Chasing Sets: How to Use Existential Rules for Expressive Reasoning

David Carral, Irina Dragoste, Markus Krötzsch, Christian Lewe
Knowledge-Based Systems Group, TU Dresden, Dresden, Germany
firstname.lastname@tu-dresden.de

Abstract
We propose that modern existential rule reasoners can enable fully declarative implementations of rule-based inference methods in knowledge representation, in the sense that a particular calculus is captured by a fixed set of rules that can be evaluated on varying inputs (encoded as facts). We introduce Datalog(S) – Datalog with support for sets – as a surface language for such translations, and show that it can be captured in a decidable fragment of existential rules. We then implement several known inference methods in Datalog(S), and empirically show that an existing existential rule reasoner can thus be used to solve practical reasoning problems.

1 Introduction
Rules of inference are of fundamental importance in logical reasoning, and the central building block of many proof systems, including tableaux-based model constructions, resolution calculi, type-theoretic procedures [Ortiz et al., 2010], and “consequence-driven” approaches in ontological reasoning [Kazakov, 2009]. Indeed, rule-based calculi of logical deduction are as old as formal logic itself.

More recently, rules have also seen much renewed interest as a declarative computing paradigm, and many rule-based reasoning systems have been presented [Benedikt et al., 2014; Geerts et al., 2014; Aref et al., 2015; Baget et al., 2015; Nenov et al., 2015; Urbani et al., 2016]. At the core of these implementations is the simple rule language Datalog, which is often extended with support for existential quantifiers or function terms in the consequences of rules. While this makes reasoning undecidable in general, there are many fast and scalable reasoners for cases where a finite model can be constructed using some variant of the chase procedure [Benedikt et al., 2017; Urbani et al., 2018]. It seems natural to exploit such systems to solve reasoning tasks in other areas of logic.

This can be achieved by translating theories of a relevant logic into sets of rules that entail equivalent consequences. This idea has been applied, e.g., to description logics [Ortiz et al., 2010] and guarded logics [Ahmetaj et al., 2018]. Many such approaches do not play to the strengths of modern rule engines, though, since they create exponentially many (i.e., millions of) rules [Carra et al., 2018] or rules with linearly many (i.e., thousands of) variables [Ahmetaj et al., 2018]. A more promising approach might be to “implement” reasoning algorithms in a fixed (small) set of logical rules that operates on instances of logical reasoning tasks encoded as (large) sets of input facts. This is closer to the typical presentation of rule-based deduction calculi, and was already proposed for rule-based implementations of some logics [Krötzsch, 2011].

Unfortunately, this approach is severely limited by the low data complexity of known rule languages, which is PTIME not just for Datalog, but for every previously proposed decidable existential rule language that guarantees the chase to be finite [Krötzsch et al., 2019]. All of the aforementioned tools can only be used if the chase is finite; otherwise reasoning will not terminate. We seem to be faced with a big dilemma: either to deal with large rule sets (in terms of rule number or size), or to be content with solving polynomial problems.

Surprisingly, however, the limits of decidable criteria that guarantee chase termination do not apply to the chase algorithm as such: Krötzsch et al. recently showed that, in theory, even current rule engines can perform complex computations based on a fixed “program” of rules while still being guaranteed to terminate with a finite chase [2019].

In this paper, we show that this theoretical insight can be turned into a practical approach for solving a wide range of logical reasoning tasks with existing rule engines. To unlock the necessary expressive power while guaranteeing termination, we need rather complex existential rule sets that would be difficult to adapt for implementing further reasoning tasks. We overcome this problem by proposing a more convenient intermediate language, Datalog(S), which extends Datalog with relationships over sets of constants (Section 3). This is inspired by the DatalogS language of Ortiz et al. [2010], but differs in that the available sets are not fixed as part of the schema, but can grow with the size of the input: Datalog(S) achieves ExpTIME-complete data complexity. We show that every Datalog(S) program can be translated polynomially into a set of existential rules for which a previously proposed (and implemented) variant of the standard chase algorithm terminates in exponential time (Section 4). Notably, the translated rule set does not fall into any known frag-

1Even though weakly (frontier) guarded rules are a decidable existential rule fragment with ExpTIME-complete data complexity [Gottlob et al., 2014], the chase does not terminate for this language, and no reasoners have been implemented for this fragment.
ment that guarantees chase termination, and we believe that it would be difficult to design an appropriate new fragment that is nearly as easy to use as Datalog(S).

We illustrate the capabilities of this new approach by implementing two previously proposed reasoning algorithms in Datalog(S): a consequence-based algorithm for description logics (Section 5), and a type-based algorithm for guarded Horn logic (Section 6). Moreover, we demonstrate practical applicability for the former by executing it in an existing rule engine to classify several real-world ontologies (Section 7). Details we had to omit are found online [Carral et al., 2019].

2 Preliminaries

We consider a signature based on mutually disjoint, countably infinite sets of constants \(C \), variables \(V \), nulls \(N \), and predicates \(P \). We assign some arity \(ar(p) \geq 0 \) to all \(p \in P \).

A term is an element in \(T = C \cup V \cup N \). We abbreviate lists of terms \(t_1, \ldots, t_n \) as \(t \), and treat such lists as sets. An atom is a formula \(p[t] \) with \(p \in P, t \subseteq T \), and \(ar(p) = 1 \).

We write \(\varphi[x] \) to indicate that \(x \) is the set of all free variables in the formula \(\varphi \). An (existential) rule is a null-free formula of the form \(\forall x, \exists y, \eta \varphi[x, \vec{x}, \vec{y}, \vec{\eta}] \rightarrow \exists y, \eta \varphi[x, \vec{x}, \vec{y}, \vec{\eta}] \) where \(\vec{x} \) and \(\vec{y} \) are disjoint lists of variables, \(\vec{\eta}(\text{the body}) \) and \(\eta(\text{the head}) \) are conjunctions of atoms, and \(\eta \) contains at least one atom. Often, we omit universal quantifiers from rules. A fact is a variable-free rule with an empty body and a single atom in the head. A rule is generating if it contains existential variables, and non-generating (or Datalog) otherwise.

For a formula \(\varphi \) and a substitution \(\sigma : V \rightarrow C \cup N \), let \(\varphi[\sigma] \) be the expression obtained by replacing all unbound occurrences of all \(x \in V \) in \(\varphi \) by \(x(\sigma(x)) \) if \(\sigma \) is defined for \(x \).

Definition 1. Consider a rule \(\rho = \beta[x, \vec{x}] \rightarrow \exists y, \eta \varphi[x, \vec{x}, \vec{y}, \vec{\eta}] \) an atom set \(A \), and a substitution \(\sigma \). The rule and substitution \((\rho, \sigma)\) is applicable to \(A \) if (i) the domain of \(\sigma \) is \(\vec{x} \subseteq \vec{x} \), (ii) \(\beta \subseteq A \), and (iii) every \(\eta \sigma' \subseteq A \) for all \(\sigma' \supseteq \sigma \). Then, \(\rho(A) \) is the superset of \(A \) which, for all tuples \((\rho, \sigma)\) applicable to \(A \), contains the facts in \(\eta \sigma' \subseteq \rho(A) \) with \(\sigma' \supseteq \sigma \) a substitution mapping each \(y \in \vec{y} \) to a fresh null. For a rule set \(R \) and an atom set \(A \), let \(\mathcal{R}(A) = \bigcup_{\rho \in R} \rho(A) \). Let \(\mathcal{R}_v \) and \(\mathcal{R}_\emptyset \) be the sets of all non-generating and generating rules in \(R \), respectively; and let \(\mathcal{R}_+(A) \) be the superset of \(A \) with \(\mathcal{R}_+(A) = \mathcal{R}_+(A) \).

Definition 2 (Datalog-First Chase). For a rule set \(R \), let \(\mathcal{R}_0 = \emptyset \), \(\mathcal{R}_i \) be the sequence with \(\mathcal{R}_i = \mathcal{R}(\mathcal{R}_{i-1}) \) for all \(i \geq 1 \). The chase of \(R \) is the set chase \((\mathcal{R}) = \bigcup_{i \geq 1} \mathcal{R}_i \). The chase of \(R \) terminates if \(\mathcal{R}_{k-1} = \mathcal{R}_k \) for some \(k \geq 1 \).

Note that the Datalog-first chase is not a radically different chase method but simply a specific type of rule-application strategy for the standard chase (also referred to as restricted).

Fact 1. A fact \(\phi \) is entailed by a rule set \(\mathcal{R} \) iff \(\phi \in \text{chase}(\mathcal{R}) \).

This follows from the fact that the standard chase produces a universal model under all strategies [Deutsch et al., 2008].

3 Datalog with Sets

We now introduce the syntax and semantics of a language that extends Datalog with a set datatype that can represent collections of (non-set) elements. It is defined as a sorted logic with built-in set-related functions and predicates of the expected semantics. This approach is close in spirit to the extension of Datalog with complex values [Abiteboul et al., 1994] for the special case with only two sorts (called \(\text{dom} \) and \(\text{dom} \)) by Abiteboul et al., no negation, and a restricted choice of complex value operators.

We consider two sorts: a sort of objects \(\text{obj} \) and a sort of sets \(\text{set} \). A signature of Datalog(S) is based on countably infinite sets of object constants \(C_{\text{obj}} \), object variables \(V_{\text{obj}} \), set variables \(V_{\text{set}} \), and predicate names \(P \) including special predicates \(\{e, \subseteq\} \subseteq P \). The signature of a predicate symbol \(p \) is a tuple \(\text{sig}(p) = (S_1, \ldots, S_n) \) of sorts, with \(\text{sig}(e) = (\text{obj}, \text{set}) \) and \(\text{sig}(\subseteq) = (\text{set}, \text{set}) \). An object term is any object constant or object variable. A set term is any set variable, the special constant \(\emptyset \), an expression \(\{t\} \) where \(t \) is an object term, or, recursively, an expression \((T_1 \cup T_2) \) where \(T_1, T_2 \) are set terms. We consider \(\{t_1, \ldots, t_n\} \) an abbreviation for \(\{t_1\} \cup \{t_2\} \cup \ldots \cup \{t_n\} \) and omit parentheses for \(U \). Unless otherwise stated, we use lower-case letters for object terms and upper-case letters for set terms.

