
On Pure Multi-Pushdown Automata that Perform
Complete-Pushdown Pops

Tomáš Masopust∗ Alexander Meduna∗

Abstract

This paper introduces and discusses pure multi-pushdown automata that remove
symbols from their pushdowns only by performing complete-pushdown pops. During
this operation, the entire pushdown is compared with a prefix of the input, and if they
match, the pushdown is completely emptied and the input is advanced by the prefix.
The paper proves that these automata define an infinite hierarchy of language families
identical with the infinite hierarchy of language families resulting from right linear
simple matrix grammars. If these automata are allowed to join their pushdowns and
create new pushdowns, then they define another infinite hierarchy of language families
according to the number of pushdowns.

1 Introduction

Indisputably, pushdown automata fulfill a crucial role in formal language theory. It thus
comes as no surprise that this theory has introduced many variants of these automata over
its history (see [1, 3, 5, 6, 7, 9, 10, 12, 14, 15] for more details). These variants also
include pure multi-pushdown automata, which are pushdown automata that have several
pushdowns, each of which always contains only input symbols—that is, no extra pushdown
symbols are allowed in them (for an overview, see the paper by Fischer [4] and references
therein). Recall that with a single input symbol, pure multi-pushdown automata are equiva-
lent to multi-counter automata, which are equivalent to Turing machines. With two or more
input symbols, however, pure one-pushdown automata define the family of all context-free
languages.

The present paper continues with this classical topic of formal language theory. More
specifically, this paper discusses pure multi-pushdown automata that can remove symbols
from their pushdowns only by performing a complete-pushdown pop. During this operation,
the entire pushdown is compared with a prefix of the input, and if they match, the pushdown
is completely emptied and, simultaneously, the input is advanced by the prefix. The paper
demonstrates that these automata define an infinite hierarchy of language families that is
identical with the infinite hierarchy of language families resulting from these grammars and
automata: (1) right linear simple matrix grammars (see [8]), (2) all-move self-regulating
finite automata (see [11]), (3) multi-tape one-way non-writing automata (see [3]), and (4)
finite-turn checking automata (see [14]). In addition, if we allow the pure multi-pushdown

∗Faculty of Information Technology, Brno University of Technology, Božetěchova 2, Brno 61266, Czech
Republic, E-mail: masopust@fit.vutbr.cz, meduna@fit.vutbr.cz.

1

automata discussed in this paper to join two pushdowns and introduce a new pushdown,
then they define another infinite hierarchy of language families dependent upon the number
of pushdowns.

In its conclusion, this paper also formulates some open problems.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with the theory of automata and formal lan-
guages (see [13]). For an alphabet (finite nonempty set) V , V ∗ represents the free monoid
generated by V . The unit of V ∗ is denoted by ε . Set V + = V ∗−{ε}. For w ∈ V ∗ and
W ⊆ V , wR denotes the mirror image of w and occur(w,W) denotes the number of occur-
rences of symbols from W in w. Let LREG and LCS denote the families of regular and
context-sensitive languages, respectively.

A context-free grammar is a quadruple G = (N,T,P,S), where N is a nonterminal al-
phabet, T is a terminal alphabet such that N ∩T = /0, V = N ∪T , S ∈ N is the start symbol,
and P is a finite set of productions of the form A→ v, where A ∈ N and v ∈V ∗. For a pro-
duction A→ v ∈ P, let rhs(p) = A and lhs(p) = v. In this paper, we label the productions
from P by elements of a finite set Q; Q is chosen so that there is a bijection lab : P→ Q.
Then, Q = lab(P) = {lab(p) : p ∈ P} is said to be a set of production labels. In what fol-
lows, instead of A→ v ∈ P with lab(A→ v) = q we write q : A→ v ∈ P. If q : A→ v ∈ P,
x,y ∈V ∗, then G makes a derivation step from xAy to xvy, written as xAy⇒ xvy [q] or, sim-
ply, xAy⇒ xvy. In the standard way, define⇒m, for m ≥ 0,⇒+, and⇒∗. To express that
G makes x⇒m y, for some x,y ∈V ∗, by using a sequence of productions q1,q2, . . . ,qm, we
write x⇒m y [q1q2 . . .qm]. The language generated by a context-free grammar G is defined
as L(G) = {w∈ T ∗ : S⇒∗ w}. The family of languages generated by context-free grammars
is denoted by LCF .

For n ≥ 1, an n-right linear simple matrix grammar (defined in [8], see also [16]) is
an (n+3)-tuple G = (N1,N2, . . . ,Nn,T,P,S), where N1,N2, . . . ,Nn are pairwise disjoint non-
terminal alphabets, T is a terminal alphabet, N = N1∪N2∪ ·· · ∪Nn, S 6∈ N ∪T is the start
symbol, N∩T = /0, and P is a finite set of matrix productions of the following three forms:

1. [S→ X1X2 . . .Xn], Xi ∈ Ni, 1≤ i≤ n;
2. [X1→ w1Y1,X2→ w2Y2, . . . ,Xn→ wnYn], wi ∈ T ∗, Xi,Yi ∈ Ni, 1≤ i≤ n;
3. [X1→ w1,X2→ w2, . . . ,Xn→ wn], Xi ∈ Ni, wi ∈ T ∗, 1≤ i≤ n.

