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Previously ...

* A behaviour strategy assigns move probabilities to information sets.

+ A belief system assigns probabilities to histories in information sets.

* An assessment is a pair (behaviour strategy profile, belief system).

+ Asequentially rational assessment plays best responses “everywhere”.

+ An assessment satisfies consistency of beliefs whenever the belief
system'’s probabilities match what is expected from everyone playing
according to the behaviour strategy profile.

* An assessment is a weak sequential equilibrium iff it is both
sequentially rational and satisfies consistency of beliefs.

* Mixed Nash equilibria for normal-form games and subgame perfect
equilibria for sequential perfect-information games are special cases of
weak sequential equilibria for extensive-form games.

TECHNISCHE Counterfactual Regret Minimisation (Lecture 8) r'Y .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 2o0f36 Eg;?gg_kg:;‘:
DRESDEN Algorithmic Game Theory, SS 2024 [



Motivation

Main Question

* How to algorithmically solve imperfect-information games ...
* ...or atleast devise good strategies or play them well in practice?

Transformation to Normal Form?
Incurs an exponential blowup:

For every player i P, there are up to ||| 1% =1} many behaviour
strategies (pure strategies in the normal-form game).

€7 | p(;

Algorithms for sequential (perfect-information) games?

* Player /'s best move in J; € J depends on the player’s beliefs §;: J; — [0, 1].

+ Consistent beliefs about J; in turn depend (in general) on probabilities of
moves in other information sets (even on other paths of play).
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Motivation: Example

Nature

2

(1,2) (3,4) 4,3) (2,1 4,3) (2,1) (1,2) (3,4

The best move for 2 in {[X, L], [X,R]} depends on what 2 does in {[Y, L], [Y,R]}:
If 2 prefers C, then 1 will prefer L and thus 2 should prefer B. (Same for D and A.)
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Motivation: Regret Matching

Before minimising regret in imperfect-information extensive-form games,
we start with the simpler case of normal-form games ...

Recall
Let (P, S, u) be a noncooperative game in normal form, i € P, and s; € ;.
The regret of j playing s; w.r.t. opponent profile ir_; is

s = (’rTnea%( Ui(m_, ﬂk)) - Ui(rt_j, sp)
e

Difference between what player i could have had optimally vs. what they got.
Regret is zero iff a best response is played.
~» Minimise regret over time in order to approach playing best responses.
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Overview

Correlated Equilibria

Regret Matching

Counterfactual Regret Minimisation
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Correlated Equilibria
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Correlated Equilibria: Motivation

Traffic Lights
Two cars both want to cross

) . (Car1,Car2) | Stop Go
anintersection. If a car stops,
it does not get to the other Stop (0,0) (G.1)
side. If only one car goes, it Go (1,0) | (-100,-100)

gets to the other side. If both
cars go, there is an accident.

* The pure Nash equilibria are (Stop, Go) and (Go, Stop):
In both equilibria, one car never gets to move.
; TTTRER 100 1 100 1 \).
* Another mixed Nash equilibrium is ((W W) , (W, W) )
Both cars mostly stop and there is a positive probability of accidents.

+ A more desirable outcome would be: {(Stop, Go) — 1, (Go, Stop) %}
However, mixed Nash equilibria cannot realise this. Traffic lights can!
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Correlated Equilibrium: Intuition

+ An external device chooses a strategy profile s € § randomly.

« The distribution ¢: 8 — [0, 1] for this is fixed and known to all players.

+ Forachosen (sq,...,Sy) € 8, each player i € P gets private advice s; € §;.
+ Knowing {s € 8 | ¥(s) > 0}, player i may be able to infer advice of others.

+ Correlated equilibrium now means:
No player has an incentive to deviate from the signal’s advice.

In the traffic lights game, assume ¢ = {(Stop, Go) — 1, (Go, Stop) > 3, .. }
+ If Car1 receives signal Stop, then it knows Car2 must have received Go.
« Thus its best choice is to Stop.

