

Concurrency Theory

Lecture 3: Bisimilarity and All That

Dr. Stephan Mennicke

Institute for Theoretical Computer Science
Knowledge-Based Systems Group

April 14, 2025

International Center
for Computational Logic

Towards Bisimilarity

$p \equiv q$ if, for all $a \in \text{Act}$,

1. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \equiv q'$;
2. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \equiv q'$.

Problematic: no deadlock no *base case*

Definition 16 (Bisimulation, Bisimilarity) A process relation $\mathcal{R} \subseteq \text{Pr} \times \text{Pr}$ is called a *(strong) bisimulation* if, for all $p, q \in \text{Pr}$, $p \mathcal{R} q$ implies

1. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \mathcal{R} q'$, and
2. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \mathcal{R} q'$

for all $a \in \text{Act}$. We call p and q *bisimilar*, denoted $p \simeq q$, if there is a bisimulation \mathcal{R} such that $p \mathcal{R} q$. \simeq is called *bisimilarity*.

An Inductive Approach to Process Equivalence in Reverse

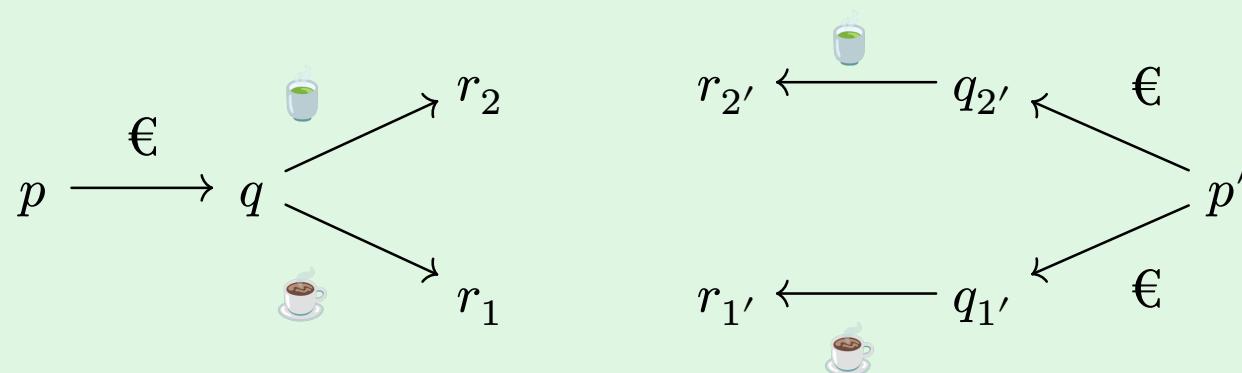
Compute $\simeq_0, \simeq_1, \dots$ and define $\simeq_\omega := \bigcap_{i \geq 0} \simeq_i$

for you, tj24

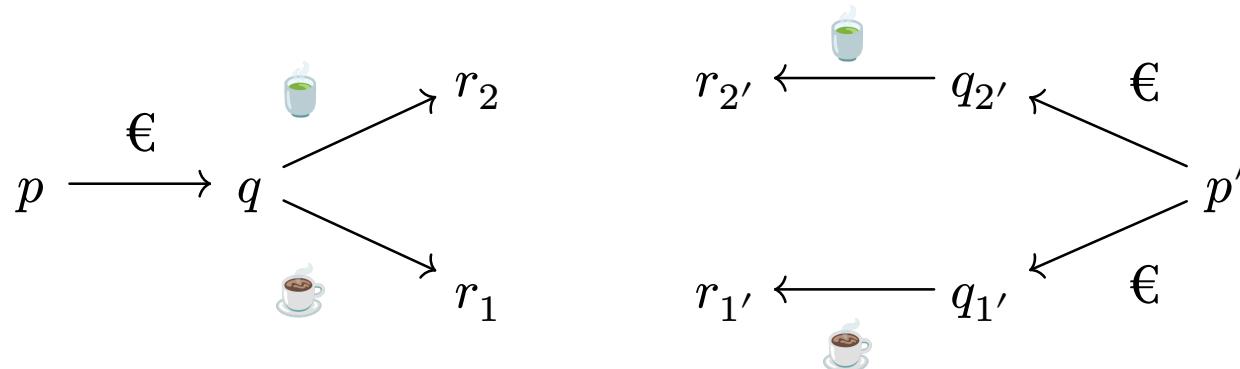
1. set $\simeq_0 = \mathcal{U}$
2. $p \simeq_{n+1} q$ for $n \geq 0$ if for all $a \in \text{Act}$:

- a. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \simeq_n q'$;
- b. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \simeq_n q'$.

Example.



An Inductive Approach to Process Equivalence in Reverse



$$\simeq_0 = \{(p, p), (p, \cancel{q}), (p, \cancel{r_1}), (p, \cancel{r_2}), (p, p'), \dots, (q, q), (q, \cancel{q_1}), (q, \cancel{q_2}), \dots\}$$

$$\simeq_1 = \{(p, p), (\cancel{p}, p'), (\cancel{p'}, p), (p', p'), (q, q), (q_1, q_1), (q_2, q_2), \dots, (r_1, r_1), (r_1, r_2), \dots\}$$

$$\simeq_2 = \{(p, p), (p', p'), (q, q), (q_1, q_1), (q_2, q_2), \dots\} = \simeq_\omega$$

$$p \not\simeq_\omega p'$$

Bisimilarity and Two Examples

Definition 16 (Bisimulation, Bisimilarity) A process relation $\mathcal{R} \subseteq \text{Pr} \times \text{Pr}$ is called a *(strong) bisimulation* if, for all $p, q \in \text{Pr}$, $p \mathcal{R} q$ implies

1. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \mathcal{R} q'$, and
2. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \mathcal{R} q'$

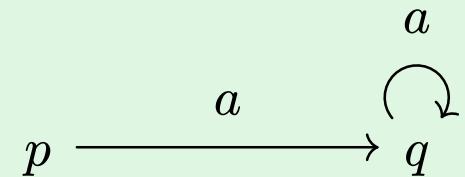
for all $a \in \text{Act}$. We call p and q *bisimilar*, denoted $p \simeq q$, if there is a bisimulation \mathcal{R} such that $p \mathcal{R} q$. \simeq is called *bisimilarity*.

Consequences

1. bisimilarity \simeq is the union of all bisimulations
2. showing that $p \simeq q$ holds reduces to finding a bisimulation \mathcal{R} such that $p \mathcal{R} q$
3. conversely, $p \not\simeq q$ can be shown by excluding the existence of any such bisimulation \mathcal{R}

Bisimilarity and Two Examples

Example.

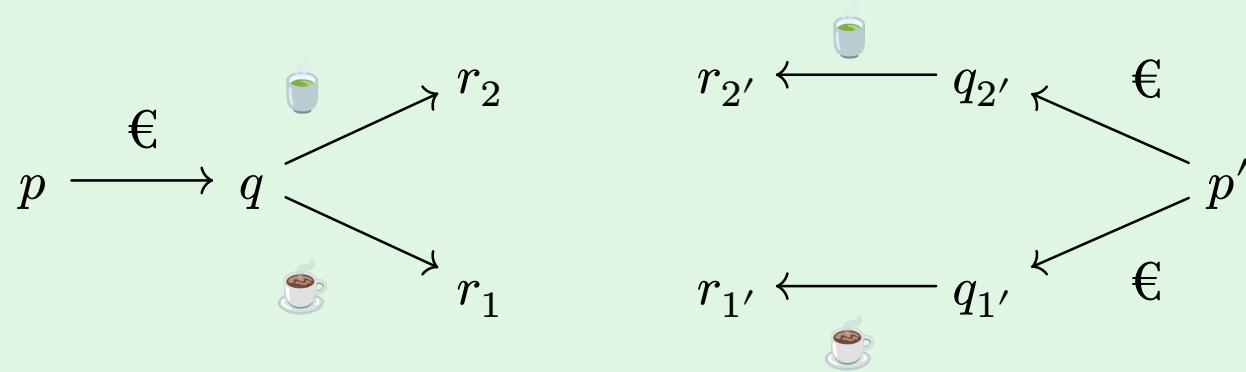


$p \simeq q$ by $\mathcal{R} = \{(p, q), (q, q)\}$, but $\mathcal{R}' = \{(p, q), (q, p)\}$ is not a bisimulation. ■

Recall: $p \leftrightarrow q$.