Let m be a matrix, then m[i] denotes the ith production of m. For x,y ∈ (N ∪ T ∪{S})∗,
x⇒ y if and only if

1. either x = S and [S→ y] ∈ P, or
2. x = y1X1y2X2 . . .ynXn, y = y1x1y2x2 . . .ynxn, and [X1→ x1,X2→ x2, . . . ,Xn→ xn] ∈ P.

As usual, define⇒m, for m≥ 0,⇒+, and⇒∗. The language generated by an n-right linear
simple matrix grammar G is defined as L(G) = {w∈ T ∗ : S⇒∗ w}. The family of languages
generated by n-right linear simple matrix grammars is denoted by L n

R .
A programmed grammar is a quadruple G = (N,T,P,S), where N is a nonterminal

alphabet, T is a terminal alphabet such that N∩T = /0, V = N∪T , S ∈N is the start symbol,
and P is a finite set of productions of the form (q : A→ v,g(q)), where q : A→ v is a

2

context-free production and g(q) ⊆ lab(P). In every derivation of G, any two consecutive
steps, x⇒ y⇒ z, made by (p : A→ u,g(p)) and (q : B→ v,g(q)), respectively, satisfy
q ∈ g(p). As usual, define ⇒m, for m ≥ 0, ⇒+, and ⇒∗. The language generated by a
programmed grammar G is defined as L(G) = {w ∈ T ∗ : S⇒∗ w}. The family of languages
generated by programmed grammars is denoted by LP.

Let D be a derivation of w ∈V ∗ in G of the form w1⇒ w2⇒ . . .⇒ wr, for some r ≥ 1,
where S = w1 and wr = w. Set Ind(D,G) = max{occur(wi,N) : 1 ≤ i ≤ r}. For w ∈ T ∗,
set Ind(w,G) = min{Ind(D,G) : D is a derivation of w in G}. The index of G is defined as
Ind(G) = max{Ind(w,G) : w ∈ L(G)}.

For L ∈LP, set Ind(L) = min{Ind(G) : L(G) = L, G is a programmed grammar}. Fi-
nally, set L n

P = {L ∈LP : Ind(L)≤ n}, for all n≥ 1.

2.1 Pure Multi-Pushdown Automata that Perform Complete-Pushdown Pops

Let n ≥ 1. A pure n-pushdown automaton that performs complete-pushdown pops, an
nPPDA for short, is a quadruple

M = (Q,T,R,s) ,

where Q is a finite set of states, T is an alphabet of input symbols, R ⊆S ×S is a set of
rules, and s /∈S is the start state, where S is a set defined as S = S1∪S2∪S3∪S4,

• S1 = {〈q,pop〉 : q ∈ Q}
• S2 = {〈q,push, i,a〉 : q ∈ Q, 1≤ i≤ n, a ∈ T ∪{ε}}
• S3 = {〈q,new, i〉 : q ∈ Q, 1≤ i≤ n}
• S4 = {〈q, join, i〉 : q ∈ Q, 2≤ i≤ n}.

A configuration of M is a string over

(T ∗{$}∪{ε})n× (S ∪{s})×T ∗ .

Let 1 ≤ k ≤ n and p→ q ∈ R. Define the relation ⇒ depending on the left-hand side of
p→ q ∈ R, p, as follows:

1. $nsw⇒ $nqw;
2. wk$. . .$w2$w1$〈p,pop〉wR

1 w⇒ wk$. . .$w2$qw;
3. wk$. . .wi . . .$w1$〈p,push, i,a〉w⇒ wk$. . .wia . . .$w1$qw, for i≤ k;
4. wk$. . .wi . . .$w1$〈p,new, i〉w⇒ wk$. . .$wi$$. . .$w1$qw, for i≤ k < n;
5. wk$. . .$w1$〈p,new,k +1〉w⇒ wk . . .$w1$qw, for k < n;
6. wk$. . .wiwi−1$. . .$w1$〈p, join, i〉w⇒ wk$. . .$wiwi−1$. . .$w1$qw, for i≤ k.

Remark 1. Note that the symbols $ denote the top of M’s pushdowns.

In the standard way, define⇒m, for m ≥ 0, and⇒∗. Then, the language of an nPPDA
M is defined as

L(M) = {w ∈ T ∗ : $nsw⇒∗ q, for some q ∈S } ,

where $nsw⇒∗ q is called a computation of M on w, and for I ⊆ {1,2,3,4},

L n
I =

{
L(M) : M = (Q,T,R,s) is an nPPDA with R⊆

⋃
i∈I

Si×
⋃
i∈I

Si

}
.

