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Abstract

Action Theories are versatile and well-studied knowledge representa-
tion formalisms for modelling dynamic domains. However, traditional
action theories allow only the specification of definite world know-
ledge, that is, universal rules for which there are no exceptions. When
modelling a complex domain for which no complete knowledge can
be obtained, axiomatisers face an unpleasant choice: either they cau-
tiously restrict themselves to the available definite knowledge and live
with a limited usefulness of the axiomatisation, or they bravely model
some general, defeasible rules as definite knowledge and risk incon-
sistency in the case of an exception for such a rule.

This thesis presents a framework for default reasoning in action the-
ories that overcomes these problems and offers useful default assump-
tions while retaining a correct treatment of default violations. The
framework allows to extend action theories with defeasible statements
that express how the domain usually behaves. Normality of the world
is then assumed by default and can be used to conclude what holds in
the domain under normal circumstances. In the case of an exception,
the default assumption is retracted, whereby consistency of the domain
axiomatisation is preserved.
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Chapter 1

Introduction

Artificial Intelligence (Al) aims at creating intelligent machines. Being embedded in a complex
environment, they should be capable of rational thought and purposeful action to effectively
interact with their surroundings. The problem-solving tasks we expect these artificially intelli-
gent systems to solve will require a considerable amount of background knowledge about the
world. Knowledge Representation (KR) is the sub-field of Al that investigates how to represent
knowledge in a principled way by using mathematical formalisms. Apart from the ability to
express explicit knowledge, a good KR formalism must offer inference mechanisms to derive
implicit knowledge from the information expressly stated. Additionally, the meaning of pieces
of knowledge should have an objective basis, avoiding potential mistakes through ambiguity
and misunderstanding.

These requirements make mathematical logic ideally suited as a knowledge representation
formalism: first, it has a well-defined formal semantics that gives a meaning to language con-
structs. What is more, logic is the systematic study of valid reasoning, and therefore naturally
concerned with procedures that correctly infer implicit knowledge. Philosophers, mathem-
aticians and computer scientists have been studying formal logics for more than a century, so
there is a huge amount of results we can straightforwardly use.

Indeed, there is already quite a number of logic-based knowledge representation formal-
isms. For example, terminological languages are used to express ontologies, that define the
concepts of an application domain and relationships between these concepts. For example, the
medical domain uses ontologies that define different parts of the human body and how they
relate to each other, like “the hand is a part of the arm” and “the arm is a part of the body.”
Now even if it is not explicitly stated, a suitably formalised ontology will entail the implicit
information that the hand is a part of the body as well.

Although such terminological KR languages are successfully used, they are limited in their
ability to express change. When the domain of discourse changes, the representation has to be
changed on the meta-level to realign model and reality. This however means that change itself
is not part of the ontology and cannot be easily represented. While such formalisms are static
— that is, time-independent —, different formalisms exist that model time and change explicitly:
action theories. They are used to model dynamic domains — worlds that change over time.

If we want to represent that the world changes over time, we first have to represent time
itself. Decades of research in action theories have provided us with established formalisations
of time that we can use off the shelf. We indeed go one step further and take an abstract stance
with regard to time. Our view will be to treat time as consisting of atomic elements — time
points — and a partial order that indicates whether there is a relative past/future relationship

1



Chapter 1. Introduction

between two given time points.

Next, we have to think about how to represent the state of the world at one time point. In
principle, it would be feasible to treat states (of the world) as atomic entities as well. Just like
in automata theory, transitions between states could then be employed to model change. But
such a representation immediately leads to combinatorial explosion: if we have to distinguish
n binary world properties to model the domain of discourse, there are potentially 2" states to
consider. For example an online shopping agent in a world with m items to shop for and n
different shops must discriminate and explicitly represent at least 2" states. In particular, if
we add a single item to this world, the number of states explicit in the model increases by a
factor of 2".

Hence our alternative here will be to use states with an internal structure. We decompose
them into atomic world properties that may change over time, so-called fluents. These fluents
are represented symbolically instead of being encoded implicitly in an atomic state. More
specifically, we use terms such as Offers(shop, item, price) saying that a shop offers an item at
a particular price. Now adding a shop or an item is as simple as adding a function symbol
to the underlying mathematical language and increases the model complexity only by a small
constant.