Bisimilarity and Two Examples

Example.



Towards a contradiction, suppose $p \simeq p'$. Then there is a bisimulation \mathcal{R} with $p \mathcal{R} p'$. As \mathcal{R} is a bisimulation, $q \mathcal{R} q_1'$ since $p' \xrightarrow{\epsilon} q_1'$ and $p \xrightarrow{\epsilon} q$. But $q \mathcal{R} q_1'$ cannot hold since $q \xrightarrow{\epsilon} r_2$ whereas $q_1' \not\xrightarrow{\epsilon}$. ■

Recall: $p \equiv_{\text{tr}} p'$ and $p \equiv_{\text{ctr}} p'$.

Dissecting Bisimilarity

Definition 16 (Bisimulation, Bisimilarity) A process relation $\mathcal{R} \subseteq \mathbf{Pr} \times \mathbf{Pr}$ is called a *(strong) bisimulation* if, for all $p, q \in \mathbf{Pr}$, $p \mathcal{R} q$ implies

1. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \mathcal{R} q'$, and
2. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \mathcal{R} q'$

for all $a \in \mathbf{Act}$. We call p and q *bisimilar*, denoted $p \simeq q$, if there is a bisimulation \mathcal{R} such that $p \mathcal{R} q$. \simeq is called *bisimilarity*.

Proofs of bisimilarity are

- *local* checks performed on states separately
- *non-hierarchical* no fixed temporal order
- require no **base case** this is **not** induction

It is, in fact, an example of **coinduction**

(We had already seen what happens if we read Definition 16 inductively.)

Dissecting Bisimilarity

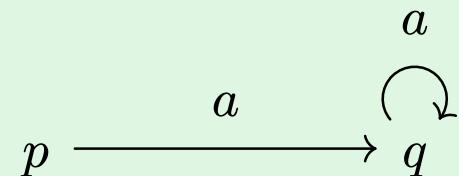
Theorem 17 \simeq is a process equivalence that is itself a bisimulation.

Proof: We have to show that \simeq is (1) an equivalence and (2) a bisimulation.

to be continued... ■

Not every bisimulation is an equivalence:

Example.



$p \simeq q$ by $\mathcal{R} = \{(p, q), (q, q)\}$ which is **neither** reflexive **nor** symmetric.

Dissecting Bisimilarity

Theorem 17 \simeq is a process equivalence that is itself a bisimulation.

Proof: We have to show that \simeq is (1) an equivalence and (2) a bisimulation.

Reflexivity $\text{id} : \mathbf{Pr} \rightarrow \mathbf{Pr}$ is, in fact, a bisimulation. For $p \text{id} q$ (i.e., $\text{id}(p) = q$), we get $p \xrightarrow{a} p'$ iff $q = \text{id}(p) = p \xrightarrow{a} p' = \text{id}(p') = q'$. The same holds for steps from $\text{id}(p)$.

Symmetry If \mathcal{R} is a bisimulation, then $\mathcal{R}^{-1} := \{(q, p) \mid p \mathcal{R} q\}$ is a bisimulation.