An atom is an expression \(p(t_1, \ldots, t_n) \) where \(p \in P \) with \(\text{sig}(p) = (S_1, \ldots, S_n) \) and \(t_i \) is a term of sort \(S_i \). We write \(\in(t, S) \) as \(t \in S \), and \(\subseteq(S_1, S_2) \) as \(S_1 \subseteq S_2 \). A Datalog(S) rule is an expression of the form \(B_1 \land \ldots \land B_k \rightarrow H_1 \land \ldots \land H_s \), with atoms \(B_1, \ldots, B_k \) (the body) and \(H_1, \ldots, H_s \) (the head), and where we require that:

- every object variable in the head occurs in a body atom,
- every set variable in the rule occurs in a body atom that uses some non-special predicate \(p \in P \setminus \{e, \subseteq\} \), and
- the head does not use a special predicate.

A Datalog(S) program is a set of Datalog(S) rules. We admit rules with empty body for representing Datalog(S) facts.

Example 1. Before defining Datalog(S) semantics formally, we give an example that can be understood with an intuitive reading of Datalog(S) rules. Consider input facts forming a chain \(\text{succ}(1, 2), \text{succ}(2, 3), \ldots, \text{succ}(t-1, t) \), starting at the constant 1 (the other constant names are immaterial).

The following program entails facts for binary predicate \(n \) that form an n-chain of length \(2^t \):

\[
\text{full}(\emptyset) \quad \text{null}(\emptyset, \{1\}) \quad \text{parts}(\{1\}, 1, \emptyset) \\
(U, \emptyset) \land \text{parts}(V, x, V') \land n(V', W') \\
\quad \rightarrow n(V, \{x\} \cup W') \land \text{parts}(\{x\} \cup W', x, W') \\
(U, \emptyset) \land \text{parts}(V, x, V') \land \text{full}(V') \land \text{succ}(x, y) \\
\quad \rightarrow n(V, \{y\}) \land \text{parts}(\{y\}, y, \emptyset) \land \text{full}(V)
\]

Elements of the \(n \)-chain are represented by sets, ordered as \(\{x\} \subseteq S \). The three facts (1) start the chain, and the two other rules define the next \(n \)-successor for when the most significant bit stays the same (2), or moves to the left (40), respectively.
Using an exponentially long chain structure, it is easy to simulate exponential time deterministic Turing machine computations in Datalog [Dantsin et al., 2001]. Based on Example 1, we can apply a similar construction to Datalog(S) to obtain the following result, which should be contrasted to the polynomial data complexity of regular Datalog:

Lemma 1. There is a fixed Datalog(S) program without special predicates ε and \subseteq for which fact entailment checking is \textsc{ExpTime}-hard with respect to the size of the input data.

The formal semantics of Datalog(S) codifies the intuitive idea of the set functions and relations. An interpretation \mathcal{I} of Datalog(S) is defined by an object domain $\mathbf{obj}^\mathcal{I}$ and an interpretation function $\cdot^\mathcal{I}$. The set domain set$^\mathcal{I}$ of \mathcal{I} is the powerset of $\mathbf{obj}^\mathcal{I}$. The interpretation maps non-special predicates p of signature $\text{sig}(p) = (\mathbf{S}_1, \ldots, \mathbf{S}_n)$ to relations $p^\mathcal{I} \subseteq \mathbf{S}_1^\mathcal{I} \times \ldots \times \mathbf{S}_n^\mathcal{I}$, and special predicates as expected: $\varepsilon^\mathcal{I} = \{ \{ \delta, \Gamma \} \mid \delta \in \Gamma \in \text{set}^\mathcal{I} \}$ and $\subseteq^\mathcal{I} = \{ (\Gamma_1, \Gamma_2) \mid \Gamma_1 \subseteq \Gamma_2 \in \text{set}^\mathcal{I} \}$. Object constants c are maps to elements $c^\mathcal{I} \in \mathbf{obj}^\mathcal{I}$. A variable assignment Γ is a mapping function object variables x to elements $\mathcal{I}(x) \in \mathbf{obj}^\mathcal{I}$, and set variables Y to sets $\mathcal{I}(Y) \in \text{set}^\mathcal{I}$. Given an arbitrary (set or object) term t, we define $t^\mathcal{I} \in \mathbf{obj}^\mathcal{I}$ recursively as follows: $c^\mathcal{I} = c^\mathcal{I}$ for $c \in \mathbf{obj}$, $x^\mathcal{I} = \mathcal{I}(x)$ for $x \in \mathbf{obj}$, $\Gamma^\mathcal{I} = \nabla \Gamma \in \text{set}^\mathcal{I}$, and $\{s\}^\mathcal{I} = \{s^\mathcal{I}\}$, and $\mathbf{S}_1 \cup \mathbf{S}_2)^\mathcal{I} = \mathbf{S}_1^\mathcal{I} \cup \mathbf{S}_2^\mathcal{I}$.

An interpretation \mathcal{I} and variable assignment Γ satisfy an atom $p(t_1, \ldots, t_n)$, written $\mathcal{I}, \mathcal{I} \models p(t_1, \ldots, t_n)$, if $(t_1^\mathcal{I}, \ldots, t_n^\mathcal{I}) \in p^\mathcal{I}$. \mathcal{I} satisfies a Datalog(S) rule $B_1 \land \ldots \land B_i \rightarrow H_1 \land \ldots \land H_k$ if, for all variable assignments Γ for \mathcal{I} such that $\mathcal{I}, \mathcal{I} \models B_i$ for all $1 \leq i \leq \ell$, we also have $\mathcal{I}, \mathcal{I} \models H_j$ for all $1 \leq j \leq k$. A program is satisfied if all of its rules are. A variable-free atom A is a logical consequence of a program P if $\mathcal{I} \models A$ for all \mathcal{I} with $\mathcal{I} \models P$.

Since we require object and set variables to occur in (non-special) body predicates, it is easy to see that rules are only applicable to variable assignments that use values that correspond to (sets of) constants in the given input facts. A Datalog(S) program is therefore equivalent to its finite grounding, obtained by replacing variables by variable-free terms that represent all possible constants and sets of constants, respectively. This grounding results in an exponentially large propositional Horn theory for which reasoning tasks can be solved polynomially. Together with Lemma 1, we obtain:

Theorem 1. Checking fact entailment for Datalog(S) is \textsc{ExpTime}-complete for both data and combined complexity.

4 From Datalog(S) to Existential Rules

We now show how to polynomially translate Datalog(S) into existential rules while preserving (suitably translated) consequences. The heart of our approach is the following set \mathcal{R}_{SU} of existential rules (4)–(6), which can represent sets by nulls:

\[
\rightarrow \exists v. \text{empty}(v) \land \text{set}(v) \quad (4)
\]

\[
\text{getSU}(x, u) \rightarrow \exists v. \text{SU}(x, u, v) \land \text{SU}(x, v, v) \land \text{set}(v) \quad (5)
\]

\[
\text{SU}(x, u, v) \land \text{SU}(y, u, u) \rightarrow \text{SU}(y, v, v) \quad (6)
\]

Intuitively, $\text{set}(s)$ means "s is a set" and $\text{empty}(s)$ means "$s = \emptyset.\) SU is for Singleton: $\text{SU}(a, s, t)$ means \"$\{a\} \cup s = t,\" and $\text{getSU}(a, s)$ means "$\{a\} \cup s$ should be computed.\" Note that all terms are object terms in this one-sorted logic. Given an atom set A and a constant or null $s \in C \cup \mathbb{N}$, we therefore define the corresponding set $[s]_A = \{a \in C \cup \mathbb{N} \mid \text{SU}(a, s, a, s, a) \in A\}$. We will combine \mathcal{R}_{SU} with additional non-generating rules, but some restrictions are needed to guarantee correctness.

Definition 3. A type assignment α is a function that maps each predicate $p \in P$ to a tuple $\alpha(p) = (\mathbf{S}_1, \ldots, \mathbf{S}_n)$ with $n = \text{ar}(p)$ and $\mathbf{S}_i \in \{\mathbf{obj}, \text{set}\}$ for $1 \leq i \leq n$, and where we require that $\alpha(\text{empty}) = (\text{set}), \alpha(\text{SU}) = (\text{obj}, \text{set}, \text{set})$, and $\alpha(\text{getSU}) = (\text{obj}, \text{set})$. We say position i in p is of type \mathbf{S}_i. A non-generating rule ρ is admissible if there is a type assignment such that:

(i) constants in ρ only occur on positions of type \mathbf{obj}.

(ii) variables in ρ only occur on positions of a single type.

(iii) empty and SU do not occur in the head of ρ, and

(iv) getSU does not occur in the body of ρ.

A set of rules (or facts) is admissible if all of its elements are.

Example 2. \mathcal{R}_{SU} already suffices to simulate some Datalog(S) programs using further admissible rules. For example, rule (2) can be expressed with the following admissible rules, where the type assignment is as defined by the signature of the corresponding Datalog(S) predicates:

\[
\text{n}(u, v) \land \text{parts}(v, x, v') \land \text{n}(v', w') \rightarrow \text{SU}(x, w') \quad (7)
\]

\[
\text{n}(u, v) \land \text{parts}(v, x, v') \land \text{n}(v', w) \land \text{SU}(x, w, w) \rightarrow n(v, w) \land \text{parts}(w, v, w') \quad (8)
\]

The original rule is split into two: (7) requests the creation of an element to represent the set \"$\{x\} \cup w'\" by rule (5), and (8) uses this new element to instantiate the original head atoms.

Example 2 illustrates how admissible rules can "call" the rules in \mathcal{R}_{SU} to provision "sets" as required. The following main correctness result confirms that this works as expected:

Theorem 2. For every admissible set of non-generating rules \mathcal{R}, the chase $\mathcal{C} = \text{chase}(\mathcal{R} \cup \mathcal{R}_{SU})$ is such that:

(a) empty$(s) \in C$ implies $[s]_C = \emptyset$, and

(b) $\text{SU}(a, s, t) \in C$ implies $\{a\} \cup \emptyset = [t]_C$.