« Symmetrically for Car1 receiving signal Go, and Car2.
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Correlated Equilibrium: Definition

Definition [Aumann, 1974]

Let (P, S, u) be a game in normal form with P = {1,...,n}.
A probability distribution ¢y on 8§ = S x ... x 5, is a correlated equilibrium
iff for every i € P, s; € S, and s, € S, we have

> (wts)- (uitsk,s-)-uis)) ) <0

ses,
S,':Sj

Roughly: Following the signal's advice incurs no (positive) regret.

Observation
Every (mixed) Nash equilibrium t = (4, . . ., m,) induces a correlated
equilibrium Yr := {(s1,...,5n) = T1(S1) - ... - TTa(Sn) | (S1,...,Sn) € 8}.

Players no longer mix their strategies independently.
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Correlated Equilibrium: Example (1)

Battle of the Partners
Two partners, Cat and Dee,
think about how to spend
the evening. Each has their Cinema | (10,7) (2,2)
personal preference what to Dancing (0,0) (7,10)
do, but overall they want to
spend the evening together.

(Cat,Dee) | Cinema | Dancing

For the mixed Nash equilibrium 1t = (TTcat, Moee) = ( (% %) , (% %) ) we get
. . 2, . . 4
Yr =1 (Cinema, Cinema) — §,(Clnema, Dancing) — 9

) ) 1 ) ) 2
(Dancing, Cinema) — §,(Danc1ng, Dancing) — 5

With Ugat(Yn) = Upee() = 42.
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Correlated Equilibrium: Example (2)

To verify that ¢ is a correlated equilibrium, we have the following cases:
* [ =Cat,s; = Cinema, Sy = Dancing:

Y(Cinema, Cinema) - (Ucat(Dancing, Cinema) - Uc,t(Cinema, Cinema)) +
Y(Cinema, Dancing) - (uCat(Dancing, Dancing) - uCat(Cinema Dancing)) =
20 20

= (O 10)+— (7 - 2)——?+§<0

* i = Cat,s; = Dancing, Sy = Cinema:

Y(Dancing, Cinema) - (Ucat(Cinema, Cinema) - Ug,ai(Dancing, Cinema)) +

(Dancing, Dancing)- (uCat(Cinema Dancing) - Ucar(Dancing, Dancing)) =

= (10 0)+, (2-7)= 190 (—190) <0

Due to Upee(S1,52) = Ucac(S2, S1), this also covers the cases for i = Dee.
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Correlated Equilibria: Example (3)

Assume that both Cat and Dee have access to the result of one fair coin toss:
+ If the coin shows heads, both go to the concert;

+ if the coin shows tails, both go to the cinema.

This leads to the following (additional) correlated equilibrium:

= J(Cinema, Cinema) — 5 (bancing, Dancing) — L
2 2

with associated payoffs Ucat () = Upee($p) = 5 - 10+ 3 -7 = 8.
To verify that ¢ is a correlated equilibrium, we (essentially) verify that:

Y(Cinema, Cinema) - (Ucat(Dancing, Cinema) - Ug,¢(Cinema, Cinema)) < 0
Y(Dancing, Dancing) - (Ucat(Cinema, Dancing) - Uc,at(Dancing, Dancing)) < 0

which holds because J - (0-10)=-5<0and §-(2-7) = -2} <O0.
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Correlated Equilibria Form a Convex Set

Theorem

Let G = (P, S, u) be a strategic game in normal form.

For any two correlated equilibria ¢; and ¢, and for any a € [0, 1], we find
that Y :={s— a - Y1(s)+(1-a) - Ya(s)| s € 8} is a correlated equilibrium.
Proof.

