Foundations for Machine
L earning

L. Y. Stefanus
TU Dresden, June-July 2019

S!es llp -

Tensors In PyTorch
(cont.)

S!el\ ! - -

Reference

» Eli Stevens and Luca Antiga. Deep
Learning with PyTorch. Manning
Publications, 2019/2020.

 |lan Goodfellow and Yoshua Bengio and
Aaron Courville. Deep Learning. MIT
Press, 2016.

Slides 03p -

Numeric Types In Tensors

« What kind of numeric types we can store in a tensor? The
dtype argument to tensor constructors (like tensor, zeros,

ones) specifies the numerical "data type" that will be
contained in the tensor.

« The data type specifies the possible values the tensor can
hold and the number of bytes per value.

e The possible values for the dtype argument:

Slides 03p

torch.float32 or torch.float: 32-bit floating point

torch.float64 or torch.double: 64-bit, double precision fp
torch.float16 or torch.half: 16-bit, half precision floating point
torch.int8: signed 8-bit integers

torch.uint8: unsigned 8-bit integers

torch.int16 or torch.short: signed 16-bit integers

torch.int32 or torch.int: signed 32-bit integers

torch.int64 or torch.long: signed 64-bit integers

Slides 03p

Each of torch.float, torch.double, etc. have a
corresponding concrete class of torch.FloatTensor,
torch.DoubleTensor, etc.

The class for torch.int8 is torch.CharTensor and for
torch.uint8 is torch.ByteTensor.

torch.Tensor Is an alias for torch.FloatTensor
32-bit floating point is the default data type

Slides 03p

Numeric Types In Tensors

* In order to allocate a tensor of the right numeric type, we
can specify the proper dtype as an argument to the
constructor, for examples:

In[47] :

double points = torch.ones (10, 2, dtype=torch.double)

short points = torch.tensor([[1l, 2], [3, 4]], dtype=torch.short)

* We can find out about the dtype for a tensor by accessing
the corresponding attribute:

In[48] :
short points.dtype

Out[48]:
torch.intlé

Slides 03p

Numeric Types In Tensors

 We can also cast the output of a tensor creation function
to the right type using the to method.:

In[50]:

double points 1.zeros (10, 2) .to({torch.double)
short points = nes (10, 2) .to(dtype=torch.short)

« We can always cast a tensor of one type into a tensor of
another type using the type method:
In[51]:
points = torch.randn(10, 2)
short _points = points.type(torch.short)

The function randn initializes the tensor elements to
random numbers from the standard normal distribution.

N - ~
Slides 03p .

Indexing Tensors

 How can we obtain a 2D tensor containing all points but
the first? That's easy using the range indexing or slicing
notation, the same that applies to standard Python lists:

....

= I

T
L]

=
i

3
. |'T'
e el
e e e

=
M

=
M

e
e

o
=
o
=
o
=
o
=
-
[
-
[
-
[

T i TR o T Y T TR
=
=]
il

=
m

n
(]

|_|
= -
iT ==

" |_|_
m m o m m m m =
it o o ot it it

Slides 03p

OINE W N =

o

all elements in the list

from element 1 to element 3

from element 1 to the end of the list

from the start of the list to element 3
from the start of the list to one before the
last element

from element 1 to element 3 in steps of 2

| ———

Indexing Tensors

« We can use the same notation for PyTorch tensors, with

the added benefit that we can use slicing for each of the
dimensions of the tensor:

o om m un

[1:
[1:
[1:

1. All rows after first, implicitly all columns
2. All rows after first, all columns
3. All rows after first, first column only

Slides 03p .

Serializing Tensors

« Creating a tensor in RAM is all well and fine, but if the data
Inside the tensor is of any value to us, we will want to save
It to a file and load it back at some point.

 After all, we don’t want to have to retrain a model from
scratch every time we start running our program!

