).

The confidence of (a) is 0.66 and its head coverage is also 0.66. The confidence
of rule (b) is 1.0, but the head coverage therefore is only 0.33. Both rules pretty
much cover what the granddad property expresses. The hypothetical rule

granddad(x,z)⇐(father(x,y) ∧ father(y,z))∨
(mother(x,y) ∧ father(y,z))
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has a head coverage of 1.0 and a confidence 0.75. We observe that indeed the
disjunction of the rule bodies of the mined Horn rules exceeds the head coverage
values of the single rules. The higher the head coverage, the more likely it is
to observe the body (or one of the bodies) whenever the head is matched. The
extreme case of a head coverage of 1.0 means that whenever the head property
is observed, the body can also be matched. In our example, the head coverage
is even the sum of the head coverages of both rules because the bodies cover
totally different entities. More generally, however, instantiations of different Horn
clauses in a definition might overlap, which needs to be considered for head
coverage computation by counting distinct instances.

Our example already suggests that the combined rule (6) is valid. This obser-
vation can be justified by the rule’s head coverage and standard confidence. In
general, confidence and head coverage have the rule support in the numerator.
While confidence considers the number of matches of the body in the denom-
inator, head coverage uses the size of the head relation. From this, we obtain

conf (B ⇒ r(x, y)) = hc(B ⇐ r(x, y)). (7)

Thus, a rule having a high standard confidence and a high head coverage may
imply that rule body and rule head are equivalent.

Driven by the interpretations and observations above, a property definition
for r ∈ R is a disjunction of Horn clauses, i. e., D = b1 ∨ ... ∨ bk, such that the
rule D ⇔ r holds. In the best case, confidence and head coverage of a definition
are as close to 1.0 as possible. Note that a head coverage and confidence of 1.0
is only possible if the property and its definition share all their entities, which is
rarely the case in KGs. If directly synonymous properties, sharing several entities,
exist in the KG, this yields synonym rules with high confidence and high head
coverage, being part of the respective definitions. In most cases, mining Horn
rules on real-world KGs yields high confidence but a large number of rules with
low head coverage values. Hence, a definition usually consists of a disjunction of
hundreds of Horn clauses, covering a very diverse set of entities, and therefore
achieving a high overall head coverage for the definition.

4.2 Mining Synonym Rules by Matching Definitions

In heterogeneous and large-scale knowledge graphs, only very few identical defi-
nitions can be found: Reconsidering the mined example definition and trying to
find properties, such as grandfather, with an equal definition will almost surely
fail. The mining process for grandfather returns a single Horn rule:

grandfather(x,z)⇐father(x,y) ∧ father(y,z) (8)

This rule even has a head coverage of 1.0 and a confidence of 0.33. Due to the
high head coverage and confidence, it follows that the body is a definition for
grandfather (w. r. t. to the KG in Fig. 1). The mined definitions for grandfather
and granddad are different but share the clause father(x,y) ∧ father(y,z).
This is a typical situation for real-world definitions that have been created in a
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purely data-driven fashion. To overcome this mismatch of definitions, we relax
our indirect mining approach, such that also only partial matches can be used
to find synonymous properties. For our example, this would imply that we find
the following indirect synonym rule:

granddad(x,z)

⇔father(x,y) ∧ father(y,z)
⇔grandfather(x,z)

(9)

Since this rule leaves out parts of the definition of granddad, we obtain a lower
head coverage for this definition, which negatively influences the definition’s
quality. Since the matched definition only covers a restricted proportion of the
entities that are taking part in the granddad relation, also the quality of the
synonym rule may be affected negatively. Therefore, in our mining process, we
aim at maximizing the overlap of the definitions of two properties, in order to
classify them as synonymous. Here, the Jaccard coefficient of the definitions
D1∩D2

D1∪D2
determines the quality of the overlap. Bodies from the definitions are

thereby identical if they are structurally identical (isomorphic), respecting the
head properties’ direction. As a result, we obtain a Jaccard coefficient between
0 and 1 for each property pair which can be interpreted as a confidence for
the indirect rule mining. In our granddad and grandfather example above, the
Jaccard coefficient is 1

2 = 0.5.
The overall matching process consists of two steps: (1) First of all, we start a

rule mining process on a knowledge graph to obtain definitions for all properties.
(2) A comparison of all definitions for all property pairs is performed to compute
respective Jaccard coefficients. As a result, a ranked list of property pairs with
confidence values is returned. If no definition could be mined for some property,
all its confidence values are automatically set to 0.0 since no matching definition
can be found.

