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Towards Bisimilarity

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

Problematic: no deadlock 😈 no base case

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.
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An Inductive Approach to Process Equivalence in Reverse

Compute ≃0, ≃1, … and define ≃𝜔≔ ⋂𝑖≥0 ≃𝑖 for you, tj24
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′
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An Inductive Approach to Process Equivalence in Reverse

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

≃0= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑝, 𝑟1), (𝑝, 𝑟2), (𝑝, 𝑝′), …, (𝑞, 𝑞), (𝑞, 𝑞1′), (𝑞, 𝑞2′), …}
≃1= {(𝑝, 𝑝), (𝑝, 𝑝′), (𝑝′, 𝑝), (𝑝′, 𝑝′), (𝑞, 𝑞), (𝑞1′ , 𝑞1′), (𝑞2′ , 𝑞2′), …, (𝑟1, 𝑟1′), (𝑟1, 𝑟2′), …}
≃2= {(𝑝, 𝑝), (𝑝′, 𝑝′), (𝑞, 𝑞), (𝑞1′ , 𝑞1′), (𝑞2′ , 𝑞2′), …} =≃𝜔

𝑝 ≄𝜔 𝑝′
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Bisimilarity and Two Examples

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Consequences
1. bisimilarity ≃ is the union of all bisimulations
2. showing that 𝑝 ≃ 𝑞 holds reduces to finding a bisimulation ℛ such that 𝑝 ℛ 𝑞
3. conversely, 𝑝 ≄ 𝑞 can be shown by excluding the existence of any such bisimulation ℛ
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Bisimilarity and Two Examples

Example. 

𝑎
𝑎

𝑝 𝑞

𝑝 ≃ 𝑞 by ℛ = {(𝑝, 𝑞), (𝑞, 𝑞)}, but ℛ′ = {(𝑝, 𝑞), (𝑞, 𝑝)} is not a bisimulation. ∎

Recall: 𝑝 ↮ 𝑞.
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Bisimilarity and Two Examples

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

Towards a contradiction, suppose 𝑝 ≃ 𝑝′. Then there is a bisimulation ℛ with 𝑝 ℛ 𝑝′. As ℛ
is a bisimulation, 𝑞 ℛ 𝑞1′  since 𝑝′ ⟶

€
𝑞1′  and 𝑝 ⟶

€
𝑞. But 𝑞 ℛ 𝑞1′  cannot hold since 𝑞 ⟶

🍵

𝑟2 whereas 𝑞1′ ⟶
🍵

. ∎

Recall: 𝑝 ≡𝗍𝗋 𝑝′ and 𝑝 ≡𝖼𝗍𝗋 𝑝′.
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Disecting Bisimilarity

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Proofs of bisimilarity are
• local checks performed on states separately
• non-hierarchical no fixed temporal order
• require no base case this is not induction

It is, in fact, an example of coinduction
(We had already seen what happens if we read Definition 16 inductively.)
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Disecting Bisimilarity

Theorem 17  ≃ is a process equivalence that is itself a bisimulation.

Proof: We have to show that ≃ is (1) an equivalence and (2) a bisimulation.

to be continued… ∎

Not every bisimulation is an equivalence:

Example. 

𝑎
𝑎

𝑝 𝑞

𝑝 ≃ 𝑞 by ℛ = {(𝑝, 𝑞), (𝑞, 𝑞)} which is neither reflexive nor symmetric.
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Disecting Bisimilarity

Theorem 17  ≃ is a process equivalence that is itself a bisimulation.

Proof: We have to show that ≃ is (1) an equivalence and (2) a bisimulation.
Reflexivity id : 𝖯𝗋 → 𝖯𝗋 is, in fact, a bisimulation. For 𝑝 id 𝑞 (i.e., id(𝑝) = 𝑞), we get 𝑝 ⟶

𝑎

𝑝′ iff 𝑞 = id(𝑝) = 𝑝 ⟶
𝑎

𝑝′ = id(𝑝′) = 𝑞′. The same holds for steps from id(𝑝).
Symmetry If ℛ is a bisimulation, then ℛ−1 ≔ {(𝑞, 𝑝) | 𝑝 ℛ 𝑞} is a bisimulation.
Transitivity Let ℛ1, ℛ2 be bisimulations. We subsequently show that ℛ1⚬ ℛ2 ≔