If n is the size of \mathcal{R}, then the size of C is in $O(2^n \log n)$.

Proof. It is clear that rule (4) is applied exactly once, irrespective of \mathcal{R}, introducing some null n_0 for v. By admissibility, the only rule heads with SU in $\mathcal{R} \cup \mathcal{R}_{SU}$ are in (5) and (6), and an easy induction shows that n_0 cannot occur in such facts. Hence, $[n_0]_C = \emptyset$, showing claim (a).

For (b), first note that the claim follows from the definition of $[t]_C$ if $s = t$. Facts $\text{SU}(a, s, t)$ with $s \neq t$ are only derived by (5), and each null t occurs in at most one such fact. By the same rule, we get $\text{SU}(a, t, t)$, showing $a \in [t]_C$. If $s = n_0$, then rule (6) cannot produce further consequences, and we get $[t]_C = \{a\}$ as required. If $s \neq n_0$, then we have a fact $\text{SU}(b, s, s)$ for each $b \in [s]_C$ by definition of $[s]_C$. Rule (6)
\[
\begin{align*}
getU(v, w) \land \text{empty}(v) & \rightarrow U(v, w) \quad (9) \\
getU(v, w) \land SU(x, v, w) & \rightarrow SU(x, w) \quad (10) \\
getU(v, w) \land SU(x, v, w) & \land SU(x, v, w) \rightarrow getU(v, w) \quad (11) \\
getU(v, w) \land SU(x, v, w) & \rightarrow SU(x, v, w) \quad (12) \\
SU(x, w, u) & \rightarrow in(x, u) \quad (13) \\
set(v) \land \emptyset & \rightarrow ckSub(v, v, w) \quad (14) \\
ckSub(v, u, w) & \land SU(x, u, v) \rightarrow ckSub(u, v, w) \quad (15) \\
ckSub(v, u, w) & \land empty(u) \rightarrow sub(v, w) \quad (16)
\end{align*}
\]

Figure 1: Rules for arbitrary unions, membership, and containment (subscripts \pm are part of variable names; they hint at sets with additional/fewer elements)

therefore derives \(SU(b, t, t) \), i.e., \(b \in |t| \subseteq C \). No other facts \(SU(b, t, t) \) can be derived, therefore \(|t| \subseteq C \setminus \{a\} \cup |S| \subseteq C \).

For the size of \(C \), note that, all facts of the form \(SU(a, s, s) \in C \) are derived either when introducing \(s \) in (5), or immediately afterwards when closing under non-generating rule (6) (which is prioritised in the Datalog-first chase). Therefore, whenever (5) is applied with a substitution \(\sigma \) to introduce a fresh null \(n = \sigma(v) \), all facts \(SU(b, \sigma(u), \sigma(u)) \) for \(b \in |\sigma(u)| \subseteq C \) were already derived. Since (5) is applicable, \(\sigma(x) \notin |\sigma(u)| \). Let \(C_R \) be the finite set of constants that occur in \(R \). By admissibility (and a simple induction), \(\sigma(x) \in C_R \), and by claim (b), \(|\sigma(u)| \subseteq |n| \subseteq 2^{C_R} \). With \(t = |C_R| \), there are at most \(2^t \) possible sequences of applications of rule (5). This bounds the number of terms in the chase, and hence the number of derived facts, as claimed.

Note that the proof relies on the prioritisation of rule (6) in the Datalog-first chase. However, by adapting a technique by Krötzsch et al. [2019, Proof of Theorem 13], one can also obtain a (fixed) rule set that achieves the same termination and worst-case complexity properties for the standard chase. We omit this here as it makes rules more complicated and presumably less efficient in practice (since it artificially prevents the parallel application of rule (6) to all set elements).

As the proof of Theorem 2 suggests, each set might be represented by several elements in the simulation via \(R_{SU} \). The elements generated by \(R_{SU} \) correspond to sequences of unions of mutually distinct singleton sets, and several sequences might result in the same set. This has to be taken into account when simulating \(\subseteq \) and when performing joins over set terms. Singleton sets and the empty set have at most one representative.

\(R_{SU} \) can only simulate the empty set and unions with singletons. Arbitrary unions are supported by the rules (9)–(12) in Figure 1. Unions are constructed recursively by adding single elements from the first to the second input set. Rule (9) defines the base case. The other three rules split off a single element, use \(R_{SU} \) to construct unions with singletons, and use the output to define the overall union. The rules are admissible for the intuitive type assignment \(\alpha(getU) = \langle set, set \rangle \) and \(\alpha(U) = \langle set, set, set \rangle \).

As the last ingredient, the rules (13)–(16) in Figure 1 define predicates \(in \) and \(sub \) that capture the built-in Datalog predicates \(\in \) and \(\subseteq \), respectively. The complicated part is \(sub \): facts of the form \(ckSub(u, v, w) \)

\(\langle \mathit{check subset} \rangle \) express \(v \setminus u \subseteq w \). We initialise this for all pairs of sets (14), and recursively compare elements of the first argument (15) until reaching the empty set (16).

This completes the required set of auxiliary rules. Before specifying the intended translation, we slightly normalise Datalog(S) rules. Let \(S_1 = S_2 \) be a shortcut for \(S_1 \subseteq S_2 \land S_2 \subseteq S_1 \). First, we replace every set term of the form \(S_1 \cup S_2 \) in a non-special predicate in the body with a fresh set variable \(S \), and we add body atoms \(S = S_1 \cup S_2 \). Second, as long as a set variable \(S \) occurs more than once in a non-special predicate in the body of a rule, we replace one of these occurrences by a fresh variable \(S' \) and add \(S = S' \) to the body. It is easy to see that these transformations preserve semantics. Rules of the resulting form are called normalised. Normalisation ensures that set equality checks are performed using \(sub \).

Now consider a normalised Datalog(S) rule \(\rho \). We will translate it to a set \(ER(\rho) \) of existential rules. For every set term \(S \), let \(v(S) \) be a fresh (non-ordered) variable. Let \(S_1, \ldots, S_k \) be a sequence of all set terms in \(\rho \) that are neither variables nor \(\emptyset \), such that no sub-term of any \(S_i \) occurs to its right. For each term \(S_i \), we define atoms \(\alpha_i \) and \(\beta_i \):

1. if \(S_i = \{ \} \) then \(\alpha_i = getSU(t, v(\emptyset)) \) and \(\beta_i = SU(t, v(\emptyset), v(S_1)) \)
2. if \(S_i = T_1 \cup T_2 \), then \(\alpha_i = getSU(v(T_1), v(T_2)) \) and \(\beta_i = U(v(T_1), v(T_2), v(S_1)) \)

Finally, set \(\gamma_0 = empty(v(\emptyset)) \) and \(\gamma_{j+1} = \gamma_j \land \beta_{j+1} \) for all \(0 \leq j < k \). Now rule \(\rho = \varphi \rightarrow \psi \) is translated into the set \(ER(\rho) \) of the following \(k + 1 \) rules:

1. for each \(0 \leq i < k \), a rule \(\varphi' \land \gamma_i \rightarrow \alpha_{i+1} \)
2. a rule \(\varphi' \land \gamma_k \rightarrow \psi' \)

where \(\varphi' \) and \(\psi' \) are obtained from \(\varphi \) and \(\psi \), respectively, by replacing all atoms \(t \in S \) by \(v(t, S) \), all atoms \(S \leq S' \) by \(sub(S, S') \), and all set terms \(S \) by \(v(S) \).

Example 3. Let \(\rho = p(a, S, T, \{a\} \cup S) \rightarrow q(S \cup T) \). Its normalisation \(\rho' \) has the body \(\varphi' = p(a, S, T, R) \land (\{a\} \cup S \subseteq R) \). A possible order of set terms is \(S_1 = \{a\}, S_2 = \{a\} \cup S, S_3 = S \cup T \). The translated body is \(\varphi' = p(a, v(S), v(T), v(R)) \land sub(v(R), v(S_2), v(R)) \land sub(v(S_2), v(R)) \). We obtain the following rules in \(ER(\rho') \):

\(\varphi' \land empty(v(\emptyset)) \rightarrow SU(a, v(\emptyset)) \) (17)
\(\ldots \land SU(a, v(\emptyset), v(S_1)) \rightarrow SU(a, v(S_1), v(S)) \) (18)
\(\ldots \land U(v(\{a\}), v(S), v(S_2)) \rightarrow U(v(S), v(T)) \) (19)
\(\ldots \land U(v(S), v(T), v(S_3)) \rightarrow g(v(S_3)) \) (20)

where each “...” abbreviates the body of the previous rule.

Definition 4. For a Datalog(S) program \(P \), let \(ER(P) \) be the union of all rule sets \(ER(\rho) \) for \(\rho \in P \) and the rules (4)–(6) and (9)–(16).
Theorem 3. For a Datalog(S) program \(P \), the size of \(\text{ER}(P) \) is polynomial in the size of \(P \).

Theorem 4. For a Datalog(S) program \(P \) and Datalog(S) fact \(\alpha \), \(P \models \alpha \) if and only if \(\text{ER}(P) \models \text{ER}(\alpha) \). Moreover, the Datalog-first chase decides \(\text{ER}(P) \models \text{ER}(\alpha) \) in \(\text{EXPTIME} \).

Proof sketch. The correctness of the extended set of rules (9)–(16) can be shown with a suitable extension of Theorem 2. We can restrict the notion of admissibility to also avoid the misuse of auxiliary predicates in these rules while requiring the expected type signatures. The correctness of the translation is easy; especially the translated rules are admissible when using the Datalog signatures to define type signatures. The size bound on the chase carries over from Theorem 2, which establishes the second part of the claim. \(\square \)

Together with Theorem 1, this correctness result implies that fact entailment is also \(\text{EXPTIME} \)-complete w.r.t. data complexity for the sets of rules obtained from our transformation. Therefore, these transformed sets are not covered by any decidable fragment of existential rules of P (or lower) data complexity, including previously proposed criteria that ensure termination of the skolem chase [Cuenca Grau et al., 2013] and Datalog-first chase [Carral et al., 2017], as well as first-order rewritability [Baget et al., 2011]. Weakly (frontier) guarded rules are one of the few fragments with similarly high data complexity [Gottlob et al., 2014], but already the rules in Figure 1 are not weakly frontier guarded.