It remains to incorporate change, the concept we wanted to represent in the first place. We
take the stance that change is initiated through actions, that alter the state of the world. Since
the state of the world is represented by the status of fluents, the change to a world state induced
by actions is expressed using the fluents that are affected by the action. Now, structured
states pay off: atomic states would make the specification of action effects complicated and
cumbersome. For example, even the action of putting an item in a virtual shopping cart would
have to be expressed separately for each possible cart at each shop! With structured states,
however, effect specification is easy: the term PutIntoCart(item,shop) will represent the action
of putting an item in the virtual cart of an online shop. The meaning of this action function is
then given by appropriate formulas stating that the item is added to the respective cart.

These three components form the basis of our ontology underlying dynamic domains: time
itself, changing world properties — fluents — and actions that initiate the changes. These as-
pects are relevant in every domain, further aspects are domain-dependent and extend this
fundamental ontology. In the shopping agent domain, for instance, additional important as-
pects would be shops, items and prices. We will use sorts and sorted logic to represent such
different ontological classes.

Reasoning about actions offers several established logic-based formalisms for modelling
dynamic domains. But all of these traditional representations of dynamic domains model the
world using universal rules for which there are no exceptions. For instance, they allow to say
that specific shops offer free delivery for all book purchases. If ever an exception to such a
rule is observed — a book that is imported from another country and for which a postal fee
is waived —, the domain model becomes inconsistent and anything can be concluded from
it. Although some formalisms do allow the expression of incomplete knowledge via non-
deterministic statements like “delivery may or may not be free of charge,” a rational reasoning
agent always would have to consider the worst case, which effectively renders the statement
close to useless.

What is needed is a way to express what is normally the case in the domain, like some
shops delivering books free of charge unless stated otherwise. The following anecdote shows
that natural intelligences natively and successfully use such provisional reasoning:!

An engineer, a mathematician and a philosopher are travelling by train in the South

IMore of this type can be found at Norman Foo’s web site at http://www.cse.unsw.edu.au/ norman/JOKES . html
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Island of New Zealand, home of much more sheep than people. On passing a
mountainside full of sheep, they spy one lone black sheep amidst the sea of white
sheep.

ENGINEER: Oh, look, there are black sheep in New Zealand!

MATHEMATICIAN: You surely mean there exists at least one black sheep in New
Zealand!

PHILOSOPHER: Hmmm ... both of you have drawn an unwarranted conclusion.
Surely the only thing we now know is that in New Zealand there is at least
one sheep that is black on one side!

The joke works because human intuition agrees mostly with the engineer, while mathematician
and philosopher seem overly cautious. But strictly speaking, the philosopher goes out on a
limb as well, for it might be that the train’s windows are tinted such that the sheep’s colour
which is perceived as black is actually grey!

So all of them employ assumption-based reasoning of some sort. They all have only in-
complete knowledge about the domain of discourse: none knows the colour of all sheep in
New Zealand; and they have limited access to new information: it is practically impossible to
observe all of New Zealand’s sheep at the same time. To cope with their limitations, they jump
to conclusions using rules of thumb like “if there is one black sheep, it is typically not the
only one” (engineer), “sheep normally have the same colour on both sides” (mathematician,
engineer) and “if I perceive an object as black, it usually is black” (philosopher, mathematician,
engineer).

Discussing the colour of sheep seems to be out of touch with reality, but the human capabil-
ity of making and withdrawing assumptions is also important in far more mundane situations.
Consider the task of cooking a cup of tea. The plan seems simple enough: boil the water, pour
it over the tea, done. But in addition to the obvious prerequisites of having access to water, a
way to boil it, and tea itself, there are numerous implicit assumptions involved in this plan:
For one, there must be water coming out of the tap when turning it on. This is only an as-
sumption since no matter when it was last verified, it could have changed in between. In the
same way, electricity is needed to boil the water. How can the cook tell there is or will be no
power outage during the process? The list could be continued, but the important point is this:
acting like the philosopher, all of these prerequisites would have to be proven to be sure that
the plan for cooking a cup of tea will succeed. I suspect however that not even the aloof among
philosophers carry out any formal derivations before going about such straightforward tasks.

