

International Center for Computational Logic

COMPLEXITY THEORY

[Lecture 10: Polynomial Space](https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024))

[Markus Krotzsch](https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en) ¨

Knowledge-Based Systems

TU Dresden, 19 Nov 2024

More recent versions of this slide deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Review

The Class PSpace

We defined PSpace as:

$$
PSpace = \bigcup_{d \ge 1} DSpace(n^d)
$$

and we observed that

P ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime.

We can also define a corresponding notion of PSpace-hardness:

Definition 10.1:

- A language **H** is PSpace-hard, if **L** ≤*^p* **H** for every language **L** ∈ PSpace.
- A language **C** is PSpace-complete, if **C** is PSpace-hard and **C** ∈ PSpace.

Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:

```
\mathsf{Q}_1X_1.\mathsf{Q}_2X_2.\cdots \mathsf{Q}_{\ell}X_{\ell}.\varphi[X_1,\ldots,X_{\ell}]
```
where $\Omega_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a propositional logic formula with variables *^X*1, . . . , *^X*ℓ and constants [⊤] (true) and [⊥] (false)

Semantics:

- Propositional formulae without variables (only constants ⊤ and ⊥) are evaluated as usual
- [∃]*X*.φ[*X*] is true if either φ[*X*/⊤] or φ[*X*/⊥] are true
- $\forall X.\varphi[X]$ is true if both $\varphi[X/\top]$ and $\varphi[X/\bot]$ are true

(where $\varphi[X/\top]$ is " φ with X replaced by \top , and similar for \bot)

Deciding QBF Validity

True **QBF**

Input: A quantified Boolean formula φ .
Problem: Is φ true (valid)? Is φ true (valid)?

Observation: We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Deciding QBF Validity

True **QBF**

Input: A quantified Boolean formula φ .
Problem: Is φ true (valid)? Is φ true (valid)?

Observation: We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Consider a propositional logic formula φ with variables X_1, \ldots, X_ℓ :

Example 10.2: The QBF $\exists X_1 \cdots \exists X_\ell \varphi$ is true if and only if φ is satisfiable.

Example 10.3: The QBF $\forall X_1 \cdots \forall X_\ell.\varphi$ is true if and only if φ is a tautology.

The Power of QBF

Theorem 10.4: True **QBF** is PSpace-complete.

Proof:

(1) **T**rue **QBF** ∈ PSpace:

Give an algorithm that runs in polynomial space.

(2) **T**rue **QBF** is PSpace-hard:

Proof by reduction from the word problem of any polynomially space-bounded TM.

Solving **T**rue **QBF** in PSpace

```
01 TRUEQBF(\varphi) {<br>02 if \varphi has no
02 if \varphi has no quantifiers :<br>03       return "evaluation of \varphi03 return "evaluation of \varphi"<br>04 else if \varphi = \exists X \psi:
04 else if \varphi = \exists X.\psi :<br>05 return (TRUEOBF)
05 return (TRUEQBF(\psi[X/\top]) OR TRUEQBF(\psi[X/\bot]))<br>06 else if \varphi = \forall X.\psi:
06 else if \varphi = \forall X.\psi :<br>07 return (TRUEOBF)
              07 return (TrueQBF(ψ[X/⊤]) AND TrueQBF(ψ[X/⊥]))
08 }
```
- Evaluation in line 03 can be done in polynomial space
- Recursions in lines 05 and 07 can be executed one after the other, reusing space
- Maximum depth of recursion = number of variables (linear)
- Store one variable assignment per recursive call
- \rightarrow polynomial space algorithm

PSpace-Hardness of **T**rue **QBF**

Express TM computation in logic, similar to Cook-Levin

Given:

An arbitrary polynomially space-bounded NTM, that is:

- a polynomial *p*
- a *p*-space bounded 1-tape NTM $M = (O, \Sigma, \Gamma, \delta, q_0, q_{\text{accent}})$

Intended reduction Given a word *w*, define a QBF $\varphi_{p,M,w}$ such that φ _{*p*, *M*,*w* is true if and only if *M* accepts *w* in space $p(|w|)$.}