Let a € [0, 1] and consider any i € P, s;, s € Sj. We have

ses,s, (Yals)- (Uilsk, 5.)- ui(s))
= YLses,ss, (@ P1(8)+(1-0)- ha(9)) - (uilsk, 5-) - ui(s)))

= Teess, s,( Q- 1(5)- (Ui, 5-) = Ui(S)) * (1= @) - YlS)) - (uy(51, 5-) - i(s)))
= Tsesss (@ 91(9) - (Uil s-) - <s>>)+zses,s:s,( ) Yls) - (s 5-) - ui(s)

=a-Zse5,s,:s/(w1 s)-(u,-(sk,s-,»)—u,-(s)))+ -0 Cgesg Sj(¢'2 (Uiskes-) - uis)) ) <000
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Regret Matching
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Learning to Play

Learning in Games: General Setting

* A (normal-form) game is played repeatedly for time pointst =1, 2, .. ..

+ After the game at time point t has ended, player (say) i has access to all
strategy profiles s',s?, ..., s played previously, and their payoffs to /.

+ Using this information, the player can devise a (mixed) strategy nt*' to
play at time pointt+1.

How can we evaluate whether a learner (player) is “doing well"?

Hindsight Rationality

After playing the game for t — oo time points, the player “cannot think of” a
function @: [1; — [1; that would strictly increase their payoff in hindsight.

Can learning (dynamic, local) lead to equilibria (static, global)?
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Regret Matching

In what follows, we assume a fixed normal-form game G = (P, S, u) to be
played at time pointst = 1,2, ..., T and take the perspective of j € P.

At each time step t < T, i's one-time regret of not having played s € §; is:
ri(sk) == uj(sk, L) - ui(s")
At time point T, the accumulated regret of a strategy s, € S; is thus:
Ri(si) = ) ri(se)

1<t<T

The probabilities at T + 1 are then set to be proportional to positive regret:

N
RI(s)) e T+ . +
[;?Tﬁ] ifRl* >0, where R":= 5 [R,-T(sk)] ,
T+1 . -
m(s)) = ! SKES] fors; € S;
S otherwise.
! (X" := max {x,0} forallx € R)
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Regret Matching: Example

(Cat,Dee) | Cinema | Dancing
Cinema (10,7) (2,2)
Dancing (0,0) (7,10)
We denote Cinema = Dancing and Dancing = Cinema.
T_ (T T T (T T (Ci T i T+1
T § = (sCat'sDee) rCat(SCat) RCat(Clnema) RCat(DanCIng) Meat
1 | (Cinema, Dancing) 5 0 5 {Cinema — 0,Dancing — 1}
2 | (Dancing, Cinema) 10 10 5 {Cinema — %, Dancing — ;}
3 | (Cinema, Dancing) 5 10 10 {Cinema — % Dancing — ;}
4 | (Cinema,Cinema) -10 10 0 {Cinema + 1,Dancing — 0}
5 | (Cinema, Dancing) 5 10 5 {Cinema — % Dancing — ;}
6 | (Cinema,Cinema) -10 10 -5 {Cinema + 1,Dancing — 0}
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Regret Matching: Correctness

For a given play sequence (s)]_,, and every s’ € 8, define the relative
frequency of s’ after T rounds via

Treny . | /
pls) =2 [{1<t<T|s' =57}

Theorem [Hart and Mas-Colell, 2000]

Let G = (P, S, u) be a noncooperative game in normal form.

If every player plays according to regret matching, then (%), converges to
the set of correlated equilibria of Gas T — .

More precisely: For any € > 0, there is a Ty > 0 such that for all T > Ty, there
is a correlated equilibrium 7 of G whose distance from @' is at most €.
Note: The result does not say that relative frequencies converge to a point.
~ Since all players must use regret matching, it will be used in self-play.
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Regret Matching in Self-Play: Example

(Cat,Dee) | Cinema | Dancing
Cinema (10,7) (2,2)
Dancing (0,0) (7,10)
We denote Rl = (R (Cinema), Rl (Dancing)) for i € {Cat, Dee}.