Now there is of course a caveat in making useful assumptions about the world: it should
not go as far as assuming there is a nice, warm cup of tea already on the desk! Although this
technically “verifies” that the plan of doing nothing achieves the goal of having a cup of tea, it
is of no real use for obvious reasons. Indeed, such an assumption must be considered irrational
and unsound. Hence, a good trade-off must be found between soundness and practicality; in
terms of the anecdote above, our goal here is to reason as practical as the engineer and still as
sound as the philosopher.

Needless to say, making and withdrawing assumptions about dynamic domains is not only
of avail for reasoning about sheep or cooking tea, a potential application lies for instance in ex-
pert systems for the medical domain: Doctors will at no point have complete knowledge about
their patients, since relevant information may be too costly or simply impossible to obtain. Still
the doctor can make a diagnosis and prescribe a therapy based on their experience and (impli-
cit) normality assumptions. If a patient later turns out to be among the very few people with,
say, hypersensitivity against a prescribed drug, the doctor revises their assumptions about the
patient and changes the therapy accordingly.
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Such is the reasoning we will investigate in this thesis: we want to make defeasible assump-
tions about how dynamic worlds usually behave, where defeasible means that we withdraw
the assumptions if they are contradicted against. To achieve this goal, we need to combine two
mechanisms: one for reasoning about dynamic worlds and how they change on occurrence
of actions, and one for making assumptions that can be withdrawn in the light of contrary
information. In this thesis, the role of the first mechanism will be played by logical action
theories of a particular, yet general form. For the second mechanism, we will use a logic for
default reasoning. The main technical challenge is then to combine these two mechanisms
such that default assumptions and changing world properties (as well as those that do not
change) interact in a well-defined way.

* * *

In the remainder of this chapter, we give a broad overview of the two fields we combine
here. (Technical introductions to notions that we use and extend can be found in the next
chapter.) In the first section, we review existing logical theories for reasoning about actions and
change, since they represent the broadest field we are concerned with. The section thereafter
is concerned with logical formalisations of defeasible reasoning. In the last section, we present
some historical attempts to combine the two fields.

1.1 Reasoning about Actions

Reasoning about actions and change investigates the logical axiomatisation of dynamic do-
mains. This area of research is among the oldest ones in artificial intelligence: as early as 1959,
pioneer John McCarthy envisioned a system he called the “advice taker” [McCarthy, 1959] that
would use predicate logic to maintain an internal model of the world and plan ahead its course
of actions. While this general idea made intuitive sense, it was soon found out that it entails a
multitude of subtle and not-so-subtle problems. Firstly and most importantly, [McCarthy and
Hayes, 1969] discovered a fundamental problem that would haunt the reasoning about actions
research community for decades to come: the frame problem.

Suppose we model an action domain with m actions and n fluents. Typically, each action
A; will only affect a small number ¢; < n of fluents, and each fluent F; will in turn only
be affected by a small number cj < m of actions. Furthermore, when m and n increase, the
average ¢ and ¢ will remain about the same. If we represented action effects in a naive way —
by simple statements of the form “fluent F; is a positive/negative effect of action A; if formula
7ij holds,” “fluent F; is no positive/negative effect of action A; if formula -;; holds” — in total
we would need 2 - m - n such statements of constant size, resulting in an axiomatisation size
in O(m - n). However, most of these statements will be superfluous non-effect statements
of the second kind. The frame problem now consists of finding a representation of action
effects that explicitly expresses only statements of the first kind and implicitly assumes non-
effect statements for fluents and actions not mentioned there. Such a representation would
only have a size which grows linearly in the order of n or m, a considerable improvement
from the quadratic O(m - n) for sulfficiently large m,n. Additionally, a solution to the frame
problem should allow a straightforward integration of new aspects of the domain — McCarthy
[McCarthy, 2003] calls this elaboration tolerance. For example, the naive representation with m - n
statements is not elaboration tolerant, since for adding an effect we have to find and delete the
respective non-effect statement.

From its discovery in 1969, it took more than 20 years until the frame problem was solved
in a satisfactory way. [Reiter, 1991] presented a compilation of effect statements to successor
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Chapter 1. Introduction 1.1. Reasoning about Actions

state axioms — a fluent-centred representation of action effects — where for each fluent there is
a formula that expresses (1) which actions change it under what conditions and how, and (2)
that the execution of all other actions will not affect the fluent. This results in n statements
of size O(c) and thus a total size in O(c - n). Remarkably, an axiomatiser is only concerned
with providing the effect statements, the compilation takes care of representing the non-effects.
Thus elaboration tolerance is achieved, since new effects are easily integrated by adding re-
spective effect statements (and recompiling).