Notes

- We show the reduction for NTMs, which is more than needed, but makes little difference in logic and allows us to reuse our previous formulae from Cook-Levin
- The proof actually shows many reductions, one for every polyspace NTM, showing PSpace-hardness from first principles

Review: Encoding Configurations

Use propositional variables for describing configurations:

$$
Q_q
$$
 for each $q \in Q$ means "*M* is in state $q \in Q$ "

*P*_{*i*} for each $0 \le i < p(n)$ means "the head is at Position *i*"

*S*_{*a*},*i* for each $a \in \Gamma$ and $0 \le i < p(n)$ means "tape cell *i* contains Symbol a "

Represent configuration $(q, p, a_0 \ldots a_{p(n)})$ by assigning truth values to variables from the set

$$
\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}
$$

using the truth assignment β defined as

$$
\beta(Q_s) := \begin{cases} 1 & s = q \\ 0 & s \neq q \end{cases} \qquad \beta(P_i) := \begin{cases} 1 & i = p \\ 0 & i \neq p \end{cases} \qquad \beta(S_{a,i}) := \begin{cases} 1 & a = a_i \\ 0 & a \neq a_i \end{cases}
$$

Markus Krötzsch; 19 Nov 2024 [Complexity Theory](#page-0-0) slide 9 of 34

Review: Validating Configurations

We define a formula Conf (\overline{C}) for a set of configuration variables $C = \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$ as follows:

> $\text{Conf}(\overline{C}) :=$ "the assignment is a valid configuration": \bigvee $(Q_q \wedge \bigwedge \neg Q_{q'})$ $q ∈ Q$ *q*' $\neq q$ "TM in exactly one state $q \in O$ " \wedge \bigvee $\left(P_{p} \wedge \bigwedge \neg P_{p'}\right)$ $p \leq p(n)$ $p' \neq p$ "head in exactly one position $p < p(n)$ " \wedge \bigwedge \bigvee $(S_{a,i} \wedge \bigwedge \neg S_{b,i})$ ⁰≤*i*<*p*(*n*) *a*∈Γ *b*,*a*∈Γ "exactly one $a \in \Gamma$ in each cell"

Review: Validating Configurations

For an assignment β defined on variables in \overline{C} define

$$
conf(\overline{C}, \beta) := \begin{cases} \beta(Q_q) = 1, \\ (q, p, w_0 \dots w_{p(n)}) \mid \beta(P_p) = 1, \\ \beta(S_{w_i, i}) = 1 \text{ for all } 0 \le i < p(n) \end{cases}
$$

Note: β may be defined on other variables besides those in *^C*.

Lemma 10.5: If β satisfies Conf(\overline{C}) then $|conf(\overline{C}, \beta)| = 1$. We can therefore write $\text{conf}(\overline{C}, \beta) = (q, p, w)$ to simplify notation.

Observations:

- conf (\overline{C}, β) is a potential configuration of M, but it may not be reachable from the start configuration of M on input *w*.
- Conversely, every configuration $(q, p, w_1 \ldots w_{p(n)})$ induces a satisfying assignment β for which conf $(\overline{C}, \beta) = (q, p, w_1 \dots w_{p(n)})$.

Review: Transitions Between Configurations

Consider the following formula $\textsf{Next}(\overline{C},\overline{C}')$ defined as

 $\text{Conf}(\overline{C}) \wedge \text{Conf}(\overline{C}') \wedge \text{NoChange}(\overline{C}, \overline{C}') \wedge \text{Change}(\overline{C}, \overline{C}').$

NoChange :=
$$
\bigvee_{0 \le p < p(n)} \left(P_p \land \bigwedge_{i \ne p, a \in \Gamma} (S_{a,i} \to S'_{a,i}) \right)
$$
\nChange :=
$$
\bigvee_{0 \le p < p(n)} \left(P_p \land \bigvee_{q \in \Gamma \atop a \in \Gamma} (Q_q \land S_{a,p} \land \bigvee_{(q',b,D) \in \delta(q,a)} (Q'_{q'} \land S'_{b,p} \land P'_{D(p)}) \right)
$$

where *D*(*p*) is the position reached by moving in direction *D* from *p*.