5 Description Logics Reasoning

To demonstrate the utility of our approach, we look at description logics (DLs) first. DLs are highly expressive logics with many applications, and for which numerous reasoning procedures have been proposed [Baader et al., 2007]. Among the many DLs that give rise to \(\text{EXPTIME} \)-complete reasoning tasks, we select Horn-\(\text{ALC} \) as a comparatively simple case that allows us to focus on our main ideas.

DL is based on mutually disjoint sets of concept names \(\text{N}_C \), role names \(\text{N}_R \), and individual names \(\text{N}_I \). We define Horn-\(\text{ALC} \) using axioms in normalised form [Krötzsch et al., 2013]. Given \(A, B, C \in \text{N}_C \), \(R \in \text{N}_R \), and \(a, b \in \text{N}_I \), the following are axioms of Horn-\(\text{ALC} \) in normal form:

\[
A(a) \quad (21) \quad \top \subseteq C \quad (24) \quad A \subseteq \bot \quad (27)
\]

\[
R(a, b) \quad (22) \quad \exists R.A \subseteq C \quad (25) \quad A \subseteq \forall R.C \quad (28)
\]

\[
A \subseteq C \quad (23) \quad A \cap B \subseteq C \quad (26) \quad A \subseteq \exists R.C \quad (29)
\]

Axioms (21) and (22), called class assertions, respectively role assertions, are \(\text{ABox} \) axioms, corresponding to unary and binary facts. The others are \(\text{TBox} \) axioms, with \(D \subseteq E \) representing a first-order formula \(\forall x.[D] \rightarrow [E] \), where we define \([A] = A(x), [B] = B(x), [\exists R.C] = \exists y.R(x,y) \land C(y), [\forall R.C] = \forall y.R(x,y) \rightarrow C(y)\), and \([A \cap B] = A(x) \land B(x)\). \(\top \) represents truth, and \(\bot \) falsity.

Classification is the task of computing all axioms of form (23) that are entailed by an ontology—i.e., a DL axiom set. Kazakov [2009] proposes a consequence-driven classification method for Horn-\(\text{ALC} \). Figure 2 (left) shows the corresponding rules of inference in the version of Simančík et al. [2011, Table 2]. Given a set \(T \) of TBox axioms, the rules produce inferences of the form \(H \subseteq B \) and \(H \subseteq \exists R.K \) where \(H, K \) are conjunctions of elements in \(\text{N}_C \cup \{ \bot, \top \} \) (viewed as sets when convenient). A rule is applicable if its pre- (above the line) and side conditions (on the right) are satisfied; then it derives the conclusion (below the line). A conjunction \(H \) is active if it is either defined to be active initially, or occurs in some inference, and rules \(\text{R}_A \) and \(\text{R}_C \) are restricted to such conjunctions. For classification, one initially sets all singleton conjunctions (i.e., concept names) to be active.

The right of Figure 2 shows the corresponding Datalog(S) rules. It is easy to see how each rule corresponds to the inference rule to its left. We represent inferences by predicates \(SC \) and \(Ex \) with \(\text{sig}(SC) = \{ \text{set, obj} \} \) and \(\text{sig}(Ex) = \{ \text{set, obj, set} \} \), respectively. Predicates \(ax_{\leq}, ax_{<}, ax_{\geq}, ax_{\neq}, ax_{+e} \), and \(ax_{+d} \) encode Horn-\(\text{ALC} \) axioms as facts. All elements of \(\text{N}_C \cap \text{N}_R \) correspond to object constants in Datalog(S), and conjunctions are represented as sets. Only rules \(\text{R}_I \) and \(\text{R}_C \) can activate new conjunctions, as recorded by predicate \(\text{Act} \). To initialise the computation, we need to activate all singleton sets, which can be done by rules such as

\[
ax_{+e}(a, r, b) \rightarrow \text{Act}(\{a\}) \land \text{Act}(\{b\}) \quad (30)
\]

and analogous rules for all other types of axioms. It is obvious that this translation is faithful and therefore leads to an \(\text{EXPTIME} \)-complete (hence worst-case optimal) chase-based classification algorithm for Horn-\(\text{ALC} \).

We also note that the translation exhibits similar pay-as-you-go characteristics as the original approach. In particular, in \(\mathcal{EL} \)-type description logics, which do not include axioms of type (28), only a linear number of singleton sets is needed, and the chase likewise terminates in polynomial time. It is an advantage of our approach that it can be used to make an existential rule engine perform essentially the same derivation steps as the original abstract inference-rule calculus.

6 Guarded Rules Reasoning

We now apply our approach to reasoning with guarded existential rules (where all universally quantified variables appear in a single body atom). Ahmetaj et al. [2018] give an entailment-preserving translation from guarded rules with bounded predicate arity \(a \) to a polynomial Datalog program. However, they require predicate arities in the order of \(2^a \).

Their translation actually simulates sets in Datalog. For maximal arity \(a \), we consider the set \(A \) of all atoms that can be formed from a predicate in the guarded rules and generic variables \(x_1, \ldots, x_a \). A type is a subset of \(A \), represented in Datalog by vectors of \(|A| \) constants 0 or 1. Datalog(S) rules are obtained, in essence, by replacing these vectors by sets, where we use constants \(c_\alpha \) for each \(\alpha \in A \).

The rules frequently test for the absence of an element in a set. While not in Datalog(S), we can define this using an inequality predicate \(\neq \) (even without logical inequality, this...
can be axiomatised for constants; this suffices). We can now derive \(\text{ckNotin}(u, a, u) \) whenever a rule needs to know if “\(a \notin u \)”, and then apply the following rules:

\[
\text{ckNotin}(u, z, w) \land \
SU(x, u, z, w) \land x \neq z \rightarrow \text{ckNotin}(u, z, w)
\]

(31)

\[
\text{ckNotin}(u, z, w) \land \text{empty}(u) \rightarrow \text{notin}(z, w)
\]

(32)

Confirmed non-memberships are recorded as \(\text{notin}(a, u) \).

The paper seems to be missing some content or it's not clear how to proceed from here. It looks like there might be typesetting issues or a break in the document structure.

Rules (VII) highlight some elements in types using a special constant \(2 \) instead of 1, as in

\[
\text{Marked}(\bar{u}, 0, \bar{v}) \land \text{Marked}(\bar{u}, 1, \bar{v}) \rightarrow \text{Marked}(\bar{u}, 2, \bar{v})
\]

We achieve this adding another constant \(d_{\alpha} \) for each \(\alpha \in A \):

\[
\text{Marked}(X) \land c_{\alpha} \notin X \land \text{Marked}(X \cup \{c_{\alpha}\})
\]

\[
\rightarrow \text{Marked}(X \cup \{c_{\alpha}\} \cup \{d_{\alpha}\})
\]

Such rules also depend on the given guarded rules that define \(A \), but this dependence can easily be moved to the facts by encoding \(A \) there. Rules (VIII) define Horn types as those missing exactly one atom. We can build such types iteratively, so as to avoid the explicit mentioning of all elements in one rule. The remaining rules are also easy to express. Finally, rules (IX) infer entailed facts from marked Horn types by removing elements from the type sets iteratively. Instead of removing elements, we can simply iterate by remembering the current position in an additional parameter.

By these transformations, we can obtain a Datalog(S) program that captures the original Datalog program in a polynomial number of rules that each use only a bounded number of variables and atoms (based on the arity \(a \)). If we further encode guard rules, atoms, and mappings in Datalog(S) facts as indicated, we obtain a fixed Datalog(S) program that can reason on arbitrary guarded existential rules (encoded as facts), depending only on the signature of relevant predicates.

Applying Theorem 4, we obtain a similarly small existential rule set for which the Datalog-first chase terminates:

Theorem 5. For any fixed finite set of predicates \(P \) with maximal arity \(\alpha \), there is a set of existential rules \(AOS_P \) that

1. consists of polynomially many rules (in the size of \(P \)),
2. each with bounded number of atoms (independent of \(P \)),
3. using predicates of arity bounded by \(\max(\alpha, 3) \), and
4. where chase(\(AOS_P \cup F \)) is exponential for every set of facts \(F \), such that every set of guarded existential rules \(\mathcal{R} \) over \(P \) can be translated into a polynomial set of facts \(F_{\mathcal{R}} \) such that \(AOS_{P \cup F_{\mathcal{R}}} \) and \(\mathcal{R} \) entail the same ground facts over \(P \).
never before been applied for such a task. Indeed, our approach leads to rules that are very different from the ones used in benchmarking rule engines today, and can therefore guide further optimisations of existing implementations.

For experiment (B) we extend R_{CI} with the following rules:

\[
CA(a,c) \land SU(a,E,H) \land \\
empty(E) \land SC(H,b) \rightarrow CA(b,c)
\]

(33)

\[
RA(r,c,d) \land ax(\exists a(r,b) \land CA(a,d) \rightarrow CA(b,c))
\]

(34)

\[
RA(r,c,d) \land ax(\forall a(r,b) \land CA(a,c) \rightarrow CA(b,d))
\]

(35)

Predicates CA and RA encode assertions: $CA(a,c)$ encodes $A(c)$; and $RA(R,a,b)$ encodes $R(a,b)$. We used several benchmark datasets that Zhou et al. [2015] created by sampling data for two large ontologies: the real-world knowledge base Reactome, and the synthetic benchmark UOBM.

Figure 4 shows the total times (precomputing and reasoning) for VLog and Konclude. No times are shown in cases where Konclude exceeded a one-hour timeout. We observe that our approach leads to competitive performance in (B), which might have been expected since rule engines optimise for large datasets. In particular, VLog might benefit from its compact in-memory presentation of large predicates, which also helps to find rule matches more quickly if many facts can be processed together [Urbani et al., 2016].