TS (Tosk) | AL | AL o e

1 (Cinema, Dancing) (0,5) (5,0) {Cinema s 0,Dancing — 1} {Cinema + 1,Dancing +— 0}

2 (Dancing, Cinema) (10,5) (5,10) {Cinema — %, Dancing +— %} {Cinema — %, Dancing — %}

3 (Cinema, Dancing) (10,170) | (10,10) {Cinema — %, Dancing +— %} {Cinema — 17, Dancing — 17}

4 | (Dancing, Dancing) (5,10) (0,10) {Cinema — %, Dancing +— %} {Cinema + 0,Dancing — 1}

5 (Cinema, Dancing) (5,15) (5,10) {Cinema — }1, Dancing +— %} {Cinema — %, Dancing — %}

6 | (Dancing, Dancing) (0,15) (-5,10) {Cinema + 0,Dancing — 1} {Cinema + 0,Dancing — 1}

7 | (Dancing,Dancing) | (-5,15) | (-15,10) {Cinema +— 0, Dancing — 1} {Cinema — 0,Dancing — 1}
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Rate of Convergence

For a given sequence (mr')]_, of mixed-strategy profiles, define the (external)
overall regret of player / € P after T rounds via

.
Rl := max «[Z (Ui, k) - Ui, mity)) }

f[Eﬂ,‘ —1

Let G = (P, S, u) be a normal-form game and let player i € P use regret
matching in the sequence (rr")]_, of mixed-strategy profiles.

Then R] < w-V/T, where the constant w € R depends only on u.

The average overall regret is then R := 1. R.

RT tends to zero as T — oo iff @7 tends to the set of correlated equilibria.
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The Case of Two-Player Zero-Sum Games

For a given sequence (mr)]_, of mixed-strategy profiles, define the average
mixed strategy 71/ of player i € P after T rounds via

.
1
i (s) i= — Z mi(s;) fors; €S
=1

Let G = (P, S, u) be a two-player, zero-sum normal-form game, i.e. P = {1,2},
and let (m!)[_, be obtained from both players using regret matching.
Then as T — oo, the pair (1], }) converges to the set of Nash equilibria of G.
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Regret Matching”

The computation of the accumulated (possibly negative) regret of a strategy
sk € Sj can be rewritten as:
RI(sk) := R\ (si)+r](s))  with R(s) :=0

Tammelin [2014] observed a better convergence when this is replaced by

RI* (s 1= [RT(s0)] + T (50

The probabilities at T + 1 are again set to be proportional to positive regret:

RI*(s))
IRT"'j ifRI" >0, where R":=3 R["(sy),
! SKES; fors; €5

T+1(cy -
i (s)) =

— otherwise.
|Sil

RM* reacts more quickly when a previously poor action improves over time.
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From Normal Form to Extensive Form

Solving Imperfect-Information Games: Main Ideas

+ Traverse the game tree in a backward induction-like fashion.
* Apply regret matching at each decision point (information set).

Problem
Optimal moves depend on probabilities of moves in other information sets.

Solution of Zinkevich, Johanson, Bowling, and Piccione [2007]

+ Define new notion of counterfactual regret:

Assume the player played to deliberately reach a certain information set.

+ Then for games with perfect recall:
- Regret matching can be applied to each information set independently.
- Counterfactual regret is an upper bound for actual regret (main theorem).
- Thus minimising counterfactual regret minimises actual regret.
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https://proceedings.neurips.cc/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf

Remember, Remember

Recall

P(h"| h, ) is the probability that h’ is reached when playing it from h on:
* P(h|h,m)=1forallheH,

* P([]|h, ) =0forall h # [], and

* P([h";m]|h, ) = 1y, (M|Tp) - P("| h, ).