Lemma 10.6: For any assignment β defined on $\overline{C} \cup \overline{C}'$: β satisfies Next(\overline{C} , \overline{C}') if and only if conf(\overline{C} , β) ⊦_M conf(\overline{C}' , β) Review: Start and End

Defined so far:

- Conf (\overline{C}) : \overline{C} describes a potential configuration
- Next $(\overline{C}, \overline{C}')$: conf $(\overline{C}, \beta) \vdash_{\mathcal{M}} \text{conf}(\overline{C}', \beta)$

Start configuration: Let $w = w_0 \cdots w_{n-1} \in \Sigma^*$ be the input word $\textsf{Start}_{M,w}(\overline{C}) := \textsf{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i,i} \land \bigwedge_{i=n}^{p(n)-1} S_{\cup,i}$

Then an assignment β satisfies Start_{M,*w*}(\overline{C}) if and only if \overline{C} represents the start configuration of M on input *w*.

Accepting stop configuration:

 $Acc\text{-Conf}(\overline{C}) := \text{Conf}(\overline{C}) \wedge O_{q_{\text{max}}}$

Then an assignment β satisfies Acc-Conf(\overline{C}) if and only if \overline{C} represents an accepting configuration of M.

Markus Krötzsch; 19 Nov 2024 [Complexity Theory](#page-0-0) slide 13 of 34

For Cook-Levin, we used one set of configuration variables for every computating step: polynomial time \rightarrow polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

For Cook-Levin, we used one set of configuration variables for every computating step: polynomial time \rightarrow polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

For Cook-Levin, we used one set of configuration variables for every computating step: polynomial time \rightarrow polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula CanYield $_i(\overline{C}_1,\overline{C}_2)$ to state that \overline{C}_2 is reachable from \overline{C}_1 in at most 2^i steps:

 $CanYield_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee Next(\overline{C}_1, \overline{C}_2)$ CanYield_{i+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \wedge CanYield_i(\overline{C}_1 , \overline{C}) \wedge CanYield_i(\overline{C} , \overline{C}_2)

For Cook-Levin, we used one set of configuration variables for every computating step: polynomial time \rightarrow polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula CanYield $_i(\overline{C}_1,\overline{C}_2)$ to state that \overline{C}_2 is reachable from \overline{C}_1 in at most 2^i steps:

 $CanYield₀(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee Next(\overline{C}_1, \overline{C}_2)$ CanYield_{i+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \wedge CanYield_i(\overline{C}_1 , \overline{C}) \wedge CanYield_i(\overline{C} , \overline{C}_2)

But what is $\overline{C}_1 = \overline{C}_2$ supposed to mean here?

For Cook-Levin, we used one set of configuration variables for every computating step: polynomial time \rightarrow polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula CanYield $_i(\overline{C}_1,\overline{C}_2)$ to state that \overline{C}_2 is reachable from \overline{C}_1 in at most 2^i steps:

 $CanYield_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee Next(\overline{C}_1, \overline{C}_2)$ CanYield_{i+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \wedge CanYield_i(\overline{C}_1 , \overline{C}) \wedge CanYield_i(\overline{C} , \overline{C}_2)

But what is $\overline{C}_1 = \overline{C}_2$ supposed to mean here? It is short for:

$$
\bigwedge_{q \in Q} Q_q^1 \leftrightarrow Q_q^2 \land \bigwedge_{0 \le i < p(n)} P_i^1 \leftrightarrow P_i^2 \land \bigwedge_{a \in \Gamma, 0 \le i < p(n)} S_{a,i}^1 \leftrightarrow S_{a,i}^2
$$

Putting Everything Together

We define the formula $\varphi_{p,M,w}$ as follows:

 $\varphi_{p,M,w} := \exists \overline{C}_1 \cdot \exists \overline{C}_2 \cdot \text{Start}_{M,w}(\overline{C}_1) \wedge \text{Acc-Conf}(\overline{C}_2) \wedge \text{CanYield}_{d\nu(n)}(\overline{C}_1, \overline{C}_2)$

where we select d to be the least number such that ${\cal M}$ has less than $2^{dp(n)}$ configurations in space $p(n)$.