{(𝑥, 𝑧) | ∃𝑦.𝑥 ℛ1 𝑦 ∧ 𝑦 ℛ2 𝑧} is a bisimulation. For 𝑝 ℛ1 ⚬ ℛ2 𝑞 and 𝑝 ⟶
𝑎

𝑝′,
1. there is an 𝑟 such that 𝑥 ℛ1 𝑟 and 𝑟 ℛ2 𝑞; by definition of ℛ1⚬ ℛ2
2. there is an 𝑟′ such that 𝑟 ⟶

𝑎
𝑟′ and 𝑝′ ℛ1 𝑟′ since ℛ1 is a bisimulation

3. there is a 𝑞′ such that 𝑞 ⟶
𝑎

𝑞′ and 𝑟′ ℛ2 𝑞′ since ℛ2 is a bisimulation
4. hence, by taking that 𝑞′, we get 𝑝′ ℛ1 ⚬ ℛ2 𝑞′ by definition of ℛ1⚬ ℛ2

Since bisimulations are union-closed (by Lemma 18, cf. next slide) and ≃ is the union of all
bisimulations, ≃ is itself a bisimulation. ∎
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Disecting Bisimilarity

Lemma 18  Bisimulations are closed under set unions: If {ℛ𝑖}𝑖 is a (at most countable)
family of bisimulations, then ⋃𝑖 ℛ𝑖 is a bisimulation.

Towards a special case, take two bisimulations ℛ1 and ℛ2 and consider ℛ1 ∪ ℛ2:

Take 𝑝 ℛ1 ∪ ℛ2 𝑞 and consider 𝑝 ⟶
𝑎

𝑝′.
1. if 𝑝 ℛ1 𝑞, then there is a 𝑞′ such that 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ1 𝑞′ ℛ1 is a bisimulation

2. if 𝑝 ℛ2 𝑞, then there is a 𝑞′ such that 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ℛ2 𝑞′ ℛ2 is a bisimulation

In both cases, there is a 𝑞′ such that 𝑞 ⟶
𝑎

𝑞′ and 𝑝 ℛ1 ∪ ℛ2 𝑞. Same for 𝑞 ⟶
𝑎

𝑞′.

Proof:  If each ℛ𝑖 is a bisimulation, then ℛ = ⋃𝑖 ℛ𝑖 is a bisimulation. For each pair 𝑝 ℛ 𝑞,
there is a ℛ𝑖 such that 𝑝 ℛ𝑖 𝑞.
1. if 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ such that 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ𝑖 𝑞′ ℛ𝑖 is a bisimulation

2. if 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ such that 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ𝑖 𝑞′ ℛ𝑖 is a bisimulation

In each case 𝑝′ ℛ𝑖 𝑞′ and, thus, 𝑝′ ℛ 𝑞′. ∎
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Yet Another Characterization of ≃

Theorem 19  ≃ is the largest bisimulation, i.e., the largest process relation ≃ such that
𝑝 ≃ 𝑞 implies for all 𝑎 ∈ 𝖠𝖼𝗍:
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≃ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≃ 𝑞′.

Proof:  By Theorem 17, ≃ is a bisimulation. It remains to be shown that it is the unique
largest one.

Consider two largest bisimulations ≃
1

 and ≃
2

. Since bisimulations are union-closed (by
Lemma 18), ≃

1
∪ ≃

2
 is a bisimulation as well, implying that ≃

1
=≃

1
∪ ≃

2
 and ≃

2
=≃

1
∪ ≃

2
 to not

contradict the assumption that ≃
1

 and ≃
2

 were chosen to be largest. Thus, ≃ is the unique
largest bisimulation. ∎
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Bisimilarity is an Example for Branching-Time

Theorem 20 

↔   ⊊
(1)

  ≃   ⊊
(2)

  ≡𝖼𝗍𝗋   ⊊   ≡𝗍𝗋

Proof: 
(1) Let 𝑓 : 𝖯𝗋 → 𝖯𝗋 be an isomorphism. We show, 𝑓  is a bisimulation.

