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Numeric Types in Tensors

• What kind of numeric types we can store in a tensor? The 

dtype argument to tensor constructors (like tensor, zeros, 

ones) specifies the numerical "data type" that will be 

contained in the tensor. 

• The data type specifies the possible values the tensor can 

hold and the number of bytes per value. 

• The possible values for the dtype argument:
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• torch.float32 or torch.float: 32-bit floating point

• torch.float64 or torch.double: 64-bit, double precision fp 

• torch.float16 or torch.half: 16-bit, half precision floating point

• torch.int8: signed 8-bit integers

• torch.uint8: unsigned 8-bit integers

• torch.int16 or torch.short: signed 16-bit integers

• torch.int32 or torch.int: signed 32-bit integers

• torch.int64 or torch.long: signed 64-bit integers
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• Each of torch.float, torch.double, etc. have a 

corresponding concrete class of torch.FloatTensor, 

torch.DoubleTensor, etc. 

• The class for torch.int8 is torch.CharTensor and for 

torch.uint8 is torch.ByteTensor. 

• torch.Tensor is an alias for torch.FloatTensor

• 32-bit floating point is the default data type

Slides 03p
6



Numeric Types in Tensors

• In order to allocate a tensor of the right numeric type, we 

can specify the proper dtype as an argument to the 

constructor, for examples:

• We can find out about the dtype for a tensor by accessing 

the corresponding attribute:
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Numeric Types in Tensors

• We can also cast the output of a tensor creation function 

to the right type using the to method:

• We can always cast a tensor of one type into a tensor of 

another type using the type method:

# In[51]:

points = torch.randn(10, 2)

short_points = points.type(torch.short)

The function randn initializes the tensor elements to 

random numbers from the standard normal distribution.
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Indexing Tensors

• How can we obtain a 2D tensor containing all points but 

the first? That’s easy using the range indexing or slicing

notation, the same that applies to standard Python lists:
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1. all elements in the list

2. from element 1 to element 3

3. from element 1 to the end of the list

4. from the start of the list to element 3

5. from the start of the list to one before the 

last element

6. from element 1 to element 3 in steps of 2



Indexing Tensors

• We can use the same notation for PyTorch tensors, with 

the added benefit that we can use slicing for each of the 

dimensions of the tensor:

1. All rows after first, implicitly all columns

2. All rows after first, all columns

3. All rows after first, first column only
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Serializing Tensors

• Creating a tensor in RAM is all well and fine, but if the data 

inside the tensor is of any value to us, we will want to save 

it to a file and load it back at some point. 

• After all, we don’t want to have to retrain a model from 

scratch every time we start running our program! 

• PyTorch uses pickle under the hood to serialize the tensor 

object, plus dedicated serialization code for the storage. 

Here’s how we can save our points tensor to a ourpoints.dt

file:

with open('c:/kuliah/machineLearning2019/data/ourpoints.dt','wb') as f:

torch.save(points, f)
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Serializing Tensors

• Loading our points back:

with open('c:/kuliah/machineLearning2019/data/ourpoints.dt','rb') as f:

points = torch.load(f)

Caveat

• While this is a way we can quickly save tensors in case we 

only want to load them with PyTorch, the file format itself is 

not interoperable. We can’t read the tensor with software 

other than PyTorch. 

• Depending on the use case, this may or may not be a 

limitation, but we should learn how to save tensors 

interoperably with other softwares.
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Serializing Tensors

• To achieve interoperability, we can usethe HDF5 format and 

library. 

• HDF5 is a portable and widely supported format for 

representing serialized multidimensional arrays, organized 

in a nested key-value dictionary. 

• Python supports HDF5 through the h5py library, which 

accepts and returns data under the form of NumPy arrays.

• We can install h5py using anaconda:

$ conda install h5py
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Serializing Tensors

• Now we can save our points tensor by converting it to a 

NumPy array (at no cost) and passing it to the 

create_dataset function:

# In[61]:

import h5py

f = h5py.File('c:/kuliah/machineLearning2019/data/ourpoints.hdf5', 'w')

dset = f.create_dataset('coords', data=points.numpy())

f.close()

• Here 'coords' is a key into the HDF5 file. One of the 

interesting things in HDF5 is that we can index the dataset 

while on disk and only access the elements we’re 

interested in. 
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Serializing Tensors

• Let’s suppose we want to load just the last two points in our 

dataset:

# In[62]:

f = h5py.File('c:/kuliah/machineLearning2019/data/ourpoints.hdf5', 'r')

dset = f['coords']

last_points = dset[-2:]

• What happened here is that data has not been loaded 

when the file was opened. Rather, data stayed on disk until 

we requested the last two rows in the dataset.

• At that point, h5py has accessed those two rows and 

returned a NumPy array.
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Serializing Tensors

• Owing to this fact, we can pass the returned object to the 

torch.from_numpy function to obtain a tensor directly. Note 

that in this case the data is copied over to the tensor’s 

storage.

• Once we’re finished loading data, we close the file.

# In[63]:

last_points_t = torch.from_numpy(dset[-2:])

f.close()
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Moving Tensors to the GPU

• Every PyTorch tensor can be transferred to the GPU(s) in 

order to perform massively parallel, fast computations. All 

operations performed on the tensor will be carried out 

using GPU-specific routines that come with PyTorch.

• In addition to dtype, a PyTorch Tensor also has a notion of 

device, which is where on the computer the tensor data is 

being placed. Here is how we can create a tensor on the 

GPU (if it exists) by specifying the corresponding 

argument to the constructor:
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Moving Tensors to the GPU

• We could instead copy a tensor created on the CPU onto 

the GPU using the to method:

• Doing so returns a new tensor that has the same 

numerical data, but stored in the RAM of the GPU, rather 

than in regular system RAM. 

• Now that the data is stored locally on the GPU, we’ll see 

speedups when performing mathematical operations on 

the tensor. 

• The class of this new GPU-backed tensor is also changed 

to be torch.cuda.FloatTensor (given our starting type of 

torch.FloatTensor). 

Slides 03p
18



The Tensor API

• It is worth taking a look at all the tensor operations that 

PyTorch offers. Check out the online documentation at 

pytorch.org/docs.

• The vast majority of operations on and between tensors 

are available under the torch module and can also be 

called as methods of a tensor object.

• For instance, the transpose function we’ve encountered 

earlier can be used from the torch module:

or as a method of the a tensor
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The Tensor API

• There is no difference between the two forms; they can be 

used interchangeably. 

• There’s a caveat: a small number of operations only exist 

as methods of the tensor object. They are recognizable 

from a trailing underscore in their name, like zero_, which 

indicates that the method operates in-place, by modifying 

the input instead of creating a new output tensor and 

returning it. For instance, the zero_ method zeroes out all 

the elements of the input. 

• Any method without the trailing underscore leaves the 

source tensor unchanged, and instead returns a new 

tensor.
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The Tensor API
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