Lemma 10.7: $\varphi_{p,M,w}$ is satisfiable if and only if M accepts w in space $p(|w|)$.

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

 $\text{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \text{Next}(\overline{C}_1, \overline{C}_2)$ CanYield_{*i*+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \land CanYield_{*i*}(\overline{C}_1 , \overline{C}) \land CanYield_{*i*}(\overline{C} , \overline{C}_2) $\varphi_{p,M,w} := \exists \overline{C}_1 \cdot \exists \overline{C}_2 \cdot \text{Start}_{M,w}(\overline{C}_1) \wedge \text{Acc-Conf}(\overline{C}_2) \wedge \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

 $CanYield_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee Next(\overline{C}_1, \overline{C}_2)$ CanYield_{*i*+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \land CanYield_{*i*}(\overline{C}_1 , \overline{C}) \land CanYield_{*i*}(\overline{C} , \overline{C}_2) $\varphi_{p,M,w} := \exists \overline{C}_1 \cdot \exists \overline{C}_2 \cdot \text{Start}_{M,w}(\overline{C}_1) \wedge \text{Acc-Conf}(\overline{C}_2) \wedge \text{CanYield}_{dp(m)}(\overline{C}_1, \overline{C}_2)$

Now that's quite interesting . . .

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

 $\text{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \text{Next}(\overline{C}_1, \overline{C}_2)$ CanYield_{*i*+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \land CanYield_{*i*}(\overline{C}_1 , \overline{C}) \land CanYield_{*i*}(\overline{C} , \overline{C}_2) φ _{*p*}, $M_w := \exists \overline{C}_1 \cdot \exists \overline{C}_2$.Start $M_w(\overline{C}_1) \wedge$ Acc-Conf(\overline{C}_2) \wedge CanYield_{dp(n)}($\overline{C}_1, \overline{C}_2$)

Now that's quite interesting . . .

• With only (non-negated) ∃ quantifiers, **T**rue **QBF** coincides with **S**at

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

 $\text{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \text{Next}(\overline{C}_1, \overline{C}_2)$ CanYield_{*i*+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \land CanYield_{*i*}(\overline{C}_1 , \overline{C}) \land CanYield_{*i*}(\overline{C} , \overline{C}_2) φ _{*p*}, $M_w := \exists \overline{C}_1 \cdot \exists \overline{C}_2$.Start $M_w(\overline{C}_1) \wedge$ Acc-Conf(\overline{C}_2) \wedge CanYield_{dp(n)}($\overline{C}_1, \overline{C}_2$)

Now that's quite interesting . . .

- With only (non-negated) ∃ quantifiers, **T**rue **QBF** coincides with **S**at
- **S**at is in NP

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

 $CanYield_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee Next(\overline{C}_1, \overline{C}_2)$ CanYield_{i+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \wedge CanYield_i(\overline{C}_1 , \overline{C}) \wedge CanYield_i(\overline{C} , \overline{C}_2) $\varphi_{p,M,w} := \exists \overline{C}_1 \cdot \exists \overline{C}_2 \cdot \text{Start}_{M,w}(\overline{C}_1) \wedge \text{Acc-Conf}(\overline{C}_2) \wedge \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$

Now that's quite interesting . . .

- With only (non-negated) ∃ quantifiers, **T**rue **QBF** coincides with **S**at
- **S**at is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

 $CanYield_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee Next(\overline{C}_1, \overline{C}_2)$ CanYield_{*i*+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \land CanYield_{*i*}(\overline{C}_1 , \overline{C}) \land CanYield_{*i*}(\overline{C} , \overline{C}_2) $\varphi_{p,M,w} := \exists \overline{C}_1 \cdot \exists \overline{C}_2 \cdot \text{Start}_{M,w}(\overline{C}_1) \wedge \text{Acc-Conf}(\overline{C}_2) \wedge \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$

Now that's quite interesting . . .