3

3 Main Results

In this section, we prove two infinite hierarchies generated by pure multi-pushdown au-
tomata that perform complete-pushdown pops according to their pushdown operations and
the number of pushdowns. First, however, we generalize the notion of these automata by
allowing them to push the whole strings to their pushdowns.

3.1 Generalized nPPDAs

A generalized pure n-pushdown automaton that performs complete-pushdown pops is an
nPPDA M = (Q,T,R,s) with R⊆S ×S , where S is a finite subset of S1∪S ′

2∪S3∪S4,
S1, S3, S4 are as in the nPPDA, and S ′

2 = {〈q,push, i,u〉 : q ∈ Q, 1 ≤ i ≤ n, u ∈ T ∗}.
Correspondingly, the computational step is modified as follows:

3. wk$. . .wi . . .$w1$〈p,push, i,u〉w⇒ wk$. . .wiu . . .$w1$qw, for i≤ k.

The other computational steps are defined as in the classical nPPDA.
First, by the common construction, we prove that this generalization has no effect to the

generative power of pure multi-pushdown automata that perform complete-pushdown pops.

Lemma 1. Let M be a generalized nPPDA, for some n ≥ 1. Then, there is an nPPDA, N,
such that L(M) = L(N).

Informally, what M does in one derivation step, N does in the-length-of-the-added-string
steps.

Proof. Let M = (Q,T,R,s) be a generalized nPPDA. Construct the following nPPDA N =
(Q′,T,R′,s) by the following algorithm (S is as in the definition in Section 2.1):

1. Set R′ = {p→ q ∈ R : p,q ∈S ∪{s}} and Q′ = Q;

2. For all p→ 〈q,push, i,a1a2 . . .ak〉 ∈ R with ai ∈ T , for i = 1, . . . ,k, k ≥ 2, add

(a) states qi,1
a1a2...ak ,q

i,2
a1a2...ak , . . . ,q

i,k
a1a2...ak to Q′;

(b) p→ 〈qi,1
a1a2...ak ,push, i,a1〉 to R′;

(c) 〈qi, j
a1a2...ak ,push, i,a j〉 → 〈qi, j+1

a1...ak ,push, i,a j+1〉 to R′, for j = 1, . . . ,k−1;

(d) for 〈q,push, i,a1a2 . . .ak〉→ r ∈ R, add 〈qi,k
a1a2...ak ,push, i,ak〉→ r to R′ if r ∈S ,

otherwise to R.

3. If R′ has been changed, go to 2.

It is not hard to see that L(M) = L(N).

3.2 Language Families

Consider an arbitrary I ⊆ {1,2,3,4}. It is not hard to see that if 1 6∈ I, then L n
I = /0;

the automaton cannot remove $ from its configuration. In addition, if 1 ∈ I and 2 6∈ I,
then L n

I = {ε}; the automaton can remove all symbols $ but cannot read any nonempty
input. Thus, there are only four sets of interest: {1,2}, {1,2,3}, {1,2,4}, {1,2,3,4}. The
following two lemmas are obvious.

4

Lemma 2. For n≥ 1, L n
{1,2} ⊆L n

{1,2,3} ⊆L n
{1,2,3,4} and L n

{1,2} ⊆L n
{1,2,4} ⊆L n

{1,2,3,4}.

Lemma 3. L 1
{1,2} = L 1

{1,2,3,4} = LREG.

Consider an automaton with pop, push, and join operations. We show how to remove
the join operation without changing the accepted language. Note that by the join operation
applied to the ith pushdown, the content of the ith pushdown is added to the bottom of the
(i− 1)st pushdown. Skipping the join operation, to push a symbol to the jth pushdown in
the original automaton, for some j≥ i, means to push the symbol to the (j+1)st pushdown.
This can be done by a sequence of the form i1i2 . . . im added to states, for some m≤ n, where
ik ∈ {1,0}, for k = 1, . . . ,m, and ik = 0 if and only if the ikth pushdown has been joined.
Thus, the automaton starts with a sequence of n 1s, 11 . . .1, and to push a symbol to the
ith pushdown means to push the symbol to the lth pushdown, where l is the position of
the ith 1 in the sequence. Analogously, to make the pop operation, say from a state with
10 . . .0il . . . ik, where 2 ≤ l ≤ k and il = 1, the new automaton makes l− 1 pop operations
and goes to a state with il . . . ik. Finally, to join the ith pushdown means to replace the ith 1
with 0 in the sequence by pushing ε to the first pushdown.

Lemma 4. For all n≥ 1, L n
{1,2} = L n

{1,2,4}.

Corollary 1. For all n≥ 1, L n
{1,2} = L n

{1,2,4} ⊆L n
{1,2,3} ⊆L n

{1,2,3,4}.

This paper studies the L n
{1,2} and L n

{1,2,3,4} language families. Questions concerning
the L n

{1,2,3} language families are open.