For 𝑝 𝑓 𝑞 (i.e., 𝑓(𝑝) = 𝑞),

𝑝 ⟶
𝑎

𝑝′ iff 𝑓(𝑝) ⟶
𝑎

𝑓(𝑝′) since 𝑓 is an isomorphism

iff ∃𝑞′.𝑞 ⟶
𝑎

𝑞′ by 𝑓(𝑝) = 𝑞 take 𝑞′ = 𝑓(𝑝′)

We have 𝑝′ 𝑓 𝑞′ since 𝑓(𝑝′) = 𝑞′. The second direction is analogous.

Towards ↔≠≃, ≃ is insensitive to branch duplicates.

∎
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Bisimilarity is an Example for Branching-Time

Theorem 20 

↔   ⊊
(1)

  ≃   ⊊
(2)

  ≡𝖼𝗍𝗋   ⊊   ≡𝗍𝗋

Proof: 
(2) Let 𝑝, 𝑞 ∈ 𝖯𝗋 such that 𝑝 ≃ 𝑞. We need to show that 𝑝 ≡𝖼𝗍𝗋 𝑞 , meaning 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) =

𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞). It is sufficient to show that 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) ⊆ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) since the other direction
follows by symmetry (process equivalences are symmetric).

Let 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) with 𝜎 = 𝑎1𝑎2…𝑎𝑛. Then there are states 𝑝1, 𝑝2, …, 𝑝𝑛 such that
𝑝 ⟶

𝑎1
𝑝1 ⟶

𝑎2
⋯ ⟶

𝑎𝑛
𝑝𝑛 and 𝑝𝑛 is a deadlock.

Since 𝑝 ≃ 𝑞, there are 𝑞1, 𝑞2, …, 𝑞𝑛 such that 𝑞 ⟶
𝑎1

𝑞1 ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑞𝑛 such that 𝑝𝑖 ≃ 𝑞𝑖
(𝑖 = 1, …, 𝑛). In particular, 𝑞𝑛 is a deadlock. Thus, 𝑎1𝑎2…𝑎𝑛 = 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞).

∎
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Counterexample for ≃=≡𝖼𝗍𝗋

Theorem 20 

↔   ⊊
(1)

  ≃   ⊊
(2)

  ≡𝖼𝗍𝗋   ⊊   ≡𝗍𝗋

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

𝑝 ≄ 𝑝′ but 𝑝 ≡𝖼𝗍𝗋 𝑝′
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What about ≃𝜔?

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Do the two views on process equivalence, ≃ and ≃𝜔, coincide?
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What about ≃𝜔?

≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Example. 

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

😔 We’re going to show that 𝑝 ≃𝜔 𝑞 but 𝑝 ≄ 𝑞 😔
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What about ≃𝜔?

Example. 

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

Claim: For each 𝑛 ∈ ℕ, we get 𝑝 ≃𝑛 𝑞. 𝑝 ≃𝜔 𝑞 follows (why?)
1. 𝑛 = 0, 𝑝 ≃𝑛 𝑞 since ≃0= 𝖯𝗋 × 𝖯𝗋 is the universal process equivalence.
2. 𝑛 → 𝑛 + 1,

• if 𝑞 ⟶ 𝑞′, 𝑝 answers by 𝑝 ⟶ 𝑎𝑛; 𝑎𝑛 ≃𝑛 𝑞′ for all 𝑛 ∈ ℕ.
• if 𝑞 ⟶ 𝑎𝑘, answer by 𝑝 ⟶ 𝑎𝑘, and vice versa. exploit reflexivity of ≃𝑛
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What about ≃𝜔?

Example. 

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

Claim: For each 𝑛 ∈ ℕ, 𝑎𝑛 ≃𝑛 𝑞′

1. 𝑛 = 0, ✓
2. 𝑛 → 𝑛 + 1, 𝑎𝑛+1 still has 𝑛 + 1 steps to go until it deadlocks in 𝑎0.

Another Fact: For each 𝑚, 𝑛 ∈ ℕ, 𝑎𝑚 ≃𝑛 𝑞′ if 𝑚 ≥ 𝑛.
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Towards 𝑝 ≄ 𝑞

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′
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Towards 𝑝 ≄ 𝑞

Example. 

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

Assume, there is a bisimulation ℛ such that 𝑝 ℛ 𝑞. Then for 𝑞 ⟶ 𝑞′, there is some 𝑚 ∈ ℕ,
so that 𝑝 ⟶ 𝑎𝑚 and 𝑎𝑚 ℛ 𝑞′.