Recall
The probability of reaching information set J; when playing m is thus
POj| 1) i= 2_pey, PR TT) where P(h|m) denotes P(h| ], 1)

Recall
Player i's expected utility of playing r when history h has been reached is

Ulm|h) :=)_,., P(| h, 1) - ui(2)

#» Computational
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Towards Counterfactual Regret
Definition
Consider an extensive-form game with player i € P and information sets J.

1. The counterfactual probability of playing to reach h € H is given by
m(m|h')- PR |m) ifph’) =k + 1,
P([)|m.) =1 and P([’; m] |T_) := Km{ A7) -~ ,l ) 1tp() _ 7
P(h’|m_;) otherwise.

2. The counterfactual probability of playing to reach J; € Jis
POj 1) = 3 _pey, PHTT)
3. The counterfactual utility of playing to reach J; and then playing m is

Xy Ph|T)-Um|h) 3 pey P(NITE)- 3,7 PZI D TO) - Ui(2)

Ui(rt | jj) = P(Jj | ) P(Jj | _))

We counterfactually assume that / intentionally played to reach J;.
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Counterfactual Regret
Definition
Consider /i € Pand J; € Jwith p(J)) = i.
1. Denote the set of legal moves of j in J; by
M(3)) := {m € M; | [h; m] € Hfor some h € J;}
2. For behaviour strategy profile m and move m € M;(J;), define modified

profile (n)f{, to be just like mr, except that in J; it always chooses m.
3. The immediate counterfactual regret at time T is then defined by

IRLAED)

r7(g) = max ZP(J,U:,) (U,(( 0oy

m*eM;(J;)
for any sequence (m!)]_, of behaviour strategy profiles.

Key Feature: r,T can be minimised by controlling only m;(J;): M;(J;) — [0, 11.
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Overall Regret < Immediate Regret

Given sequence (mr")]_,, the (external) overall regret of player j at time T is:

.
Rl =max} (Uitm;, m’) - ()

t=1

A
3

where Uj(rr) denotes Ui(rt| []).

Theorem [Zinkevich, Johanson, Bowling, and Piccione, 2007]

In any extensive-form game with perfect recall, for any player i € P and any
sequence (rr)]_, of behaviour strategy profiles:

.
RI< Y |dw)
Jjeﬂ,
p(3))=i

Thus: Minimising immediate regret in each J; minimises overall regret.
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Regret Matching at Information Sets

Definition
Consider the sequence (r")]_, of behaviour strategy profiles of past play.
1. Let J; € Jwith p(J;) = i and m € M;(J;). The accumulated regret of m is

RI(5j, m) = i PImty- (Ui((m) | 9) - Ui(rt|9))

t=1

2. The probability of playing m at J; at time T + 1 is set to

RT I, : + +
M ifRl* >0, whereR[":= ) [RT(JJ, m)]
4 R:
1 (3)(m) = i meM(7)

—_— otherwise.
|Mi(3))]
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CFR: Algorithm (1)

Initialisation of global variables:

function init() {
foreach i e {1,2} do {
foreach Jj el with p;) = ido{

foreach m € M;(J;) do {
regret[jlIlm] := 0
strategy[j1lm] := 0
profile[11[/1lm] := 1/|M(J))|

Pr1}

Main Loop:

function solve(T7) {
foreacht e {1,2,...,7} do{
foreach /e {1,2} do {

// accumulated regret table
// accumulated strategy table
// move distribution for J; at t = 1

cfr(],i ¢t 1,1)
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CFR: Algorithm (2)

function cfr(h, i, t, py, p2) { // history, player, time point, reach probabilities
if IS-TERMINAL(h) then return uTILITY/(S)
vp =0 // initialise expected payoff at h € J;
foreach m Mp(jj)(jj) do { v,’,[j][m] =07 // initialise payoffs of single moves

foreach m € Mp(5,(3)) do {
if TURN(h) = 1 then { v,’7[f_|[m] := cfr([h; m], i, t, profile[tl[j1Im] - p1, p2) }
else {v;[jlIlm] := cfr([h; m], i t, pq, profile[tl[j1lm] - p2) }