5 Evaluation

In our experiments, we evaluate our rule-based technique against a frequent
item set-based technique [1] and our previously published approach based on
knowledge graph embeddings [14] on two large real-world knowledge graphs.
Our implementation, a description on how to reproduce the experiments and
the datasets are all available through our Github repository 3.

For all experiments we employ an existing tool for mining Horn rules: we use
AMIE+ [7] with a minimum head coverage of 0.005, a minimum confidence of
0.05 and a minimum initial support to mine closed and connected Horn rules
on the datasets. If the rule mining algorithm did not output new rules for more
than 10 hours, we preliminary stopped the mining process and used the rules
mined so far.
3 https://github.com/JanKalo/RuleAlign

https://github.com/JanKalo/RuleAlign
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Overall, two experiments using 7 baseline approaches are performed: (1) To
assess, whether the quality of synonym detection methods is ready for cleaning
real-world knowledge graphs, we perform a manual evaluation of the systems
quality on DBpedia. (2) In the other experiment, we want to analyze the recall
and precision of synonym detection techniques on synthetically created synonyms
in Wikidata.

Overall, we compare the approaches on two very large real-world datasets
Wikidata and DBpedia. Since both datasets have several hundred millions of
triples which is unfeasible for training knowledge graph embeddings as well as for
mining rules in a feasible time, we stick to the sampled datasets that have been
built in [14]. This also allows for a better comparison of our results to previous
works. In their work, the authors have presented a sampling technique that keeps
triples with every existing property in the respective knowledge graph, while
reducing the overall number of triples. Our gold standard datasets containing
our manually labeled synonyms for DBpedia and the synthetic synonyms for
Wikidata are available online 4.

Frequent Item Set Baseline The approach presented in [1] uses frequent item
set mining to detect synonymously used predicates to perform query expansion.
In this work, we used the implementation and results of this baseline from [14].
In that work, we re-implemented the approach using Range Content Filtering
and Reversed Correlation Coefficient as described in the original paper using
Python and Spark. The implementation of the approach is also openly available
on Github. As an input parameter for frequent item set mining, the approach
requires the user to provide a minimum support value. For both experiments, a
grid search optimizing for optimal F1-measures was performed.

Knowledge Graph Embedding Baselines In our previous work [14], it was shown
that knowledge graph embeddings may be used to detect synonymous properties,
by using outlier detection techniques on the property representation in state-of-
the-art embeddings. In the original paper 8 different embedding techniques have
been presented using L1 metric as well as cosine similarity. For this work, we
only take the top 6 embeddings with the metrics that worked best: TransH [26],
TransD [11] ComplEx [23], DistMult [27], ANALOGY [16] and HolE [19]. All
these techniques achieve very high quality in the top results, the recall however
is problematic in some of the presented experiments. We will further analyze
the differences of the fundamentally different approaches embeddings vs. logical
rules in various settings here.

5.1 Manual Quality Evaluation in DBpedia

The DBpedia sample comprises 12 million triples with around 15,000 different
properties with several natural synonyms, ranging from very rare synonyms only

4 https://doi.org/10.6084/m9.figshare.11343785.v1

https://doi.org/10.6084/m9.figshare.11343785.v1


Detecting Synonymous Properties by Shared Data-driven Definitions 11

0 100 200 300 400 500
TOP K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PR
EC

IS
IO

N

TransH
TransD
DistMult
HolE
ComplEx
Analogy
Freq. Item Set
RuleAlign

Fig. 2: Experimental results from our approach RuleAlign in red to several base-
lines on DBpedia manually evaluated with precision at k up to k = 500.

occurring in around 100 triples up to synonyms being part of hundreds of thou-
sands triples. The evaluation on DBpedia is performed manually for the top 500
results of each of the approach classifying pairs of properties in either being syn-
onyms or not. For the base line approaches, we rely on the datasets classified
in [14] extended by a manual classification performed for our newly proposed
approach.