8 Conclusions

We introduced Datalog(S) as a convenient high-level language for encoding complex reasoning algorithms, which can be "compiled" into existential rules that can be successfully executed on rule engines available today. This outlines an appealing new method for prototyping reasoning algorithms in an elegant and declarative way, potentially even resulting in highly scalable systems. It also indicates a promising new research direction for the development of modern rule engines.

Acknowledgments

This work is partly supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in project number 389792660 (TRR 248, Center for Perspicuous Systems) and Emmy Noether grant KR 4381/1-1 (DIAMOND).

References

<table>
<thead>
<tr>
<th>ID</th>
<th>#Ax.</th>
<th>#Set</th>
<th>#SC</th>
<th>#Ex</th>
<th>VLog (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00040</td>
<td>223K</td>
<td>2K</td>
<td>1051K</td>
<td>334K</td>
<td>432</td>
</tr>
<tr>
<td>00048</td>
<td>142K</td>
<td>19</td>
<td>718K</td>
<td>171K</td>
<td>387</td>
</tr>
<tr>
<td>00477</td>
<td>318K</td>
<td>0</td>
<td>162K</td>
<td>167K</td>
<td>1</td>
</tr>
<tr>
<td>00533</td>
<td>159K</td>
<td>0</td>
<td>965K</td>
<td>351K</td>
<td>132</td>
</tr>
<tr>
<td>00786</td>
<td>152K</td>
<td>12K</td>
<td>2283K</td>
<td>978K</td>
<td>549</td>
</tr>
</tbody>
</table>

Figure 3: Ontologies and results for classification (A) showing: axiom count; number of non-singleton “set terms” introduced (#Set); number of SC and Ex facts derived; reasoning time in VLog.

Figure 4: Experimental results for class retrieval (B) in VLog (pink/grey) and Konclude (black); note the log scale.

7 Evaluation

We conducted two experiments: (A) compute all consequences of the calculus in Figure 2, and (B) compute all entailed axioms of type (21) (class retrieval). All experiments where run on a MacBookPro (2.4GHz Intel Core i5, 8GB RAM). The rule engine VLog was used as an implementation for the Datalog-first chase [Urbani et al., 2018]. Further evaluation details can be found in [Carral et al., 2019].

For (A), we created a simplified rule set R_{CI} from the rules in Figure 2, exploiting the fact that they do not need normalisation or all Datalog(S) features [Carral et al., 2019]. We classified five large and diverse ontologies from the Oxford Ontology Repository:

- 00040 (GO x-anatomy), 00048 (GO x-taxon), 00477 (Gazetteer), 00533 (CheBI mol. function), and 00786 (NCI). The ontology statistics and results are shown in Figure 3. We measured pure reasoning time without the time needed to read the input file from disk.

Columns #Set, #SC, and #Ex confirm that the ontologies require significant reasoning effort, which is also reflected in most VLog reasoning times. We observed that our rules for simulating sets made only small contributions to these times, although they dominate theoretical worst-case complexity. Most time instead was taken up by the computation of a small number of particularly slow joins – used to find rule matches in VLog –, especially for rule (R^S_3).

While our results show practicality, optimised DL reasoners are significantly faster: the DL reasoner Konclude [Steigmiller et al., 2014] needed between 2sec (00533) and 14sec (00786) for the tasks. This is not surprising, since Konclude is the leading implementation after decades of research on how to optimise this very computation, whereas VLog has never before been applied for such a task. Indeed, our ap-

A Evaluation Details

All files used in the input of our experiments can be found at https://cloudstore.zih.tu-dresden.de/index.php/s/pwojlg9n005ctnV?path=%2FIJCAI-2019-chasing-sets-evaluation.

A.1 Classification Experiment (A)

Input Ontology Preprocessing

The ontologies selected for this experiment are not in Horn-ALC. Therefore, we first normalise these into the normal form given in [Carral et al., 2014] and then filter all axioms that are not Horn-ALC.

Simplified Classification Rules \(\mathcal{R}_{Ct} \)

In order to run our experiments, we need to translate the Datalog(S) classification program discussed in Section 5 into an existential rule set, as shown in Section 4. This translation of the Datalog(S) rules from Figure 2 is shown in Figure 5, where rules \((S_\alpha) \), \((S_\beta) \) represent the translation to existential rules of Datalog(S) rule \((R_\alpha) \), rule \((R_\beta) \) with \(n = 0 \), etc. The resulting existential rule set \(\mathcal{R}_{Ct} \) consisting of the rules in Figure 5, rules (4)–(6) and (13), and rule set \(\{ \rightarrow \text{conceptName}(a) | a \in \mathcal{N}_{C} \cap \mathcal{O} \} \) – has been simplified to optimise performance, and we discuss these optimisations below.

Firstly, we observe that there is a one-to-one correspondence between the active conjunctions derived by the calculus in Figure 2 (left) and the non-empty sets derived by the related Datalog(S) program (right). We know that each set derived by a Datalog(S) program is represented by at least one null introduced during reasoning over the existential rules translation of such a program. Except for the null representing the empty set, each such null corresponds to an active conjunction. Therefore, in the existential rules translation, unary predicate \(\text{Act} \) - used to signal the correspondence between a null and an active conjunction - becomes redundant. We can then simplify the existential rule set by discarding all atoms with \(\text{Act} \) predicate (used in rules \((R_\lambda) \), \((R_\pi) \) with \(n = 0 \), \((R_\tau) \), \((R_\nu) \), and rules of type (30)). Instead of the initialisation of active sets as exemplified in (30), we assert \(\text{conceptName}(a) \) for each concept name \(a \) occurring in the input ontology, and add the rule (init) (Figure 5) to our set. Rule (init) generates nulls representing the initial singleton sets for each concept name of the input ontology, while rule \((S_\alpha \beta) \) generates nulls representing new sets (conjunctions which, in turn, become active). For this reason, predicate \(\text{in} \) (rule \((S_\lambda) \)) will only apply to the nulls introduced to satisfy rule (5), which represent sets that, in turn, correspond to the active conjunctions.

Secondly, we see that the singleton sets appearing in the head of rule \((R_\nu^+) \) have already been generated by the application of rule (init), as variable \(b \) can only apply to a concept name. Hence, rule \((R_\nu^+) \) can be simplified to \((S_\nu^+) \) as shown in Figure 5. Also, note that the translation of Datalog(S) rule \((R_\nu) \) into existential rules \((S_\nu \alpha) \) and \((S_\nu \beta) \) has been optimised. We can directly obtain the union between the object \(b \) and the set \(K \) as we do in \((S_\nu \alpha) \), instead of first obtaining the union between object \(b \) and the empty set, and then between the resulting singleton set \(\{ b \} \) and the set \(K \), as discussed in Section 4.

Additionally, we observe that in order to simulate the Datalog(S) program in Figure 2, only a subset of the rules that encode set features is needed: it is sufficient to use rules (4)–(6) for encoding the empty set and union with a singleton set (required by rules (init), \((S_\nu), \) and \((S_\eta) \)), and rule (13) for encoding set membership (required by \((S_\eta) \)). In fact, (4)–(5) can be modified to eliminate the atom \(\text{set}(v) \) from the rule heads, as it is only used in rule (14), which is not needed here.

Finally, note that even though rules \((R_\tau^+), \ (R_\nu^+), \ (R_\nu), \) contain multiple occurrences of the same set-admitting variable in non-special predicates in the body, the normalisation discussed in Section 4 is not necessary for \(\mathcal{R}_{Ct} \). In Theorem 6, we show that \(\mathcal{R}_{Ct} \) preserves completeness, as distinct nulls that represent the same sets appear interchangeably in the same SC facts generated during the chase (see Lemma 2). Therefore, for a given Horn-ALC ontology \(\mathcal{O} \), the existential rule set \(\mathcal{R}_{Ct} \) correctly solves classification.

For the remainder of this section, we refer to \(\text{chase}(\mathcal{R}_{Ct}) \) as \(C \).
Lemma 2. Consider two nulls N and N' occurring in C such that $[N]_C = [N']_C$.

- If $SC(N,t) \in C$ for some $t \in T$, then $SC(N',t) \in C$.
- If $Ex(N,r,K) \in C$ for some $r,K \in T$, then $Ex(N',r,K) \in C$.

Proof. Let F_0, \ldots, F_m be some sequence of sets of facts that satisfies all of the following.

- $F_0 = \emptyset$ and $F_m = C$.
- For all $1 \leq i \leq m$, there is a rule $\rho_i = \beta \rightarrow \exists y, \eta \in R_{ci}$ and a substitution σ_i such that $\beta \sigma_i \subseteq F_{i-1}$, $F_i = F_{i-1} \cup \eta \sigma_i$, and $\eta \sigma_i \notin F_{i-1}$.

We show via induction on $i \geq 0$ that:

- If $SC(N,t) \in F_i$ for some $t \in T$, then $SC(N',t) \in C$.
- If $Ex(N,r,K) \in F_i$ for some $r,K \in T$, then $Ex(N',r,K) \in C$.

The base case is trivial, since $F_0 = \emptyset$. For the induction step, we prove that the claim holds for $1 \leq i \leq m$ assuming it to hold for $i-1$, following a case-by-case analysis depending on ρ_i. Note that we are only interested in rules that produce facts of the form $SC(N,t)$ or $Ex(N,r,K)$ (i.e., rules (S_A), (S_1), (S_{2+}), (S_{3+}), $(S_{3\beta})$). For the other rules, the claim trivially holds by induction hypothesis (IH).

(S_A) Let $\rho = inv(a,H) \rightarrow SC(H,a)$, and $\sigma_1(H) = N$. Then, $inv(\sigma_1(a),N) \in F_{i-1}$. Since $[N]_C = [N']_C$ and by rule (13), we have that $inv(\sigma_1(a),N') \in C$. Hence, $SC(N',\sigma_1(a)) \in C$.