Transitivity Let $\mathcal{R}_1, \mathcal{R}_2$ be bisimulations. We subsequently show that $\mathcal{R}_1 \circ \mathcal{R}_2 := \{(x, z) \mid \exists y. x \mathcal{R}_1 y \wedge y \mathcal{R}_2 z\}$ is a bisimulation. For $p \mathcal{R}_1 \circ \mathcal{R}_2 q$ and $p \xrightarrow{a} p'$,

1. there is an r such that $x \mathcal{R}_1 r$ and $r \mathcal{R}_2 q$; by definition of $\mathcal{R}_1 \circ \mathcal{R}_2$
2. there is an r' such that $r \xrightarrow{a} r'$ and $p' \mathcal{R}_1 r'$ since \mathcal{R}_1 is a bisimulation
3. there is a q' such that $q \xrightarrow{a} q'$ and $r' \mathcal{R}_2 q'$ since \mathcal{R}_2 is a bisimulation
4. hence, by taking that q' , we get $p' \mathcal{R}_1 \circ \mathcal{R}_2 q'$ by definition of $\mathcal{R}_1 \circ \mathcal{R}_2$

Since bisimulations are union-closed (by Lemma 18, cf. next slide) and \simeq is the union of all bisimulations, \simeq is itself a bisimulation. ■

Disecting Bisimilarity

Lemma 18 Bisimulations are closed under set unions: If $\{\mathcal{R}_i\}_i$ is a (at most countable) family of bisimulations, then $\bigcup_i \mathcal{R}_i$ is a bisimulation.

Towards a special case, take two bisimulations \mathcal{R}_1 and \mathcal{R}_2 and consider $\mathcal{R}_1 \cup \mathcal{R}_2$:

Take $p \mathcal{R}_1 \cup \mathcal{R}_2 q$ and consider $p \xrightarrow{a} p'$.

1. if $p \mathcal{R}_1 q$, then there is a q' such that $q \xrightarrow{a} q'$ and $p' \mathcal{R}_1 q'$ \mathcal{R}_1 is a bisimulation
2. if $p \mathcal{R}_2 q$, then there is a q' such that $q \xrightarrow{a} q'$ and $p' \mathcal{R}_2 q'$ \mathcal{R}_2 is a bisimulation

In both cases, there is a q' such that $q \xrightarrow{a} q'$ and $p \mathcal{R}_1 \cup \mathcal{R}_2 q$. Same for $q \xrightarrow{a} q'$.

Proof: If each \mathcal{R}_i is a bisimulation, then $\mathcal{R} = \bigcup_i \mathcal{R}_i$ is a bisimulation. For each pair $p \mathcal{R} q$, there is a \mathcal{R}_i such that $p \mathcal{R}_i q$.

1. if $p \xrightarrow{a} p'$, there is a q' such that $q \xrightarrow{a} q'$ and $p' \mathcal{R}_i q'$ \mathcal{R}_i is a bisimulation
2. if $q \xrightarrow{a} q'$, there is a p' such that $p \xrightarrow{a} p'$ and $p' \mathcal{R}_i q'$ \mathcal{R}_i is a bisimulation

In each case $p' \mathcal{R}_i q'$ and, thus, $p' \mathcal{R} q'$. ■

Yet Another Characterization of \simeq

Theorem 19 \simeq is the largest bisimulation, i.e., the largest process relation \simeq such that $p \simeq q$ implies for all $a \in \text{Act}$:

1. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \simeq q'$, and
2. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \simeq q'$.

Proof: By Theorem 17, \simeq is a bisimulation. It remains to be shown that it is the **unique** largest one.

Consider two largest bisimulations \simeq_1 and \simeq_2 . Since bisimulations are union-closed (by Lemma 18), $\simeq_1 \cup \simeq_2$ is a bisimulation as well, implying that $\simeq_1 = \simeq_1 \cup \simeq_2$ and $\simeq_2 = \simeq_1 \cup \simeq_2$ to not contradict the assumption that \simeq_1 and \simeq_2 were chosen to be largest. Thus, \simeq is the *unique* largest bisimulation. ■

Bisimilarity is an Example for Branching-Time

Theorem 20

$$\leftrightarrow \quad \overset{(1)}{\subsetneq} \quad \simeq \quad \overset{(2)}{\subsetneq} \quad \equiv_{\text{ctr}} \quad \subsetneq \quad \equiv_{\text{tr}}$$

Proof:

(1) Let $f : \mathsf{Pr} \rightarrow \mathsf{Pr}$ be an isomorphism. We show, f is a bisimulation.