3.3 L n
{1,2} Language Families

Example 1. Consider an nPPDA M = ({s,q},{a1,a2, . . . ,an},R,s) with R having the fol-
lowing rules:

1. s→ 〈q,push,1,a1〉,
2. 〈q,push, i,ai〉 → 〈q,push, i+1,ai+1〉, for i = 1, . . . ,n−1,

3. 〈q,push,n,an〉 → 〈q,push,1,a1〉,
4. 〈q,push,n,an〉 → 〈q,pop〉,
5. 〈q,pop〉 → 〈q,pop〉.

Then, L(M) = {ak
1ak

2 . . .ak
n : k ≥ 1}.

Next, we prove that the power of pure n-pushdown automata that perform complete-
pushdown pops with push and pop operations is precisely the power of n-right linear simple
matrix grammars. First, however, notice that any such automaton, M, has the property that
there is exactly n pop operations in any computation; clearly, the automaton has to pop n
pushdowns and no new pushdown can be created. Moreover, we can prove that there is an
equivalent automaton, N, such that in any computation of N, no pop operation precedes a
push operation. To show this, let N simulate M but if M pops the pushdown, N skips the pop
operation and increases the number of pop operations skipped so far recorded in its state.
Thus, in any time, N knows the number of pop operations applied in the corresponding
computation of M, say 0 ≤ k ≤ n. Then, if M pushes a symbol to the ith pushdown, N
pushes this symbol to the (i + k)th pushdown. Clearly, N finishes (pops all its pushdowns
one by one) only if M has performed n pop operations.

5

Lemma 5. Let n≥ 1 and L ∈L n
{1,2}. Then, there is an nPPDA, M, such that L(M) = L and

its sequence of operations applied during any computation, starting from s, is of the form

s, push1, push2, . . . , pushk, pop1, pop2, . . . , popn

for some k ≥ 1, pushi ∈S2, for all i = 1, . . . ,k, and pop j ∈S1, for all j = 1, . . . ,n.

Proof. This follows from the previous arguments and the fact that if there is no push op-
eration in a computation, then we can push ε to the first pushdown, i.e., for some state t,
push1 = 〈t,push,1,ε〉.

Lemma 6. For all n≥ 1, L n
{1,2} ⊆L n

R .

Proof. Let M = (Q,T,R,s) be an nPPDA with R ⊆ (S1∪S2)× (S1∪S2) satisfying the
condition from Lemma 5. Clearly, we can assume that pop1 = · · · = popn = 〈r,pop〉, for
some r ∈Q. Thus, S1 = {〈r,pop〉}. Let G = (N1, . . . ,Nn,T,P,SG) and set Ni = (S1∪S2)×
{i}, for i = 1,2, . . . ,n. Set P = {SG → 〈〈r,pop〉,1〉〈〈r,pop〉,2〉 . . .〈〈r,pop〉,n〉 : 〈r,pop〉 ∈
S1}. If q→ p ∈ R is of the form

1. 〈t,push, i,a〉 → 〈r,pop〉, add
[〈〈r,pop〉,1〉 → 〈q,1〉, . . . ,〈〈r,pop〉, i〉 → a〈q, i〉, . . . ,〈〈r,pop〉,n〉 → 〈q,n〉] to P;

2. 〈r,push, i,a〉 → 〈t,push, j,b〉, add
[〈p,1〉 → 〈q,1〉, . . . ,〈p, i〉 → a〈q, i〉, . . . ,〈p,n〉 → 〈q,n〉] to P;

3. s→ p, add
[〈p,1〉 → ε,〈p,2〉 → ε, . . . ,〈p,n〉 → ε] to P.

Note that M starts with s→ p, continues with p→ q, then with p→ 〈r,pop〉, for some
p,q ∈ S2, and finishes with 〈r,pop〉 → 〈r,pop〉 applied n-times. Denote the sequence of
applied rules by s, p1, . . . , pk, pop1, . . . , popn, for some k ≥ 1. Then, G simulates M by
the following sequence of productions: initial production (simulating all n pop operations),
p′k, . . . , p′1,s

′, where p′k is constructed from pk as in 1, p′i from pi as in 2, for i = 1, . . . ,k−1,
and s′ from s as in 3.

Lemma 7. For all n≥ 1, L n
R ⊆L n

{1,2}.

Proof. Let n ≥ 1 and G = (N1, . . . ,Nn,T,P,S) be an n-right linear simple matrix gram-
mar. Construct the following generalized nPPDA M = (Q,T,R,s), where Q = {(x,m) : x ∈
N1 . . .Nn, m ∈ P}∪{S} and R is defined as follows:

1. For α = X1 . . .Xn ∈ N1 . . .Nn and m = [X1→ w1, . . . ,Xn→ wn] ∈ P with wi ∈ T ∗, for
all i = 1,2, . . . ,n, add s→ 〈(α,m),push,1,wR

1 〉 to R;

2. For α = X1 . . .Xn, β = Y1 . . .Yn ∈ N1 . . .Nn, and m′ = [Y1→ v1X1, . . . ,Yn→ vnXn] ∈ P,
add 〈(α,m),push,n,wR

n 〉 → 〈(β ,m′),push,1,vR
1 〉 to R;