(S_1) Let $\rho = SC(H,a) \land ax_{\subset}(c_1,c) \rightarrow SC(H,c)$, and $\sigma_1(H) = N$. Then, $\{SC(N,\sigma_1(a)), ax_{\subset}(c_1,c)\} \subseteq F_{i-1}$. By IH, $SC(N',\sigma_1(a)) \in C$. Hence, $SC(N',\sigma_1(c)) \in C$.

(S_{2+}) Let $\rho_i = SC(H,a_1) \land ax_{\subset}(a_1,a_2) \rightarrow SC(H,c)$, and $\sigma_i(H) = N$. Then, $\{SC(N,\sigma_i(a_1)), SC(N,\sigma_i(a_2)), ax_{\subset}(c_1,c)\} \subseteq F_{i-1}$. By IH, $\{SC(N',\sigma_i(a_1)), SC(N',\sigma_i(a_2))\} \subseteq C$. Hence, $SC(N',\sigma_i(c)) \in C$.

(S_{3+}) Let $\rho_i = SC(H,a) \land ax_{\subset}(a,b) \land empty(E) \land SU(b,E,B) \rightarrow Ex(H,r,B)$, and $\sigma_i(H) = N$. Then, $\{SC(N,\sigma_i(a)), ax_{\subset}(c_1,c)\} \subseteq F_{i-1}$. By IH, $Ex(N',\sigma_i(c)) \in C$. Hence, $Ex(N',\sigma_i(B)) \in C$.

$(S_{3\beta})$ For $\rho_i = Ex(H,r,K) \land SC(K,a) \land ax_{\subset}(a,b) \rightarrow SC(H,b)$, and $\sigma_i(H) = N$. Then, $\{Ex(N,\sigma_i(a),K), SC(K,a), ax_{\subset}(c_1,c)\} \subseteq F_{i-1}$. By IH, $Ex(N',\sigma_i(K)) \in C$. Hence, $SC(N',\sigma_i(c)) \subseteq C$.

$(S_{3\beta})$ For $\rho_i = Ex(H,r,K) \land SC(K,a) \land ax_{\subset}(a,b) \rightarrow SC(H,b)$, and $\sigma_i(H) = N$. Then, $\{Ex(N,\sigma_i(a),K), SC(K,a), ax_{\subset}(c_1,c)\} \subseteq F_{i-1}$. By IH, $Ex(N',\sigma_i(K)) \in C$. Hence, $SC(N',\sigma_i(c)) \subseteq C$.

For a function $f : N \rightarrow N$ and a fact ϕ, we denote as $f(\phi)$ the fact obtained by replacing each syntactic occurrence of a null n in ϕ with $f(n)$. For a set of facts F, we denote as $f(F)$ the set of facts $\bigcup_{\phi \in F} f(\phi)$. We abuse notation and say that two sets of facts F_1 and F_2 are equal ($F_1 = F_2$), if there is a bijection f defined on the nulls in F_1 with values in the nulls in F_2 such that $f(F_1) = F_2$ and $f^{-1}(F_2) = F_1$. We also say that $F_1 \subseteq F_2$, if there is a set of facts F_1' such that $F_1 = F_1'$ (according to the above equality definition), and $F_1' \subseteq F_2$.

Theorem 6. The set chase(R_{ci}) is equal to chase(R'_{ci}), where R'_{ci} is the normalisation of the rules in R_{ci}.

Proof. For brevity, we denote chase(R'_{ci}) as C'. Note that $C \subseteq C'$ follows from the fact that, for a rule ρ, its normalisation ρ', and a set of facts F, we have that $\rho(F) \subseteq \rho'(F)$ (considering fact set equality as discussed above). We proceed to prove that $C' \subseteq C$. Let F_0, \ldots, F_m be some sequence of sets of facts that satisfies all of the following.

- $F_0 = \emptyset$ and $F_m = C$.
- For all $1 \leq i \leq m$, there is a rule $\rho'_i = \beta' \rightarrow \exists y, \eta \in R'_{ci}$ and a substitution σ_i such that $\beta' \sigma_i \subseteq F_{i-1}$ and $F_i = F_{i-1} \cup \eta \sigma_i$.

We show via induction on \(i \geq 0 \) that \(F_i \subseteq C \). The base case is trivial, since \(F_0 = \emptyset \). For the induction step, we prove that the claim holds for \(1 \leq i \leq m \) assuming it to hold for \(i - 1 \), following a case-by-case analysis depending on \(\rho'_i \in R_{Cl}' \). Let \(\rho_i = \beta \rightarrow \exists \eta . \eta \in R_{Cl} \) be a rule such that, if we normalise it, we obtain \(\rho'_i \).

The rules in \(R_{Cl} \) that are not normalised are: \((S^2_1)\), \((S^3_2)\), \((S^4_2)\), and \((S_5)\).

Even though rule \((S^4_2)\) has multiple occurrences of variable \(E \), the atom \(empty(E) \) in the rule body ensures that \(E \) can be matched by only a single term (i.e., the null introduced to satisfy the empty set existential restriction). Thus, we do not need to consider normalisation for this rule.

- If \(\rho_i \) is one of the rules ((4)–(6), (13), \((init)\), \((S^4_2)\), \((S^5_2)\), and \((S^6)\)), or belongs to the rule set \(\{ \rightarrow \text{conceptName}(a)|a \in \mathbb{NC} \cap \mathcal{O} \} \), then \(\rho'_i = \rho_i \), which implies that \(\beta' \sigma = \beta \sigma \). By induction hypothesis (IH), we have that \(F_{n-1} \subseteq C \).

 - If \(\rho_i \) is a generating rule ((4) or (5)), then either \(\langle \rho_i, \sigma_i \rangle \) is applicable to \(F_{n-1} \), or there is a substitution \(\pi \supseteq \sigma_i \setminus \sigma_i(v_i) \).

- If \(\rho_i \) is a non-generating rule in (4) and (5), such that \(\eta \pi \subseteq F_{n-1} \). In this case, we have that \(\eta \pi \subseteq C \). It is easy to see that there is a bijective function \(f \) with \(f(\sigma_i(v_i)) = \pi(v_i) \), such that \(f(F_n) = f(F_{n-1} \cup \eta \pi \sigma_i) = F_{n-1} \cup \eta \pi \subseteq C \).

 Therefore, \(F_n \subseteq C \).

- If \(\rho_i \) is one of the remaining non-generating rules, then either \(\langle \rho_i, \sigma_i \rangle \) is applicable to \(F_{n-1} \), or \(\eta \sigma_i \subseteq F_{n-1} \). In any case, we obtain that \(\eta \sigma_i \subseteq \mathbb{C} \). Since \(F_n = F_{n-1} \cup \eta \sigma_i \), our proof for this rule is complete.

- If \(\rho_i \) is \((S^2_2)\), then \(\beta' = SC(H, a_1) \land SC(H', a_2) \land H = H' \land ax_{\mathbb{C}}(a_1, a_2, c) \). Since \(\beta' \sigma_i \subseteq F_{n-1} \), we have that \(\{sub(\sigma_i(H), \sigma_i(H')), sub(\sigma_i(H'), \sigma_i(H))\} \subseteq F_{n-1} \subseteq C \) (by IH). This implies that \(\sigma(H)_{\mathbb{C}} = [\sigma(H')]_{\mathbb{C}} \). By Lemma 2, we obtain that, if \(SC(\sigma_i(H'), \sigma_i(a_2)) \in \mathbb{C} \), then \(SC(\sigma_i(H), \sigma_i(a_2)) \in \mathbb{C} \). This implies that \(\mathbb{C} \) contains the application of \(\langle \rho_i, \sigma_i \rangle \), hence \(\eta \sigma_i \subseteq \mathbb{C} \).

- If \(\rho_i \) is \((S^3_3)\), then \(\beta' = Ex(H, r, K) \land SC(K', a) \land K = K' \land ax_{\mathbb{C}}(a, r, b) \). Since \(\beta' \sigma_i \subseteq F_{n-1} \), we have that \(\{sub(\sigma_i(K), \sigma_i(K')), sub(\sigma_i(K'), \sigma_i(K))\} \subseteq F_{n-1} \subseteq C \) (by IH). This implies that \(\sigma(K)_{\mathbb{C}} = [\sigma(K')]_{\mathbb{C}} \). By Lemma 2, we obtain that, if \(SC(\sigma_i(K'), \sigma_i(a)) \in \mathbb{C} \), then \(SC(\sigma_i(K), \sigma_i(a)) \in \mathbb{C} \). This implies that \(\mathbb{C} \) contains the application of \(\langle \rho_i, \sigma_i \rangle \), hence \(\eta \sigma_i \subseteq \mathbb{C} \).

- If \(\rho_i \) is \((S^4_3)\), the proof is analogous to the case above.

- If \(\rho_i \) is \((S_{\alpha})\), then \(\beta' = Ex(H, r, K) \land SC(H', a) \land H = H' \land ax_{\mathbb{C}}(a, r, b) \). Since \(\beta' \sigma_i \subseteq F_{n-1} \), we have that \(\{sub(\sigma_i(H), \sigma_i(H')), sub(\sigma_i(H'), \sigma_i(H))\} \subseteq F_{n-1} \subseteq C \) (by IH). This implies that \(\sigma(H)_{\mathbb{C}} = [\sigma(H')]_{\mathbb{C}} \). By Lemma 2, we obtain that, if \(SC(\sigma_i(H'), \sigma_i(a)) \in \mathbb{C} \), then \(SC(\sigma_i(H), \sigma_i(a)) \in \mathbb{C} \). This implies that \(\mathbb{C} \) contains the application of \(\langle \rho_i, \sigma_i \rangle \), hence \(\eta \sigma_i \subseteq \mathbb{C} \).

- If \(\rho_i \) is \((S_{\alpha})\), then \(\beta' = SU(b, K, U) \land Ex(H, r, K) \land SC(H', a) \land H = H' \land ax_{\mathbb{C}}(a, r, b) \). Note that variable \(K \) does not need to be normalised, as the normalisation step must occur before translating the Datatalog(S) rule to an existential rule, and \(SU \) predicate is only introduced by this translation. The rest of the proof is analogous to the case above.