In this experiment, we have performed a manual evaluation for the preci-
sion@k up to k = 500 on a DBpedia sample comparing 8 different approaches.
The results are presented as line graphs in Figure 2.

The frequent item set-based baseline has an increasing precision for higher
k values, due to a ranking function that assumes that synonymous properties
are not occurring for similar subject entities. This assumption is not true for
DBpedia. The precision for this baseline always is below 30% and also does not
exceed 30% for k values above 500. The best embedding-based baseline is HolE,
having a maximum precision of over 90% in the top 200 results and a precision
around 70% at k = 500.

Our approach, presented as RuleAlign in red, shows the best results in this
experiments together with the embedding model HolE finding at least 352 correct
synonyms. Overall, the number should go into the thousands when we extended
our manual evaluation. In comparison to a direct rule mining approach for equiv-
alence rules, our indirect approach finds at least 77 correct synonym pairs on
our DBpedia dataset which cannot be found by the other approach because they
have no support.

But as an additional feature, our approach is able to propose explanations for
the synonym predictions in form of property definitions. The top explanations
are having a high head coverage, covering lots of entities and have a high confi-
dence. In Table 1, we present some example definitions from DBpedia. Since for
many properties around 100 Horn clauses are in the definition, we only present
top matched Horn clauses. These explanations are very natural definitions of
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Table 1: Matched property definitions mined from DBpedia as an explanation
for the result.

Property Definition

grandsire(x,z) sire(x,y) ∧ sire(y,z)
nationality(x,y) stateOfOrigin(x,y)
nationality(x,z) birthPlace(x,y) ∧ country(y,z)
north(x,y) east(y,z) ∧ northeast(x,z)

the respective properties that would also be used in the real-world. Note, that
besides these human readable example definitions, many synonym pairs are en-
tirely different in their respective URI labels, e.g. “dbp:ff” (father of the father)
and “dbp:grandsire” and are therefore very difficult to be identified by humans
without our automatic data-driven approach.

A closer look at our predictions reveal some shortcomings of our approach.
First of all, our approach is not able to distinguish the gender within some prop-
erties. We classify for example father and mother as synonyms, because no rule
is able to capture the gender correctly. One reason for that is, that the gender
is only mentioned as a literal, which is ignored by the rule mining approach. A
second problem are properties that hardly can be distinguished by their data
instances, because they are extremely similar. As an example firstDriver and
secondDriver representing a person’s placement in a race, cannot be distin-
guished. Furthermore, false-positives in the form of hyponyms as for example
genre and musicGenre are returned.

5.2 Precision-Recall Evaluation in Wikidata

The Wikidata sample has more than 11 million triples and more than 1,500
properties. In contrast to DBpedia, it is supposed to be free of synonyms due
to intensive manual curation. Therefore, in ([14]) have introduced synthetic syn-
onyms here by randomly re-naming existing properties. For the triple (Albert E.,
father, Hermann E.) we instead use (Albert E., father_synonym, Hermann E.).
Thus, the properties father and father_synonym can be treated as synonyms,
but never co-occur for the same subject-object pair. Overall, 343 synonymous
properties have been introduced that need to be identified for the approach. A
more detailed description on the creation of the dataset can be found in the
original paper .