3. For α =Y1 . . .Yn ∈N1 . . .Nn and m[i+1] =Yi+1→ vi+1Xi+1 with vi+1 ∈ T ∗ and Xi+1 ∈
N∪{ε}, for all i = 1, . . . ,n−1, add
〈(α,m),push, i,vR

i 〉 → 〈(α,m),push, i+1,vR
i+1〉 to R;

4. For α = X1 . . .Xn, if there is [S→ X1 . . .Xn] ∈ P, add
〈(α,m),push,n,vR

n 〉 → 〈S,pop〉 to R;

6

5. Add 〈S,pop〉 → 〈S,pop〉 to R.

Clearly, M simulates the derivation of G bottom-up and what G does in one derivation step,
M does in n steps. Then, according to Lemma 1, the proof is complete.

Theorem 1. For all n≥ 1, L n
{1,2} = L n

R .

Proof. This follows from the previous two lemmas.

Corollary 2. For all n≥ 1, L n
{1,2} ⊂L n+1

{1,2}.

Proof. This follows from the previous theorem and [8, Theorem 2.3].

3.4 L n
{1,2,3,4} Language Families

The following lemma shows that any string accepted by a pure n-pushdown automaton that
performs complete-pushdown pops can be generated by a programmed grammar of index
n+1.

Lemma 8. For all n≥ 1, L n
{1,2,3,4} ⊆L n+1

P .

Informally, to an nPPDA M, we construct a programmed grammar, G, of index n +
1 so that the ith nonterminal of G, 〈Ai,k〉, is associated with the ith pushdown, where
1 ≤ k ≤ n + 1. Specifically, if the current content of M’s pushdowns is c2c1$b2b1$a2a1$
(corresponding to a string a1a2b1b2c1c2), then the sentential form of G is of the form
〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉. Then, the pop operation is simulated so that

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

is replaced with
a1a2〈A1,3〉b1b2〈A2,3〉c1c2〈A3,3〉 .

The push operation pushing a onto the second pushdown, i.e. c2c1$b2b1a$a2a1$ corre-
sponding to a string a1a2ab1b2c1c2, is simulated by replacing

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

with
〈A1,4〉a1a2〈A2,4〉ab1b2〈A3,4〉c1c2〈A4,4〉 .

The new operation introducing a new, say the first, pushdown, i.e. c2c1$b2b1$a2a1$$, is
simulated by replacing

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

with
〈A1,5〉〈A2,5〉a1a2〈A3,5〉b1b2〈A4,5〉c1c2〈A5,5〉 .

Note that the previous first pushdown is the second from now on (till the other change).
Finally, the join operation of the first and the second pushdown (by a state of the form
〈r, join,2〉), i.e. c2c1$b2b1a2a1$, is simulated by replacing

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

7

with
〈A1,3〉a1a2b1b2〈A2,3〉c1c2〈A3,3〉 .

The formal proof follows.

Proof. Let M = (Q,T,R,s) be an nPPDA. Construct the grammar G = (N,T,P,S), where
N = Q×{1, . . . ,n + 1} and P is constructed as follows. Set f (r) = {t : r→ t ∈ R}, and
g(f (r)) =

⋃
p∈ f (r) g(p) (the definition of g(p) follows).

1. For any rule s→ p ∈ R, add

(S→ 〈A1,n+1〉〈A2,n+1〉 . . .〈An+1,n+1〉,g(p)) into P;

2. For all p ∈S1 and 1≤ l ≤ n+1, add

([p, l, p] : 〈A1, l〉 → ε,{[/,2, l, p] : [/,2, l, p] ∈ lab(P)});
3. For all p ∈S1∪S4 and 1≤ i, l ≤ n+1, i≥ 2, add

([/, i, l, p] : 〈Ai, l〉 → 〈Ai−1, l〉,{[/, i+1, l, p]}), for i < l;

([/, l, l, p] : 〈Al, l〉 → 〈Al−1, l〉,{[−,1, l, p]});
4. For all p ∈S1∪S4 and 1≤ i, l ≤ n+1, l ≥ 2, add

([−, i, l, p] : 〈Ai, l〉 → 〈Ai, l−1〉,{[−, i+1, l, p]}), for i < l−1;

([−, l−1, l, p] : 〈Al−1, l〉 → 〈Al−1, l−1〉,g(f (p)));

5. For all p ∈S2 and 1≤ i, l ≤ n+1, add

([i, l, p] : 〈Ai, l〉 → 〈Ai, l〉a,g(f (p)));

6. For all p ∈S3 and 1≤ i, l ≤ n+1, i≤ n, add

([∗, i, l, i, p] : 〈Ai, l〉 → 〈Ai+1, l〉,{[∗, i+1, l, i, p]}), for i < l;