\(\square \)

A.2 Class Retrieval Experiment (B)

Input Ontology Pre-processing

To evaluate the practical feasibility of our CR implementation, we select two benchmark OWL ontologies with very large ABoxes: Reactome and UOBM [Zhou et al., 2015]. Neither Reactome nor Uniprot are Horn-\(\mathcal{ALC} \) ontologies. Therefore, we first normalise these into the normal form given in [Carral et al., 2014], filter out all axioms not in Horn-\(\mathcal{ALC} \) [Krötzsch et al., 2013], and then normalise the resulting ontologies into Horn-\(\mathcal{ALC} \) [Carral et al., 2014].

Experiment Details

Figure 4 shows the results of our experiment. The horizontal axis represents the size of each ABox sample—i.e., the number of axioms of type (21) and (22). The vertical axis shows the reasoning time in seconds for both VLog and Konclude. Note that we calculate Konclude reasoning time as the total time taken for precomputing, classification and realisation. Loading and pre-processing durations are not taken into consideration for any of the evaluated reasoners.

To initialise the facts over predicates \(CA \) and \(RA \) in VLog, we add the following rules

\[
\text{classNTriple}(x, rdf:type, c) \rightarrow CA(c, x) \\
\text{roleNTriple}(x, r, y) \rightarrow RA(r, x, y)
\]

where \(\text{classNTriple} \) and \(\text{roleNTriple} \) are the predicates associated to the input N-Triple files.

A.3 Tool Versions

In this evaluation, we have used the following versions of VLog and Konclude.

- VLog: current master branches of knowsys/vlog4j and karmaresearch/vlog.
 - Commit: https://github.com/knowsys/vlog4j/commit/86f17ab6e4540203e82d1e8b8be00330b652a6d9
 - Commit https://github.com/karmaresearch/vlog/commit/8419c2216095b228b286dbd7802f2dc2c0dd6f8df

- Konclude: current static version Konclude-v0.6.2-344-OSX-x64-Static-Qt4.8.5.
B Guarded Rules Reasoning

Given a guarded rule set \mathcal{R} with bounded arity $\hat{\alpha}$, we show how to—following the transformation proposed in [Ahmetaj et al., 2018]—compute a Datalog(S) program \mathcal{P} that preserves fact entailments over \mathcal{R} and is polynomial in \mathcal{R}. To simplify our arguments, we assume that \mathcal{R} satisfies all of the following.

1. Every Datalog rule in \mathcal{R} contains (exactly) two atoms in the body and one in the head.
2. Every non-Datalog rule in \mathcal{R} contains (exactly) one atom in the body and one in the head.
3. All universally quantified variables occurring in some rule in \mathcal{R} are in the generic set of variables $\mathbf{X} = \{x_1, \ldots, x_8\}$.

Note that all of the above can be established without loss of generality. Using simple decomposition of the bodies, we can satisfy (1) and (2). Since \mathcal{R} is guarded and the maximum arity of a predicate in \mathcal{R} is $\hat{\alpha}$, the body of every rule may contain at most $\hat{\alpha}$ distinct variables. Therefore, we can always bijectively rename the variables in any rule in \mathcal{R} to produce an equivalent rule that satisfies (3). Let \hat{t} be the number of all atoms that can be constructed using predicates from \mathcal{R} and variables in \mathbf{X}, let $\alpha_1, \ldots, \alpha_\hat{t}$ be some sequence containing all such atoms, and let $A = \{\alpha_1, \ldots, \alpha_\hat{t}\}$. A type is a subset of A.

To compute \mathcal{P}, we study the transformation presented in [Ahmetaj et al., 2018]. Their rules are organised in groups (I) to (IX), where (II) and (VI) only matter if the rules in the input set are contain disjunctions in the head. To verify that \mathcal{P} can be used to solve fact entailment over \mathcal{R}, we show a correspondence with the entailments of the rule set \mathcal{D} that results from applying the transformation in [Ahmetaj et al., 2018] to \mathcal{R}. We write $\mathcal{D}_{(\ell)}$ with $\ell \in \{I, \ldots, IX\}$ to refer to the subset of \mathcal{D} that results from including the rules considered in groups (I) through (\ell) (always excluding (II) and (VI)). Analogously, we write $\mathcal{P}_{(\ell)}$ to refer to the corresponding subset of \mathcal{P}.

(I) Collecting the constants

For all $p \in \mathcal{P}(\mathcal{R})$ and all $i \in \{1, \ldots, ar(p)\}$ we add the following rules to \mathcal{P}.

$$p(z_1, \ldots, z_{ar(p)}) \rightarrow \text{const}(z_i) \quad \text{const}(z_i) \land \ldots \land \text{const}(z_i) \rightarrow \text{const}(z_1, \ldots, z_i) \quad (38)$$

After each group, we include a lemma (e.g., Lemma 3) to progressively establish the correspondence between the entailments of the Datalog rule set \mathcal{D} and the Datalog(S) program \mathcal{P}.

Lemma 3. Consider a fact set \mathcal{F} and a fact ϕ of the form const(c) or const(c_1, \ldots, c_k). Then, $\mathcal{D}_{(I)} \cup \mathcal{F} \models \phi$ iff $\mathcal{P}_{(I)} \cup \mathcal{F} \models \phi$.

(III) A linear order over types

We add the facts first(0), full(0), next(0, {c_{a_1}}), parts({c_{a_1}}, c_{a_1}, 0), succ(c_{a_1}, c_{a_2}), succ(c_{a_2}, c_{a_3}), \ldots, succ(c_{a_n-1}, c_{a_n}), last({c_{a_1}, \ldots, c_{a_n}}) \in \mathcal{P}$. Also, we add the following rules to \mathcal{P}.

$$\begin{align*}
\text{next}(U, V) \land \text{parts}(V, x, V') \land \text{next}(V', W') & \rightarrow \text{next}(V, \{x\} \cup W') \land \text{parts}(\{x\} \cup W', x, W') \quad (39) \\
\text{next}(U, V) \land \text{parts}(V, x, V') \land \text{full}(V') & \land \text{succ}(x, y) \rightarrow \text{next}(V, \{y\}) \land \text{parts}(\{y\}, y, \emptyset) \land \text{full}(V) \quad (40) \\
\text{next}(x, y) \land \text{Type}(x) \land \text{Type}(y) & \quad (41)
\end{align*}$$

We introduce some functions to formulate Lemma 4. For all types $\tau \subseteq \mathcal{A}$, let $VT(\tau) = r_1, \ldots, r_\hat{t}$ be the sequence over the special constants 0 and 1 with $r_i = 1$ iff $\alpha_i \in \tau$ for all $1 \leq i \leq \hat{t}$, and let $ST(\tau)$ be some (arbitrarily chosen) set term $\{c_{\beta_1}, \ldots, c_{\beta_n}\}$ with $\tau = \{\beta_i | c_{\beta_i}, 1 \leq i \leq n\}$.

Lemma 4. Consider a set of facts \mathcal{F}. Then,

- $\mathcal{D}_{(III)} \cup \mathcal{F} \models \text{Type}(VT(\tau))$ and $\mathcal{P}_{(III)} \cup \mathcal{F} \models \text{Type}(ST(\tau))$ for all types $\tau \subseteq \mathcal{A}$,
- $\mathcal{D}_{(III)} \cup \mathcal{F} \models \text{first}^n(\text{VT}(0))$, $\mathcal{P}_{(III)} \cup \mathcal{F} \models \text{first}(\text{ST}(0))$,
- $\mathcal{D}_{(III)} \cup \mathcal{F} \models \text{last}^n(\text{VT}(\mathcal{A}))$, $\mathcal{P}_{(III)} \cup \mathcal{F} \models \text{last}(\text{ST}(\mathcal{A}))$, and
- $\mathcal{D}_{(III)} \cup \mathcal{F} \models \text{next}^n(\text{VT}(\tau), \text{VT}(\upsilon))$ iff $\mathcal{P}_{(III)} \cup \mathcal{F} \models \text{next}(\text{ST}(\tau), \text{ST}(\upsilon))$ for all types $\tau, \upsilon \subseteq \mathcal{A}$.

(IV) Implementing Step $\mathbf{(M_V)}$

For all Datalog rules $B \land C \rightarrow H \in \mathcal{R}$ and all substitutions $\sigma : V(B) \lor V(C) \rightarrow X$, we add the fact $\text{DR}(c_{B\sigma}, c_{C\sigma}, c_{H\sigma}) \in \mathcal{P}$. Also, we add the following rule to \mathcal{P}.

$$\text{Type}(T) \land \text{DR}(b, c, h) \land b \in T \land c \in T \land h \notin T \rightarrow \text{Marked}(T) \quad (42)$$

Lemma 5. Consider a set of facts \mathcal{F} and a type $\tau \subseteq \mathcal{A}$. Then, $\mathcal{D}_{(IV)} \cup \mathcal{F} \models \text{Marked}(VT(\tau))$ iff $\mathcal{P}_{(IV)} \cup \mathcal{F} \models \text{Marked}(ST(\tau))$.