For $p \mathrel{f} q$ (i.e., $f(p) = q$),

$p \xrightarrow{a} p'$ iff $f(p) \xrightarrow{a} f(p')$ since f is an isomorphism

iff $\exists q'. q \xrightarrow{a} q'$ by $f(p) = q$ take $q' = f(p')$

We have $p' \mathrel{f} q'$ since $f(p') = q'$. The second direction is analogous.

Towards $\leftrightarrow \neq \simeq$, \simeq is insensitive to branch duplicates.

Bisimilarity is an Example for Branching-Time

Theorem 20

$$\leftrightarrow \quad \overset{(1)}{\subsetneq} \quad \simeq \quad \overset{(2)}{\subsetneq} \quad \equiv_{\text{ctr}} \quad \subsetneq \quad \equiv_{\text{tr}}$$

Proof:

- (2) Let $p, q \in \mathbf{Pr}$ such that $p \simeq q$. We need to show that $p \equiv_{\text{ctr}} q$, meaning $\text{ctraces}(p) = \text{ctraces}(q)$. It is sufficient to show that $\text{ctraces}(p) \subseteq \text{ctraces}(q)$ since the other direction follows by symmetry (process equivalences are symmetric).

Let $\sigma \in \text{ctraces}(p)$ with $\sigma = a_1 a_2 \dots a_n$. Then there are states p_1, p_2, \dots, p_n such that $p \xrightarrow{a_1} p_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} p_n$ and p_n is a deadlock.

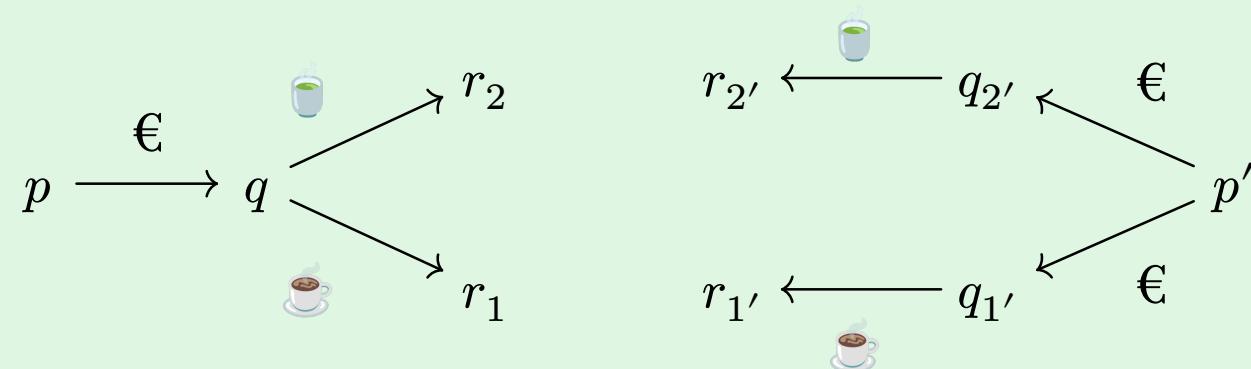
Since $p \simeq q$, there are q_1, q_2, \dots, q_n such that $q \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n$ such that $p_i \simeq q_i$ ($i = 1, \dots, n$). In particular, q_n is a deadlock. Thus, $a_1 a_2 \dots a_n = \sigma \in \text{ctraces}(q)$.

Counterexample for $\simeq = \equiv_{\text{ctr}}$

Theorem 20

$$\leftrightarrow \quad \overset{(1)}{\subsetneq} \quad \simeq \quad \overset{(2)}{\subsetneq} \quad \equiv_{\text{ctr}} \quad \subsetneq \quad \equiv_{\text{tr}}$$

Example.



$p \not\simeq p'$ but $p \equiv_{\text{ctr}} p'$

What about \simeq_ω ?