([∗, l, l, i, p] : 〈Al, l〉 → 〈Al+1, l〉,{[n, i+1, l, p]});
7. For all p ∈S3, 1≤ l ≤ n+1 and 1 < i≤ n+1, add

([n, i, l, p] : 〈Ai, l〉 → 〈Ai−1, l〉〈Ai, l〉,{[+,1, l, p]});
8. For all p ∈S3 and 1≤ i, l < n+1, add

([+, i, l, p] : 〈Ai, l〉 → 〈Ai, l +1〉,{[+, i+1, l, p]}), for i < l +1;

([+, l +1, l, p] : 〈Al+1, l〉 → 〈Al+1, l +1〉,g(f (p)));

9. For all p ∈S4 and 1≤ i, l ≤ n+1, add

([j, i, l, p] : 〈Ai, l〉 → ε,W), W = {[/, i + 1, l, p]}) if i < l, W = {[−,1, l, p]} oth-
erwise.

g(p) depends on p as follows:

p = 〈r,pop〉: g(p) = {[p, l, p] : [p, l, p] ∈ lab(P)};
p = 〈r,push, i,a〉: g(p) = {[i, l, p] : [i, l, p] ∈ lab(P)};
p = 〈r,new, i〉: g(p) = {[∗, i, l, i, p] : [∗, i, l, i, p] ∈ lab(P)};
p = 〈r, join, i〉: g(p) = {[j, i, l, p] : [j, i, l, p] ∈ lab(P)}.

8

Consider a configuration wk$. . .$w2$w1$pw of M and the corresponding sentential
form of G, (〈A1,k +1〉w1〈A2,k +1〉w2 . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,g(p)). If p = 〈r,pop〉,
G simulates the computational step as follows:

(〈A1,k +1〉w1〈A2,k +1〉w2 . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,{[p,k +1, p]})
⇒ (w1〈A2,k +1〉w2 . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,{[/,2,k +1, p]})
⇒k (w1〈A1,k +1〉w2 . . .〈Ak−1,k +1〉wk〈Ak,k +1〉,{[−,1,k +1, p]})
⇒k (w1〈A1,k〉w2 . . .〈Ak−1,k〉wk〈Ak,k〉,g(f (p))).

If p = 〈r,push, i,a〉, G simulates the computational step as follows:

(〈A1,k +1〉w1 . . .〈Ai,k +1〉wi . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,{[i,k +1, p]})
⇒ (〈A1,k +1〉w1 . . .〈Ai,k +1〉awi . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,g(f (p))).

If p = 〈r,new, i〉, G simulates the computational step as follows:

(〈A1,k +1〉w1 . . .wi−1〈Ai,k +1〉wi . . .wk〈Ak+1,k +1〉,{[∗, i,k +1, i, p]})
⇒k−i+1 (. . .wi−1〈Ai+1,k +1〉wi . . .wk〈Ak+2,k +1〉,{[n, i+1,k +1, p]})
⇒ (. . .wi−1〈Ai,k +1〉〈Ai+1,k +1〉wi . . .wk〈Ak+2,k +1〉,{[+,1,k +1, p]})
⇒k+2 (〈A1,k +2〉w1 . . .wk〈Ak+2,k +2〉,g(f (p))).

If p = 〈r, join, i〉, G simulates the computational step as follows:

(〈A1,k +1〉w1 . . .wi−1〈Ai,k +1〉wi . . .wk〈Ak+1,k +1〉,{[j, i,k +1, p]})
⇒ (. . .〈Ai−1,k +1〉wi−1wi〈Ai+1,k +1〉wi+1 . . . ,{[/, i+1,k +1, p]})
⇒k−i (. . .〈Ai−1,k +1〉wi−1wi〈Ai,k +1〉wi+1 . . .wk〈Ak,k +1〉,{[−,1,k +1, p]})
⇒k (〈A1,k〉w1 . . .〈Ai−1,k〉wi−1wi〈Ai,k〉 . . .wk〈Ak,k〉,g(f (p))).

As any derivation of G simulates a computation of M, we have L(M) = L(G).

Next lemma shows that any string generated by a programmed grammar of index n is
accepted by a pure (n+1)-pushdown automaton that performs complete-pushdown pops.

Lemma 9. For all n≥ 1, L n
P ⊆L n+1

{1,2,3,4}.

The main idea of the proof is to simulate a derivation of a programmed grammar, G,
of index n by a generalized pure (n + 1)-pushdown automaton that performs complete-
pushdown pops, M, so that what G generates to the right of the rewritten nonterminal, say
Aw1Bw2Cw3 ⇒ Aw1Buw2Cw3, M pushes to its corresponding pushdown, wR

3 $wR
2 uR$wR

1 $.
If G generates a string, v, to the left of the rewritten nonterminal, say Aw1Bw2Cw3 ⇒
Aw1vBw2Cw3, then M creates a new pushdown just before the pushdown corresponding to
the rewritten nonterminal, wR

3 $wR
2 $$wR

1 $, pushes vR to the new pushdown, wR
3 $wR

2 vRwR
1 $,

and joins the two pushdowns, wR
3 $wR

2 $vRwR
1 $. By this, M puts vR to the bottom of the push-

down. In case of the first pushdown, the join operation is replaced with the pop operation.
The formal proof follows.