We again start in having a look at the frequent item set baseline in black.
It starts with a very high precision for very low recall values and then drops
sharply to under 20%. The maximum precision is at 21% at a recall value of
around 35%. Due to the minimum support value that lead to best F1-measure,
no higher recall value is achieved here. Embedding-based approaches achieve a
very high precision up to a recall of 30%. The best approach is again HolE,
starting at 90% precision for a recall of 10% and a precision of 10% for 70%
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Fig. 3: Experimental results from our approach RuleAlign on Wikidata. We pro-
vide a precision-recall analysis for synthetic synonyms.

recall. In contrast, our approach (red) is having a perfect precision for recall
values up to 30% and still a precision over 90% for a recall of 70%. The recall of
our approach sharply drops never achieving 80% recall.

The second experiment measures precision and recall for 343 synonyms in
a Wikidata sample. Our results regarding this experiment are presented as
precision-recall curves in Figure 3. For Wikidata, our approach achieves an ex-
tremely high precision, but also has problems in recall due to two reasons: (1) For
32 properties, no rule could be mined due to the minimum head coverage in the
rule mining process. (2) The other synonyms could not be found, since none of
the mined rules fulfilled our minimum confidence threshold. The few false posi-
tives that have been returned by our approach often were hyponyms instead of
synonyms.

5.3 Discussion

The rule-based approach matching data-driven property definitions for detecting
synonymous properties achieves very high precision. In both datasets, we could
observe that a high Jaccard coefficient often implies that the respective property
pair is synonymous. In the Wikidata experiment, all pairs with a confidence
above 0.9 are synonyms and also in DBpedia a high confidence leads to good
results.

However, in DBpedia only very few synonyms with high confidence could
be found. For lower Jaccard coefficients, a higher proportion of false positives
is returned, because these properties often were in a hyponym relation. These
could be solved by an improved matching process that also takes into account
the head coverages of the rules when computing the Jaccard coefficient. However,
this might further decrease the recall of our approach, which has already been
observed as a problem for the Wikidata dataset. The simple Jaccard coefficient
as used in this work, achieves very high precision with a reasonable recall.
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A low recall could also be prevented by mining rules with lower head coverage,
mining more expressive rules or by decreasing the minimum confidence threshold.
In turn, this might further decrease the performance of the rule mining tool,
resulting in enormous rule sets.

Several false positives that were returned in DBpedia, had a high overlap in
their data instances and therefore also very similar definitions. These properties
were very similar, but from the labels or IRIs, we observed that they were not
synonym. These cases can hardly be identified in a data-driven fashion, because
they often need detailed domain knowledge.

6 Conclusion

We have presented a novel approach adapting classical rule mining for knowledge
graphs to detect synonymous properties in a data-driven way using property
definitions. In two large-scale experiments on two real-world knowledge graphs,
we have shown that our approach is able to identify a large proportion of existing
synonyms with a precision of over 80% without making any assumptions on the
data. In contrast to existing work in this area, our approach is providing human
understandable explanations of its decisions in the form of logical Horn clauses,
while achieving a higher precision in existing benchmark datasets.

This work shows that symbolic approaches, like rule mining in our case,
are capable of competing with latent approaches (i. e., knowledge graph embed-
dings), when it comes to identifying synonymous properties. In particular with
regard to precision and interpretability our rule-based approach is superior over
existing systems. However, as shown in our evaluation, our rule-based approach
is stretching a purely data-driven approach to its limits. Most false positives
that have been produced by our system, cannot be detected purely automati-
cally, because it cannot be observed from the triples nor the property label. Here,
it seems promising to have a semi-automatic approach with humans manually
checking the matched definitions.

With regard to scalability, however, both paradigms seem to have problems
when it comes to real-world knowledge graphs. Knowledge graph embedding
training needs powerful GPUs which currently are very restricted with regard
to their memory, preventing the training for large datasets. Rule mining, on
the other hand, requires the computation of huge joins for a possibly exponen-
tial number of rules. These joins sometimes comprise hundred thousands triples
which already takes several minutes for a single rule candidate on state-of-the-art
hardware, when working with large datasets like Wikidata.

As a future work, we plan to extend the approach to also detect hyponyms
between properties and inverse properties. More importantly, we would like to
use more expressive rules instead of just closed Horn clauses to improve precision
even more. So far, existing rule mining approaches have major performance issues
for these kinds of rules on larger datasets.
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