Definition 16 (Bisimulation, Bisimilarity) A process relation $\mathcal{R} \subseteq \text{Pr} \times \text{Pr}$ is called a (strong) *bisimulation* if, for all $p, q \in \text{Pr}$, $p \mathcal{R} q$ implies

1. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \mathcal{R} q'$, and
2. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \mathcal{R} q'$

for all $a \in \text{Act}$. We call p and q *bisimilar*, denoted $p \simeq q$, if there is a bisimulation \mathcal{R} such that $p \mathcal{R} q$. \simeq is called *bisimilarity*.

$$\simeq_\omega := \bigcap_{i \geq 0} \simeq_i$$

1. set $\simeq_0 = \mathcal{U}$
2. $p \simeq_{n+1} q$ for $n \geq 0$ if for all $a \in \text{Act}$:
 - a. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \simeq_n q'$;
 - b. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \simeq_n q'$.

Do the two views on process equivalence, \simeq and \simeq_ω , coincide?

What about \simeq_ω ?

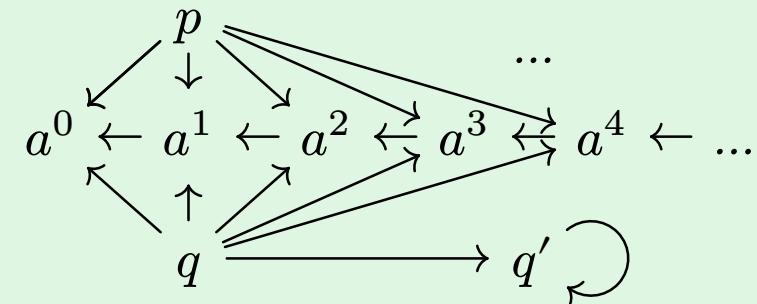
$$\simeq_\omega := \bigcap_{i \geq 0} \simeq_i$$

1. set $\simeq_0 = \mathcal{U}$

2. $p \simeq_{n+1} q$ for $n \geq 0$ if for all $a \in \text{Act}$:

- for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \simeq_n q'$;
- for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \simeq_n q'$.

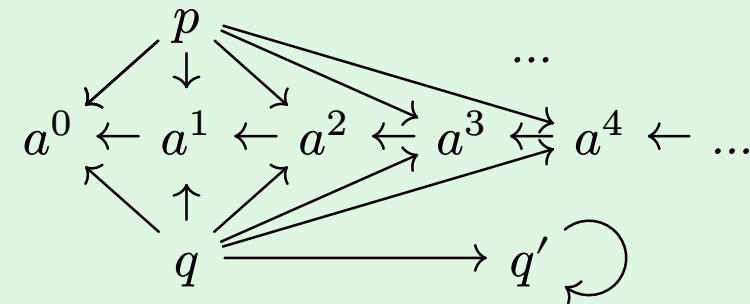
Example.



😴 We're going to show that $p \simeq_\omega q$ but $p \not\simeq q$ 😴

What about \simeq_ω ?

Example.



Claim: For each $n \in \mathbb{N}$, we get $p \simeq_n q$.

$p \simeq_\omega q$ follows (why?)

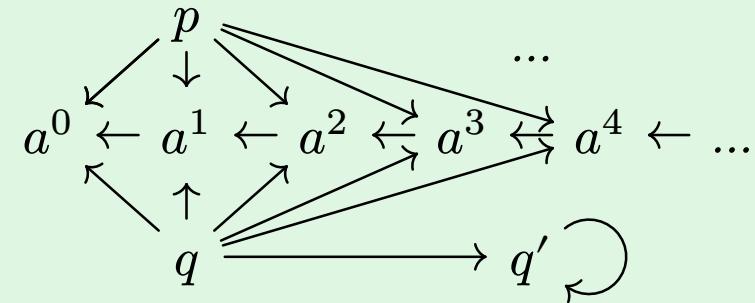
1. $n = 0$, $p \simeq_n q$ since $\simeq_0 = \text{Pr} \times \text{Pr}$ is the universal process equivalence.
2. $n \rightarrow n + 1$,

- if $q \rightarrow q'$, p answers by $p \rightarrow a^n$;
- if $q \rightarrow a^k$, answer by $p \rightarrow a^k$, and vice versa.