Proof. Let G = (N,T,P,S) be a programmed grammar of index n, for some n≥ 1. Construct
a generalized pure (n + 1)-pushdown automaton that performs complete-pushdown pops
M = (Q,T,R,s) as follows.

9

1. Set Q = (lab(P)∪ {+})×
⋃

k≤n Nk ×{0,1, . . . ,m + 1}, for m = max{k : A→ u ∈
P, occur(u,N) = k};

2. For all p : A→ u1B1u2B2 . . .ukBkuk+1 ∈ P, where ui ∈ T ∗ and B j ∈ N, for all i =
1, . . . ,k + 1, j = 1, . . . ,k, k ≥ 0, and for all 〈+,αAβ ,0〉 ∈ Q, l = occur(αA,N), add
the following to R:

• s→ 〈〈+,S,0〉,push,1,ε〉,
• 〈〈+,αAβ ,0〉,push,1,ε〉 → 〈〈p,αB1 . . .Bkβ ,k +1〉,push, l + k−1,uR

k+1〉,
• 〈〈p,αB1 . . .Bkβ ,k +1〉,push, l + k−1,uR

k+1〉 →
〈〈p,αB1 . . .Bkβ ,k〉,push, l + k−2,uR

k 〉,
• 〈〈p,αB1 . . .Bkβ ,k〉,push, l + k−2,uR

k 〉 →
〈〈p,αB1 . . .Bkβ ,k−1〉,push, l + k−3,uR

k−1〉,
...
• 〈〈p,αB1 . . .Bkβ ,2〉,push, l,uR

2 〉 → 〈〈p,αB1 . . .Bkβ ,1〉,new, l〉,
• 〈〈p,αB1 . . .Bkβ ,1〉,new, l〉 → 〈〈p,αB1 . . .Bkβ ,1〉,push, l,uR

1 〉,
• if l = 1, add

– 〈〈p,B1 . . .Bkβ ,1〉,push,1,uR
1 〉 → 〈〈p,B1 . . .Bkβ ,0〉,pop〉,

– 〈〈p,B1 . . .Bkβ ,0〉,pop〉 → 〈〈+,B1 . . .Bkβ ,0〉,push,1,ε〉,
• if l ≥ 2, add

– 〈〈p,αB1 . . .Bkβ ,1〉,push, l,uR
1 〉 → 〈〈p,αB1 . . .Bkβ ,0〉, join, l〉,

– 〈〈p,αB1 . . .Bkβ ,0〉, join, l〉 → 〈〈+,αB1 . . .Bkβ ,0〉,push,1,ε〉.

We have proved that L(M) = L(G), where M is a generalized (n+1)PPDA. The proof
then follows by Lemma 1.

Let n≥ 1. Analogously as in [2, Theorem 3.1.7], we can prove that the language

Ln = {b(aib)2n−1 : i≥ 1} ∈L n
P −L n−1

P .

Lemma 10. For all n≥ 1, Ln ∈L n
{1,2,3,4}.

Informally, the automaton has n pushdowns and each but the one of them contains aibai,
for some i≥ 1. Thus, two symbols a are put to a pushdown—one to the top and one to the
bottom. Finally, the symbol b is pushed to the bottom of all n−1 pushdowns. Obviously, by
the operations new and pop, baib can be simulated and compared with the prefix of the input
symbol by symbol during the computation. Thus, the automaton has read baib, and each of
n−1 pushdowns contains baibai$, i.e., we have accepted baib(aib)2(n−1) = b(aib)2n−1.

Proof. Let n ≥ 2. If n = 1, the proof is trivial; just push baib to the pushdown. Let M =
(Q,{a,b},R,s) be a pure n-pushdown automaton that performs complete-pushdown pops,
where Q = {0, p,q,r,s, t, f}, and R is constructed as follows.

Phase 1.

1. s→ 〈0,push,1,b〉,

2. 〈0,push,1,b〉 → 〈0,pop〉,
3. 〈0,pop〉 → 〈p,push,1,b〉,
4. for 2≤ i < n−1,

10

4a. 〈p,push, i,b〉 → 〈p,push, i+1,b〉,
4b. 〈p,push,n−1,b〉 → 〈q,new,1〉,

Phase 2.

5. 〈q,new,1〉 → 〈q,push,1,a〉,
6. 〈q,push,1,a〉 → 〈q,pop〉,
7. 〈q,pop〉 → 〈s,push,1,a〉,
8. for 1≤ i < n,

8a. 〈s,push, i,a〉 → 〈r,new, i+1〉,
8b. 〈r,new, i+1〉 → 〈r,push, i+1,a〉,
8c. 〈r,push, i+1,a〉 → 〈r, join, i+1〉,
8d. 〈r, join, i〉 → 〈s,push, i,a〉, i≥ 2,

8e. 〈r, join,n〉 → 〈q,new,1〉,

8f. 〈r, join,n〉 → 〈t,new,1〉,

Phase 3.