- With only (non-negated) ∃ quantifiers, **T**rue **QBF** coincides with **S**at
- **S**at is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

So we found that $NP = PSpace!$

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

 $CanYield_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee Next(\overline{C}_1, \overline{C}_2)$ CanYield_{*i*+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \land CanYield_{*i*}(\overline{C}_1 , \overline{C}) \land CanYield_{*i*}(\overline{C} , \overline{C}_2) $\varphi_{p,M,w} := \exists \overline{C}_1 \cdot \exists \overline{C}_2 \cdot \text{Start}_{M,w}(\overline{C}_1) \wedge \text{Acc-Conf}(\overline{C}_2) \wedge \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$

Now that's quite interesting . . .

- With only (non-negated) ∃ quantifiers, **T**rue **QBF** coincides with **S**at
- **S**at is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

So we found that $NP = PSpace!$

Strangely, most textbooks claim that this is not known to be true . . . Are we up for the next Turing Award, or did we make a mistake?

How big is $\varphi_{p,M,w}$?

 $\text{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \text{Next}(\overline{C}_1, \overline{C}_2)$ CanYield_{*i*+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \land CanYield_{*i*}(\overline{C}_1 , \overline{C}) \land CanYield_{*i*}(\overline{C} , \overline{C}_2) $\varphi_{p,M,w} := \exists \overline{C}_1 \cdot \exists \overline{C}_2 \cdot \text{Start}_{M,w}(\overline{C}_1) \wedge \text{Acc-Conf}(\overline{C}_2) \wedge \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$

How big is $\varphi_{p,M,w}$?

 $CanYield₀(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee Next(\overline{C}_1, \overline{C}_2)$ CanYield_{*i*+1}(\overline{C}_1 , \overline{C}_2) := $\exists \overline{C}$.Conf(\overline{C}) \land CanYield_{*i*}(\overline{C}_1 , \overline{C}) \land CanYield_{*i*}(\overline{C} , \overline{C}_2) $\varphi_{p,M,w} := \exists \overline{C}_1 \cdot \exists \overline{C}_2 \cdot \text{Start}_{M,w}(\overline{C}_1) \wedge \text{Acc-Conf}(\overline{C}_2) \wedge \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$

Size of CanYield*i*+¹ is more than twice the size of CanYield*ⁱ* \rightsquigarrow Size of $\varphi_{p,M,w}$ is in $2^{O(p(n))}$. Oops.

How big is $\varphi_{p,M,w}$?

 $CanYield₀(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee Next(\overline{C}_1, \overline{C}_2)$ CanYield_{*i*+1}</sub> $(\overline{C}_1, \overline{C}_2) := \exists \overline{C}$.Conf(\overline{C}) \wedge CanYield_{*i*}($\overline{C}_1, \overline{C}$) \wedge CanYield_{*i*}($\overline{C}_2, \overline{C}_2$) $\varphi_{p,M,w} := \exists \overline{C}_1 \cdot \exists \overline{C}_2 \cdot \text{Start}_{M,w}(\overline{C}_1) \wedge \text{Acc-Conf}(\overline{C}_2) \wedge \text{CanYield}_{d^p(n)}(\overline{C}_1, \overline{C}_2)$

Size of CanYield*i*+¹ is more than twice the size of CanYield*ⁱ* \rightsquigarrow Size of $\varphi_{p,M,w}$ is in $2^{O(p(n))}$. Oops.

A correct reduction: We redefine CanYield by setting

 $CanYield_{i+1}(\overline{C}_1, \overline{C}_2) :=$ ∃*C*.Conf(*C*) ∧ $\forall Z_1.\forall Z_2. (((Z_1 = C_1 \land Z_2 = C) \lor (Z_1 = C \land Z_2 = C_2)) \rightarrow \text{CanYield}_i(Z_1, Z_2))$

Markus Krötzsch; 19 Nov 2024 [Complexity Theory](#page-0-0) slide 17 of 34

Let's analyse the size more carefully this time:

 $CanYield_{i+1}(\overline{C}_1, \overline{C}_2) :=$ ∃*C*.Conf(*C*) ∧ $\forall Z_1.\forall Z_2. (((Z_1 = C_1 \land Z_2 = C) \lor (Z_1 = C \land Z_2 = C_2)) \rightarrow \text{CanYield}_i(Z_1, Z_2))$

- CanYield_{i+1}(\overline{C}_1 , \overline{C}_2) extends CanYield_i(\overline{C}_1 , \overline{C}_2) by parts that are linear in the size of configurations \rightsquigarrow growth in $O(p(n))$
- Maximum index *i* used in $\varphi_{p,M,w}$ is $dp(n)$, that is in $O(p(n))$
- Therefore: $\varphi_{p,M,w}$ has size $O(p^2(n))$ and thus can be computed in polynomial time

Exercise:

Why can we just use *dp*(*n*) in the reduction? Don't we have to compute it somehow? Maybe even in polynomial time?

The Power of QBF

Theorem 10.4: True **QBF** is PSpace-complete.

Proof:

- (1) **T**rue **QBF** ∈ PSpace: Give an algorithm that runs in polynomial space.
- (2) **T**rue **QBF** is PSpace-hard:

Proof by reduction from the word problem of any polynomially space-bounded TM.

□

A More Common Logical Problem in PSpace

Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

A More Common Logical Problem in PSpace

Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model CHECKING IS PSpace-complete.

Proof:

- (1) **FOL M**odel **C**hecking ∈ PSpace: Give algorithm that runs in polynomial space.
- (2) **FOL M**odel **C**hecking is PSpace-hard: Proof by reduction **T**rue **QBF** ≤*^p* **FOL M**odel **C**hecking.

Checking FOL Models in Polynomial Space (Sketch)

```
01 EVAL(\varphi, I) {<br>02 switch (\varphi)02 switch (\varphi) :<br>03 case p(c_1).
03 case p(c_1, \ldots, c_n) : return \langle c_1, \ldots, c_n \rangle \in p^I<br>04 case \neg \forall c : return NOT Even \langle c \rangle T)
04 case \neg \psi : return NOT Eval(\psi, I)<br>05 case \psi_1 \wedge \psi_2 : return Eval(\psi_1, I)
05 case \psi_1 \wedge \psi_2: return Eval(\psi_1, I) AND Eval(\psi_2, I)<br>06 case \exists x.\psi:
06 case \exists x.\psi :<br>07 for c \in \Lambda^107 for c \in \Delta^I :
08 if EVAL(\psi[x \mapsto c], I) : return TRUE
09 // eventually, if no success:
10 return FALSE
11 }
```
- We can assume φ only uses \neg , \wedge and \exists (easy to get)
- We use $\Delta^{\mathcal{I}}$ to denote the (finite!) domain of \mathcal{I}
- We allow domain elements to be used like constants in the formula

Hardness of FOL Model CHECKING

Given: a QBF $\varphi = \mathsf{Q}_1X_1 \cdots \mathsf{Q}_\ell X_\ell.\psi$

FOL Model Checking Problem:

- Interpretation domain $\Delta^{\mathcal{I}} := \{0, 1\}$
- Single predicate symbol true with interpretation true $I = \{ \langle 1 \rangle \}$
- FOL formula φ' is obtained by replacing variables in input QBF with corresponding first order expressions: first-order expressions:

$$
Q_1x_1 \cdots Q_\ell x_\ell \psi[X_1 \mapsto \text{true}(x_1), \ldots, X_\ell \mapsto \text{true}(x_\ell)]
$$

Lemma 10.9: $\langle I, \varphi' \rangle \in$ **FOL Model Checking if and only if** $\varphi \in$ **True QBF.**

First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model CHECKING IS PSpace-complete.

Proof:

- (1) **FOL M**odel **C**hecking ∈ PSpace: Give algorithm that runs in polynomial space.
- (2) **FOL M**odel **C**hecking is PSpace-hard: Proof by reduction **T**rue **QBF** ≤*^p* **FOL M**odel **C**hecking.