$a^n \simeq_n q'$ for all $n \in \mathbb{N}$.
exploit reflexivity of \simeq_n

What about \simeq_ω ?

Example.



Claim: For each $n \in \mathbb{N}$, $a^n \simeq_n q'$

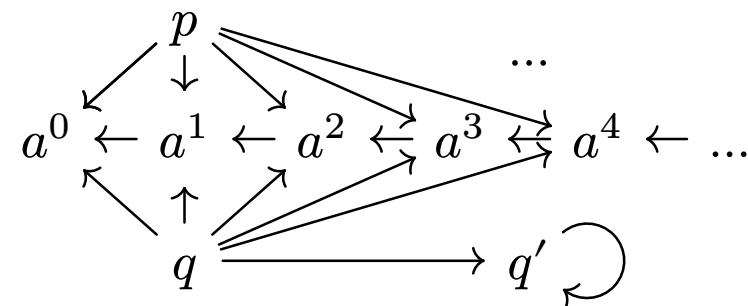
1. $n = 0$, ✓
2. $n \rightarrow n + 1$, a^{n+1} still has $n + 1$ steps to go until it deadlocks in a^0 .

Another Fact: For each $m, n \in \mathbb{N}$, $a^m \simeq_n q'$ if $m \geq n$.

Definition 16 (Bisimulation, Bisimilarity) A process relation $\mathcal{R} \subseteq \mathbf{Pr} \times \mathbf{Pr}$ is called a *(strong) bisimulation* if, for all $p, q \in \mathbf{Pr}$, $p \mathcal{R} q$ implies

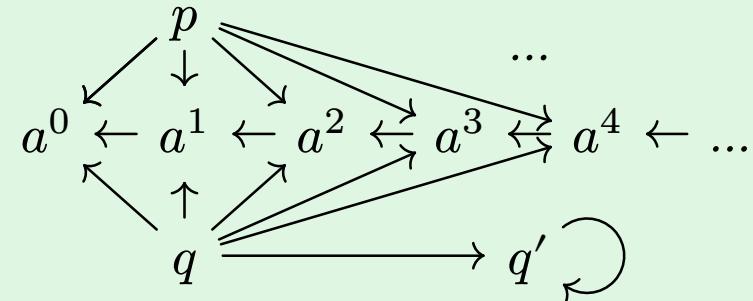
1. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \mathcal{R} q'$, and
2. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \mathcal{R} q'$

for all $a \in \mathbf{Act}$. We call p and q *bisimilar*, denoted $p \simeq q$, if there is a bisimulation \mathcal{R} such that $p \mathcal{R} q$. \simeq is called *bisimilarity*.



Towards $p \not\simeq q$

Example.



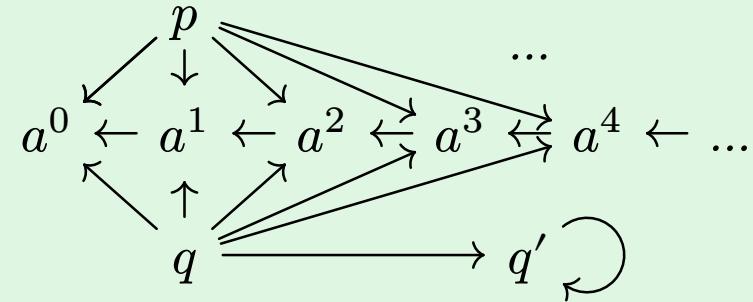
Assume, there is a bisimulation \mathcal{R} such that $p \mathcal{R} q$. Then for $q \rightarrow q'$, there is some $m \in \mathbb{N}$, so that $p \rightarrow a^m$ and $a^m \mathcal{R} q'$.

Claim: For all $n \in \mathbb{N}$, $a^n \not\simeq q'$.