9. 〈t,new,1〉 → 〈t,push,1,b〉,
10. 〈t,push,1,b〉 → 〈t,pop〉,
11. 〈t,pop〉 → 〈t,new,2〉,
12. for 2≤ i≤ n,

12a. 〈t,new, i〉 → 〈t,push, i,b〉,
12b. 〈t,push, i,b〉 → 〈t, join, i〉,
12c. 〈t, join, i〉 → 〈t,new, i+1〉,

Phase 4.

13. 〈t,new,n+1〉 → 〈 f ,pop〉,

14. 〈 f ,pop〉 → 〈 f ,pop〉.

Phase 1 reads b from the input and pushes b to n− 1 pushdowns. Phase 2 repeatedly
reads a from the input and pushes as to the top and bottom of all n−1 pushdowns. Phase 3
reads b from the input and pushes b to the bottom of all n−1 pushdowns. Finally, Phase 4
pops all n− 1 pushdowns. Clearly, baib has been read from the input and each of n− 1
pushdowns contains baibai$, where the top of the pushdown is on the right. By this, L(M) =
Ln.

Corollary 3. For all n≥ 1, L n
P ⊂L n+1

{1,2,3,4}.

Proof. The inclusion follows from Lemma 9 and the strictness from Lemma 10.

The following corollary summarizes the power of nPPDAs known so far.

Corollary 4. For all n≥ 1, L n
{1,2,3,4} ⊆L n+1

P ⊂L n+2
{1,2,3,4}.

Proof. It follows immediately from Lemmas 8 and 9, and the previous corollary.

Analogously, we can prove that for all n≥ 2,

Kn+1 = {ak
1ak

2 . . .ak
n+1 : k ≥ 1} ∈L n

{1,2,3,4} .

Corollary 5. For all n≥ 2, L n
{1,2} ⊂L n

{1,2,3,4}.

Proof. Ibarra [8] proved that Kn+1 6∈L n
R = L n

{1,2}.

By the trick pushing the content of one pushdown to the bottom of the other, we can
prove that for all n≥ 1, K2n−1 ∈L n

{1,2,3,4}.

Open Problems

Let n ≥ 1. We believe that L n
{1,2,3,4} ⊂ L n+1

{1,2,3,4}, however, we do not know any proof.

Next, the question whether for all n ≥ 2, L n+1
{1,2} ⊆L n

{1,2,3,4} is open. Moreover, the ques-
tion whether {www : w ∈ {a,b}∗} ∈ L 2

{1,2,3,4} is open, too. Finally, as mentioned above,
questions concerning the L n

{1,2,3} language families, for all n≥ 2, are open.

11

Acknowledgements

This work was supported by the Czech Ministry of Education under the Research Plan No.
MSM 0021630528 and the Czech Grant Agency project No. GA201/07/0005.

References

[1] B. Courcelle. On jump deterministic pushdown automata. Math. Systems Theory,
11:87–109, 1977.

[2] J. Dassow and Gh. Păun. Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

[3] P. C. Fischer and A. L. Rosenberg. Multitape one-way nonwriting automata. J. Com-
put. System Sci., 2:88–101, 1968.

[4] Patrick C. Fischer. Multi-tape and infinite-state automata—a survey. Commun. ACM,
8(12):799–805, 1965.

[5] S. Ginsburg, S. A. Greibach, and M. A. Harrison. One-way stack automata. J. ACM,
14:389–418, 1967.

[6] S. Ginsburg and E. Spanier. Finite-turn pushdown automata. SIAM J. Control, 4:429–
453, 1968.

[7] S. A. Greibach. Checking automata and one-way stack languages. J. Comput. System
Sci., 3:196–217, 1969.

[8] Oscar H. Ibarra. Simple matrix languages. Inform. and Control, 17(4):359–394, 1970.

[9] A. Meduna. Simultaneously one-turn two-pushdown automata. Int. J. Comp. Math.,
80:679–687, 2003.

[10] A. Meduna. Deep pushdown automata. Acta Inform., 42(8–9):541–552, 2006.

[11] A. Meduna and T. Masopust. Self-regulating finite automata. Acta Cybernet., 18:135–
153, 2007.

[12] J. Sakarovitch. Pushdown automata with terminating languages. Languages and Au-
tomata Symposium, RIMS 421, Kyoto University, pages 15–29, 1981.

[13] A. Salomaa. Formal languages. Academic Press, New York, 1973.

[14] R. Siromoney. Finite-turn checking automata. J. Comput. System Sci., 5:549–559,
1971.

[15] L. Valiant. The equivalence problem for deterministic finite turn pushdown automata.
Inform. and Control, 81:265–279, 1989.

[16] D. Wood. m-parallel n-right linear simple matrix languages. Util. Math., 8:3–28, 1975.

12