Markus Krötzsch; 19 Nov 2024 [Complexity Theory](#page-0-0) slide 24 of 34

□

FOL MODEL CHECKING: Practical Significance

Why is FOL Model CHECKING a relevant problem?

FOL Model CHECKING: Practical Significance

Why is **FOL Model CHECKING** a relevant problem?

Correspondence with database query answering:

- Finite first-order interpretation = database
- First-order logic formula = database query
- Satisfying assignments (for non-sentences) = query results

Known correspondence:

As a query language, FOL has the same expressive power as (basic) SQL (relational algebra).

Corollary 10.10: Answering SQL queries over a given database is PSpacecomplete.

Games

Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
- \bullet

Decision problem: Is there a solution? (For Tetris: is it possible to clear all blocks?)

What about two-player games?

Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
- \bullet

Decision problem: Is there a solution? (For Tetris: is it possible to clear all blocks?)

What about two-player games?

- Two players take moves in turns
- The players have different goals
- The game ends if a player wins

Decision problem: Does Player 1 have a winning strategy? In other words: can Player 1 enforce winning, whatever Player 2 does?

Example: The Formula Game

A contrived game, to illustrate the idea:

- Given: a propositional logic formula φ with consecutively numbered variables $X_1, \ldots X_\ell.$
- Two players take turns in selecting values for the next variable:
	- $-$ Player 1 sets X_1 to true or false
	- $-$ Player 2 sets X_2 to true or false
	- $-$ Player 1 sets X_3 to true or false
	- $-$

until all variables are set.

• Player 1 wins if the assignment makes φ true. Otherwise, Player 2 wins.

Deciding the Formula Game

Formula **G**ame

Input: A formula φ .

Problem: Does Player 1 have a winning strategy on φ ?

Theorem 10.11: Formula **G**ame is PSpace-complete.

Deciding the Formula Game

Formula **G**ame

Input: A formula φ .
Problem: Does Plaver Does Player 1 have a winning strategy on φ ?

Theorem 10.11: Formula **G**ame is PSpace-complete.

Proof sketch: Formula **G**ame is essentially the same as **T**rue **QBF**.

Having a winning strategy means: there is a truth value for X_1 , such that, for all truth values of X_2 , there is a truth value of X_3, \ldots such that φ becomes true.

If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables that do not change the semantics to get the same alternating form as for the Formula Game. $□$

Example: The Geography Game

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

Example: The Geography Game

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Example: The Geography Game

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Decision problem **(G**eneralised**) G**eography:

given a graph and start node, does Player 1 have a winning strategy?

Geography is PSpace-complete

Theorem 10.12: Generalised **G**eography is PSpace-complete.

Proof:

- (1) **G**eography ∈ PSpace: Give algorithm that runs in polynomial space. It is not difficult to provide a recursive algorithm similar to the one for **T**rue **QBF** or **FOL M**odel **C**hecking.
- (2) **G**eography is PSpace-hard: Proof by reduction **F**ormula **G**ame ≤*^p* **G**eography.

□

Geography is PSpace-hard

Let φ with variables X_1, \ldots, X_ℓ be an instance of **Formula Game.** Without loss of generality, we assume:

- ℓ is odd (Player 1 gets the first and last turn)
- \bullet φ is in CNF

We now build a graph that encodes **F**ormula **G**ame in terms of **G**eography

- The left-hand side of the graph is a chain of diamond structures that represent the choices that players have when assigning truth values
- The right-hand side of the graph encodes the structure of φ : Player 2 may choose a clause (trying to find one that is not true under the assignment); Player 1 may choose a literal (trying to find one that is true under the assignment).

(see board or ISipser, Theorem 8.14]) \square

We consider the formula ∃*X*.∀*Y*.∃*Z*.(*X* ∨ *Z* ∨ *Y*) ∧ (¬*Y* ∨ *Z*) ∧ (¬*Z* ∨ *Y*)

Summary and Outlook

True **QBF** is PSpace-complete

FOL Model CHECKING and the related problem of SQL query answering are PSpace-complete

Some games are PSpace-complete

What's next?

- Some more remarks on games
- Logarithmic space
- Complements of space classes