Claim: For all 𝑛 ∈ ℕ, 𝑎𝑛 ≄ 𝑞′.
1. 𝑛 = 0, 𝑎𝑛 ⟶ whereas 𝑞′ ⟶ 𝑞′.
2. 𝑛 → 𝑛 + 1, 𝑎𝑛+1 ⟶ 𝑎𝑛. Thus, 𝑎𝑛+1 ≃ 𝑞′ if and only if 𝑎𝑛 ≃ 𝑞′. By induction

hypothesis, 𝑎𝑛 ≄ 𝑞′. In conclusion, 𝑎𝑛+1 ≄ 𝑞′.
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What is Wrong with ≃𝜔?

Example. 

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

1. 𝑝 is
• acyclic,
• infinite-state,
• infinitely branching, and
• not even image-finite

2. 𝑞 is cyclic, …, and not even image-finite
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What is Wrong with ≃𝜔?

Theorem 21  ≃ and ≃𝜔 coincide on image-finite LTSs.

Proof: We prove both directions separately. Consider all processes and, in fact, the underlying
LTS to be image-finite.
≃⊆≃𝜔 For each 𝑛 ∈ ℕ, we show that 𝑝 ≃ 𝑞 implies 𝑝 ≃𝑛 𝑞.

𝑛 = 0 Since ≃𝑛=≃0= 𝖯𝗋 × 𝖯𝗋, 𝑝 ≃𝑛 𝑞 holds trivially.
Hypothesis For 𝑛 ∈ ℕ, 𝑝 ≃ 𝑞 implies 𝑝 ≃𝑛 𝑞.
𝑛 → 𝑛 + 1 If 𝑝 ≃ 𝑞 holds, we show that 𝑝 ≃𝑛+1 𝑞. For each 𝑎 ∈ 𝖠𝖼𝗍

1. if 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃ 𝑞′. By induction hypothesis,
𝑝′ ≃ 𝑞′ implies 𝑝′ ≃𝑛 𝑞′.

2. if 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≃ 𝑞′. By induction hypothesis,
𝑝′ ≃ 𝑞′ implies 𝑝′ ≃𝑛 𝑞′.

Thus, every step of 𝑝 (𝑞, resp.) can be answered such that their successors are
related by ≃𝑛, proving that 𝑝 ≃𝑛+1 𝑞 holds.
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What is Wrong with ≃𝜔?

≃𝜔⊆≃ We show that ℛ = {(𝑝, 𝑞) | 𝑝 ≃𝜔 𝑞} is a bisimulation. Consider a pair (𝑝, 𝑞) ∈ ℛ.
• Suppose, 𝑝 ⟶

𝑎
𝑝′.

• For all 𝑛 ∈ ℕ,
as 𝑝 ≃𝑛+1 𝑞, there is some 𝑞𝑛 such that 𝑞 ⟶

𝑎
𝑞𝑛 and 𝑝′ ≃𝑛 𝑞𝑛;

• Since 𝑞 is image-finite, the set 𝑄 = {𝑞′ | 𝑞 ⟶
𝑎

𝑞′} is finite;
thus, there must be one 𝑞′ ∈ 𝑄 such that 𝑝′ ≃𝑛 𝑞′ for each 𝑛 ∈ ℕ ⇒ 𝑝′ ≃𝜔 𝑞′

∎

Dr. Stephan Mennicke Concurrency Theory: Bisimilarity and All That April 14, 2025 23



What is Right with ≃𝜔?

≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Theorem 21  ≃ and ≃𝜔 coincide on image-finite LTSs.

1. Finite LTSs are image-finite. recall
2. How hard is it to compute ≃ on finite LTSs (𝖯𝗋, 𝖠𝖼𝗍, ⟶)? i.e., ≃𝜔

• compute ≃0= 𝒰 𝒪(|𝖯𝗋|2)
• iteratively remove all pairs from ≃𝑖 contradicting bisimulations ⇝≃𝑖+1 𝒪(|𝖯𝗋|3)
• stop when nothing changes after at most |𝖯𝗋|2 removals

Compare with ≡𝗍𝗋 (Pspace-complete)
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