1. $n = 0$, $a^n \not\simeq$ whereas $q' \rightarrow q'$.
2. $n \rightarrow n + 1$, $a^{n+1} \rightarrow a^n$. Thus, $a^{n+1} \simeq q'$ if and only if $a^n \simeq q'$. By induction hypothesis, $a^n \not\simeq q'$. In conclusion, $a^{n+1} \not\simeq q'$.

What is Wrong with \simeq_ω ?

Example.



1. p is
 - acyclic,
 - infinite-state,
 - infinitely branching, and
 - **not** even image-finite
2. q is cyclic, ..., and **not** even image-finite

What is Wrong with \simeq_ω ?

Theorem 21 \simeq and \simeq_ω coincide on *image-finite* LTSs.

Proof: We prove both directions separately. Consider all processes and, in fact, the underlying LTS to be *image-finite*.

$\simeq \subseteq \simeq_\omega$ For each $n \in \mathbb{N}$, we show that $p \simeq q$ implies $p \simeq_n q$.

$n = 0$ Since $\simeq_n = \simeq_0 = \text{Pr} \times \text{Pr}$, $p \simeq_n q$ holds trivially.

Hypothesis For $n \in \mathbb{N}$, $p \simeq q$ implies $p \simeq_n q$.

$n \rightarrow n + 1$ If $p \simeq q$ holds, we show that $p \simeq_{n+1} q$. For each $a \in \text{Act}$

1. if $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \simeq q'$. By induction hypothesis, $p' \simeq q'$ implies $p' \simeq_n q'$.

2. if $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \simeq q'$. By induction hypothesis, $p' \simeq q'$ implies $p' \simeq_n q'$.

Thus, every step of p (q , resp.) can be answered such that their successors are related by \simeq_n , proving that $p \simeq_{n+1} q$ holds.

What is Wrong with \simeq_ω ?

$\simeq_\omega \subseteq \simeq$ We show that $\mathcal{R} = \{(p, q) \mid p \simeq_\omega q\}$ is a bisimulation. Consider a pair $(p, q) \in \mathcal{R}$.

- Suppose, $p \xrightarrow{a} p'$.
- For all $n \in \mathbb{N}$,
 - as $p \simeq_{n+1} q$, there is some q_n such that $q \xrightarrow{a} q_n$ and $p' \simeq_n q_n$;
- Since q is image-finite, the set $Q = \left\{ q' \mid q \xrightarrow{a} q' \right\}$ is finite;
 - thus, there must be one $q' \in Q$ such that $p' \simeq_n q'$ for each $n \in \mathbb{N} \Rightarrow p' \simeq_\omega q'$

■

What is Right with \simeq_ω ?

$$\simeq_\omega := \bigcap_{i \geq 0} \simeq_i$$

1. set $\simeq_0 = \mathcal{U}$
2. $p \simeq_{n+1} q$ for $n \geq 0$ if for all $a \in \text{Act}$:

- a. for all p' with $p \xrightarrow{a} p'$, there is a q' with $q \xrightarrow{a} q'$ and $p' \simeq_n q'$;
- b. for all q' with $q \xrightarrow{a} q'$, there is a p' with $p \xrightarrow{a} p'$ and $p' \simeq_n q'$.

Theorem 21 \simeq and \simeq_ω coincide on *image-finite* LTSs.

1. Finite LTSs are image-finite. recall
2. How hard is it to compute \simeq on finite LTSs $(\mathcal{P}, \text{Act}, \rightarrow)$? i.e., \simeq_ω
 - compute $\simeq_0 = \mathcal{U}$ $\mathcal{O}(|\mathcal{P}|^2)$
 - iteratively remove all pairs from \simeq_i contradicting bisimulations $\rightsquigarrow \simeq_{i+1}$ $\mathcal{O}(|\mathcal{P}|^3)$
 - stop when nothing changes after at most $|\mathcal{P}|^2$ removals

Compare with \equiv_{tr} (PSPACE-complete)