(V) Implementing Step (M₃)
For all non-Datalog rules \(\rho = B \rightarrow \exists \bar{y}.H \in \mathcal{R} \) and all substitutions \(\sigma : \mathcal{V}(B) \rightarrow \mathcal{X} \), we add \(\text{RuleSubBody}(c_\rho, c_\sigma, c_{B\sigma}) \), \(\text{RuleSubFr}(c_\rho, c_\sigma, \{c_{u_1}, \ldots, c_{u_n}\}) \in \mathcal{P} \) where \(\{u_1, \ldots, u_n\} = \sigma(\mathcal{V}(B)) \cap \mathcal{V}(H) \). Let \(\{\sigma_1, \ldots, \sigma_n\} \) be the set of all substitutions \(\sigma' : \mathcal{V}(H) \rightarrow \mathcal{X} \) such that \(\sigma(\mathcal{V}(B) \cap \mathcal{V}(H)) = \sigma'(\mathcal{V}(B) \cap \mathcal{V}(H)) \). Then, we add \(\{\text{RuleSubAllHeads}(c_\rho, c_\sigma, c_{H\sigma_1}, \ldots, c_{H\sigma_n})\} \cup \{\text{MarkedHorn}(c_\rho, c_\sigma, \{c_{H\sigma_1}, \ldots, c_{H\sigma_n}\}) \mid 1 \leq i \leq n\} \in \mathcal{P} \). For all atoms \(\alpha \) of the form \(\rho(z_1, \ldots, z_n) \in \mathcal{A} \) with \(\rho \in \mathcal{P}(\mathcal{R}) \) and \(z_1, \ldots, z_n \in \mathcal{X} \), we add \(\text{AtomVars}(c_\alpha, \{c_{z_1}, \ldots, c_{z_n}\}) \in \mathcal{P} \).
Also, we add the following rules to \(\mathcal{P} \).

\[
\begin{align*}
\text{Type}(T) \land \text{Marked}(T') \land \text{RuleSubBody}(r, s, b) & \rightarrow \text{MarkedOne}(r, s, T, T') & (43) \\
\text{Type}(T) \land \text{Type}(T') \land \text{AtomVars}(a, V) \land \text{RuleSubFr}(r, s, F) \land V \subseteq F \land \alpha \in T \land \alpha \notin T' & \rightarrow \text{MarkedOne}(r, s, T, T') & (44) \\
\text{Type}(T) \land \text{Type}(T') \land \text{AtomVars}(a, V) \land \text{RuleSubFr}(r, s, F) \land V \subseteq \neg F \land \alpha \in T \land \alpha \notin T' & \rightarrow \text{MarkedOne}(r, s, T, T') & (45) \\
\text{Type}(T) \land \text{Type}(T') \land \text{RuleSubBody}(r, s, b) & \rightarrow \text{Aux}(r, s, T, T', \emptyset) & (46) \\
\text{MarkedUntil}(r, s, T, T') \land \text{RuleSubHead}(r, s, h) \land \alpha \notin T' & \rightarrow \text{MarkedUntil}(r, s, T, T') & (47) \\
\text{MarkedUntil}(r, s, T, T') \land \text{MarkedOne}(r, s, S, V) & \rightarrow \text{MarkedUntil}(r, s, S, V) & (48) \\
\text{MarkedUntil}(r, s, S, T) \land \text{RuleSubBody}(r, s, b) \land b \in S \land \text{last}(T) & \rightarrow \text{Marked}(S) & (49)
\end{align*}
\]

Lemma 6. Consider a set of facts \(\mathcal{F} \). Then,
1. for all types \(\tau, \tau' \subseteq \mathcal{A} \), rules \(\rho \), and substitutions \(\sigma \); \(\mathcal{D}_{\mathcal{V}(U)} \cup \mathcal{F} \models \text{MarkedOne}_{\rho, \sigma}(\mathcal{V}(\tau), \mathcal{V}(\tau')) \) iff \(\mathcal{P}_{\mathcal{V}(U)} \cup \mathcal{F} \models \text{MarkedOne}_{\rho, \sigma}(\mathcal{V}(\tau), \mathcal{V}(\tau'), \mathcal{ST}(\tau), \mathcal{ST}(\tau')) \), and \(\mathcal{D}_{\mathcal{V}(U)} \cup \mathcal{F} \models \text{MarkedUntil}_{\rho, \sigma}(\mathcal{V}(\tau), \mathcal{V}(\tau'), \mathcal{ST}(\tau), \mathcal{ST}(\tau')) \).

(VII) Generating abstract types from marked types.
For all \(i \in \{1, \ldots, t\} \), we add the fact \(\text{Paired}(c_{\alpha_i}, d_{\alpha_i}) \in \mathcal{P} \). Furthermore, we add the following rule to \(\mathcal{P} \).

\[
\text{Marked}(U) \land \alpha \notin U \land \text{Marked}(U \cup \{\alpha\}) \land \text{Paired}(a, a') \rightarrow \text{Marked}(U \cup \{a, a'\}) & (52)
\]

We introduce a function to formulate Lemma 7. Let \(\text{VTS} \) be the function mapping a sequence \(\bar{r} = r_1, \ldots, r_t \) over the special constants \(\{0, 1, 2\} \) to the set term \(\mathcal{V}(\bar{r}) = S \) defined as follows for all \(1 \leq i \leq t \): \(c_{\alpha_i}, d_{\alpha_i} \notin S \) if \(r_i = 0 \), \(c_{\alpha_i} \in S \) and \(d_{\alpha_i} \notin S \) if \(r_i = 1 \), and \(c_{\alpha_i}, d_{\alpha_i} \in S \) if \(r_i = 2 \).

Lemma 7. For a fact set \(\mathcal{F} \) and a sequence \(\bar{r} \), \(\mathcal{D}_{\mathcal{V}(U)} \cup \mathcal{F} \models \text{Marked}(\bar{r}) \) iff \(\mathcal{P}_{\mathcal{V}(U)} \cup \mathcal{F} \models \text{Marked}(\text{VTS}(\bar{r})) \).

(VIII) Constructing all horn types.
For all \(1 \leq i \leq t \), we add \(\text{Horn}(\{c_{\alpha_1}, \ldots, c_{\alpha_{i-1}}, c_{\alpha_i+1}, \ldots, c_{\alpha_t}\}) \in \mathcal{P} \). Also, we add the rules to \(\mathcal{P} \) for all \(1 \leq i \leq t \).

\[
\begin{align*}
\text{Horn}(S) \land c_{\alpha_i} \in S & \rightarrow \text{Horn}(X \cup \{d_{\alpha_i}\}) & (53) \\
\text{Marked}(S) \land \text{Horn}(S) & \rightarrow \text{MarkedHorn}(S) & (54)
\end{align*}
\]

Lemma 8. For a fact set \(\mathcal{F} \) and a sequence \(\bar{r} \), \(\mathcal{D}_{\mathcal{V}(U)} \cup \mathcal{F} \models \text{MarkedHorn}(\bar{r}) \) iff \(\mathcal{P}_{\mathcal{V}(U)} \cup \mathcal{F} \models \text{MarkedHorn}(\text{VTS}(\bar{r})) \).

(IX) Implementing the full TGDS from \(\Sigma_{\text{Horn}} \).
For all \(i, j \in \{1, \ldots, t\} \), we add the following rules to \(\mathcal{P} \).

\[
\begin{align*}
\text{const}^{\alpha_i}(x_1, \ldots, x_{\bar{a}}) \land \text{MarkedHorn}(S) \land c_{\alpha_i} & \notin S \rightarrow \text{Prof}_{i}(x_1, \ldots, x_{\bar{a}}, S) & (55) \\
\text{Prof}_{i}(x_1, \ldots, x_{\bar{a}}, S) \land c_{\alpha_i} \in S \land d_{\alpha_j} & \notin S \land \alpha_j \rightarrow \text{Prof}_{i}^{-1}(x_1, \ldots, x_{\bar{a}}, S) & (56) \\
\text{Prof}_{i}(x_1, \ldots, x_{\bar{a}}, S) \land c_{\alpha_j} \in S \land d_{\alpha_j} & \notin S \rightarrow \text{Prof}_{i}^{-1}(x_1, \ldots, x_{\bar{a}}, S) & (57) \\
\text{Prof}_{i}(x_1, \ldots, x_{\bar{a}}, S) \land c_{\alpha_i} & \notin S \land d_{\alpha_j} \in S \rightarrow \text{Prof}_{i}^{-1}(x_1, \ldots, x_{\bar{a}}, S) & (58) \\
\text{Prof}_{i}(x_1, \ldots, x_{\bar{a}}, S) & \rightarrow \alpha_i & (59)
\end{align*}
\]

Lemma 9. Consider a fact set \(\mathcal{F} \) and a fact \(\phi \) of the form \(\text{Prof}_{i}^{\alpha_i}(\bar{r}) \). Then, \(\mathcal{D}_{\text{IX}} \cup \mathcal{F} \models \phi \) iff \(\mathcal{P}_{\text{IX}} \cup \mathcal{F} \models \text{Prof}_{i}^{\alpha_i}(\bar{r}, S) \) for some term set \(S \).

After considering all groups (I)-(IX), we can establish that \(\mathcal{P} \) can be used to solve fact entailment over \(\mathcal{R} \) and that this program is of moderate size.
Theorem 7. For a fact \(\phi \) defined over the signature of \(\mathcal{R} \), we have that \(\mathcal{R} \models \phi \) if and only if \(\mathcal{P} \models \phi \). Furthermore, (i) \(\mathcal{P} \) is polynomial in the size of \(\mathcal{R} \), and (ii) the number of variables and atoms in every rule in \(\mathcal{R} \) is bounded.

Proof. The first part of the theorem follows from Lemma 9. Statement (ii) can be easily verified by inspecting the rules added to \(\mathcal{P} \). To show (ii), we count the number of facts added to \(\mathcal{P} \) in every group (we ignore groups where facts are not added).

(III) \(\hat{t} + 2 \) facts are added in this group.

(IV) At most \(|\mathcal{R}|\) are added in this group.

(V) All of the facts introduced in this group are defined over the predicates \(\text{RuleSubBod} \), \(\text{RuleSubFron} \), \(\text{RuleSubAllHeads} \), \(\text{RuleSubHeads} \), and \(\text{AtomVars} \).

- We add at most \(|\mathcal{R}| \times \hat{a}^2\) facts over the predicates \(\text{RuleSubBod} \) (resp. \(\text{RuleSubFron} \), \(\text{RuleSubAllHeads} \)).
- We add at most \(|\mathcal{R}| \times \hat{a}^2 \times \hat{a}^2\) over the predicate \(\text{RuleSubHeads} \).
- We add at most \(\hat{a}^2 \) multiplied by the number of predicates in \(\mathcal{R} \) over the predicate \(\text{AtomVars} \).

(VI) The number of facts added in (VI) is \(\hat{t} \).

(VII) The number of facts added in (VI) is \(\hat{t} \).

Note that since \(\hat{a} \) is bounded, \(\hat{t} \) is polynomial.