Vp i= vy + profile[t][jllm] - v,',[f_l[m] ) // accumulate currently expected payoff
if TURN(h) =/ then { // players minimise immediate regret of own moves
r*:=0 // initialise sum of positive regrets
for m € M;(J;) do { /1 update values needed for regret matching

regret[jl1lm] := regret[jllm] + p3_; - (v,’,[m] - Vp) // update accumulated cf regret
strategy[ j1lm] := strategy[ jllm] + p; - profile[t][ j/1lm] // update “frequency” of move
=t [regret[j][m]]+ } // accumulate positive regret sum for normalisation
if r* > 0 then { foreach m € M;(J;) do { /1 apply regret matching at J;
profile[t + 11[j1lm] := [regret[ j][m]]J’/r+ 1}
else { foreach m € M;(J;) do {
profilelt + 11[j1lm] := 1/|M(3))| }} }
return vy, }
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CFR: Example

Recall the following extensive-form game Gy:
1

N—=
\
N =
=

0,2) 2,1) (-1,-1) (1, 1) (-2,0)

(1) Initialise move probabilities by uniform distributions

(2) Traverse game treefor7T =1,i =1

(3) Traverse game treefor 7T =1,/ =2

(4) Update move probabilities according to regret matching
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CFR: Convergence and Correctness
Theorem [Zinkevich, Johanson, Bowling, and Piccione, 2007]

For any extensive-form game with perfect recall, if player i selects actions
according to regret matching at information sets, then

rTI) <w-/|M|- VT whence Rl <w-|{J€7|p@) =i} -\/|M| VT
where w € R only depends on u, and M| := UEISS )= |Mi(3)|.
* The bound on overall regret is linear in the number of information sets.

* The overall regret grows sublinearly in T, so the average overall regret
RT := 1 .Ritendsto zeroas T — oo.

Theorem

In any two-player, zero-sum extensive-form game with perfect recall, if both
players select actions according to regret matching at information sets, then
the average strategy profiles tend to the set of Nash equilibriaas T — oc.
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CFR Algorithm: Remarks

*+ Histories/information sets of Nature can be treated in the algorithm via
sampling a move from My.,r.(J;) with the specified distribution.

+ Ateachtimestept=1,2,...,T (and for each i € P), the call to
cfr([],i t,1,1) leads to a full traversal of the game tree.

*+ After solve(T), the final values of strategy[jllm] can be normalised to
obtain the behaviour strategies tending towards Nash equilibria.

+ Additional techniques, e.g. game abstraction, are used in practice to
reduce the number of information sets (per player) to a manageable size.

+ By using regret matching” in place of regret matching, we obtain CFR".
« CFR* also uses linear weighting to compute average strategies:
() = 7 i (t-(s))

« Bowling et al. [2015] used CFR* (with additional optimisations) to
“essentially weakly solve” heads-up limit hold’em poker.
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Conclusion

Summary

The regret is the difference between a player's best possible strategy and
their actual strategy.

A correlated equilibrium can be seen as providing players with private
signals they can use to best-respond to each other’s strategies.

The regret matching algorithm uses self-play to steer play towards the
set of correlated equilibria.

In the case of two-player zero-sum games, regret matching tends towards
the set of (mixed) Nash equilibria.

The counterfactual regret minimisation algorithm applies regret
matching to every information set of an (imperfect-information)
extensive-form game (with perfect recall).

Action Point: Implement CFR™) and use it to solve Simplified Poker.

TECHNISCHE Counterfactual Regret Minimisation (Lecture 8) r'Y .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 36 of 36 L Computational

DRESDEN Algorithmic Game Theory, SS 2024 [

Logic ~ Group



	Correlated Equilibria
	Regret Matching
	Counterfactual Regret Minimisation