« PyTorch uses pickle under the hood to serialize the tensor
object, plus dedicated serialization code for the storage.
Here’s how we can save our points tensor to a ourpoints.dt
file:

with open('c:/kuliah/machinelLearning2019/data/ourpoints.dt','wb') as f:
torch.save(points, f)

Slides 03p

Serializing Tensors

« Loading our points back:

with open('c:/kuliah/machinelLearning2019/data/ourpoints.dt','rb') as f:
points = torch.load(f)

« While this is a way we can quickly save tensors in case we
only want to load them with PyTorch, the file format itself is

not interoperable. We can’t read the tensor with software
other than PyTorch.

« Depending on the use case, this may or may not be a
limitation, but we should learn how to save tensors

Slides 03p

Serializing Tensors

To achieve interoperability, we can usethe HDF5 format and
library.

HDF5 is a portable and widely supported format for
representing serialized multidimensional arrays, organized
In a nested key-value dictionary.

Python supports HDF5 through the h5py library, which
accepts and returns data under the form of NumPy arrays.

We can install h5py using anaconda:
$ conda install h5py

Slides 03p

Serializing Tensors

 Now we can save our points tensor by converting it to a
NumPy array (at no cost) and passing it to the
create dataset function:

In[61]:

import h5py

f = h5py.File('c:/kuliah/machinelLearning2019/data/ourpoints.hdf5"', 'w')
dset = f.create_dataset('coords', data=points.numpy())

f.close()

* Here 'coords' is a key into the HDF5 file. One of the
Interesting things in HDF5 is that we can index the dataset

Slides 03p

Serializing Tensors

« Let's suppose we want to load just the last two points in our
dataset:

In[62]:

f = h5py.File('c:/kuliah/machinelLearning2019/data/ourpoints.hdf5', 'r")
dset = f['coords']

last _points = dset[-2:]

« What happened here is that data has not been loaded
when the file was opened. Rather, data stayed on disk until
we requested the last two rows in the dataset.

At that point, h5py has accessed those two rows and

Slides 03p

Serializing Tensors

« Owing to this fact, we can pass the returned object to the
torch.from_numpy function to obtain a tensor directly. Note
that in this case the data is copied over to the tensor’s
storage.

* Once we're finished loading data, we close the file.

In[63]:
last_points_t = torch.from_numpy(dset[-2:])
f.close()

Slides 03p

Moving Tensors to the GPU

« Every PyTorch tensor can be transferred to the GPU(s) in
order to perform massively parallel, fast computations. All
operations performed on the tensor will be carried out
using GPU-specific routines that come with PyTorch.

 In addition to dtype, a PyTorch Tensor also has a notion of
device, which is where on the computer the tensor data is
being placed. Here is how we can create a tensor on the
GPU (if it exists) by specifying the corresponding
argument to the constructor:

In[e4]:

points gpu = torch.tensor([[4.0, 1.0

Slides 03p

Moving Tensors to the GPU

We could instead copy a tensor created on the CPU onto
the GPU using the to method.:

In[6&5] :

points gpu = polints.to(device="'cuda')

Doing so returns a new tensor that has the same
numerical data, but stored in the RAM of the GPU, rather
than in regular system RAM.

Now that the data is stored locally on the GPU, we’ll see
speedups when performing mathematical operations on
the tensor.

The class of this new GPU-backed tensor is also changed
to be torch.cuda.FloatTensor (given our starting type of

torch.FloatTensor). g ‘
Slides 03p

The Tensor API

It is worth taking a look at all the tensor operations that
PyTorch offers. Check out the online documentation at
pytorch.org/docs.

« The vast majority of operations on and between tensors
are available under the torch module and can also be
called as methods of a tensor object.

* For instance, the transpose function we've encountered
earlier can be used from the torch module:

In[71]:

a torch.ones (3,

a_t = torch.transpo:

Slides 03p

The Tensor API

« There is no difference between the two forms; they can be
used interchangeably.

* There’s a caveat: a small number of operations only exist
as methods of the tensor object. They are recognizable
from a trailing underscore in their name, like zero , which
Indicates that the method operates in-place, by modifying
the input instead of creating a new output tensor and
returning it. For instance, the zero method zeroes out all
the elements of the input.

« Any method without the trailing underscore leaves the
source tensor unchanged, and instead returns a new
tensor.

Slides 03p -

The Tensor API

=

Slides 03p