But actions and their effects are not the only components of action domains. In the early
days of reasoning about actions, state constraints were used to rule out certain configurations
of the world that the axiomatiser deemed physically impossible. Alas, the interaction of state
constraints with actions gives rise to some more representational and inferential problems:
Imagine you operate a database for some real-world domain. In reasoning about actions ter-
minology, it represents the domain knowledge at the current time point. Integrity constraints
are enforced in the database to assure data coherence, just like state constraints do for each
time point in dynamic domains. Now in a perfectly coherent and consistent database state,
you perform an update and find that after the update an integrity constraint is violated. This
corresponds to executing an action and observing a violated state constraint in the resulting
state. Since a database with a violated integrity constraint by definition does not correspond
to a real-world state, there must be an error in the database. There are essentially two views
of what caused the error (the constraint violation) and what steps can be taken to resolve it.

The first view concludes that the update was incomplete and additional changes have to be
made to the database until the integrity constraints are satisfied. In reasoning about actions,
this view regards the state constraint in question as inducing additional, indirect action effects,
so-called ramifications [Ginsberg and Smith, 1987]. The associated ramification problem consists
of concisely representing and efficiently inferring such indirect action effects.

The second view of the above problem of a violated integrity constraint concludes that the
update itself was erroneous. The tenor there is that an update which leads to the violation
of an integrity constraint should never have been performed. In reasoning about actions, this
view regards the state constraint in question as inducing additional, implicit action precondi-
tions, so-called qualifications [McCarthy, 1977]. The associated endogenous qualification problem
consists of figuring out all implicit action preconditions and explicitly representing them, such
that constraint violations due to unjustified action application are ruled out.

Observe that a formalism cannot find out syntactically whether a given state constraint
will lead to a ramification or qualification [Lin and Reiter, 1994]; also, letting the user classify
state constraints into ramification and qualification constraints will not work, since one and
the same constraint can act differently for different actions [Thielscher, 1997, Example 10].
Apart from its endogenous aspects caused by state constraints, the qualification problem in
its original form [McCarthy, 1977] remains hard even if there are no state constraints in the
theory: this exogenous qualification problem stems from the fact that it is generally impossible
for an axiomatiser to exhaustively enumerate all conditions that might potentially prevent the
successful execution of an action. So although the theory predicts applicability of the action,
it might fail due to unforeseen (and unforeseeable) circumstances. This is part of the general
Al problem and so it is not surprising that — unlike for the frame problem — there are no
universally accepted solutions to the ramification and qualification problems. We present our
own contributions to this ongoing work in Chapter 5 and Section 6.2.1, respectively.

Our proposed solutions rest on an explicit representation of causality and the time-indepen-
dent default reasoning framework we develop earlier, both comparably recent developments.
Indeed, action formalisms did not have explicit notions of causation and time from the be-
ginning: some early approaches used an implicit notion of time and formalised action effects
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by updating sets of formulas or models [Ginsberg and Smith, 1987; Winslett, 1988]. Minim-
isation of change was enforced regardless of whether change was caused. Although [Kautz,
1986; Pearl, 1987] already recognised the importance of causation, it took some years until the
concept took hold in action theories: using ideas from model-based diagnosis [Konolige, 1994],
researchers started to integrate causality into reasoning about actions formalisms [Brewka and
Hertzberg, 1993]. Causation gained momentum in 1995, when three researchers independently
figured out its vital importance for solving the ramification problem [Lin, 1995; McCain and
Turner, 1995; Thielscher, 1995]. More recently, [Giunchiglia et al., 2004] lifted causation to a
semantical principle, which inspired the effect axioms developed in our work.

1.1.1 Situation Calculus

The Situation Calculus originated in [McCarthy, 1963] and [McCarthy and Hayes, 1969], that
developed and formalised some of the ideas around the advice taker. The papers introduced
the notions of fluents, actions and situations, that would give the name to the formalism.2 The
Situation Calculus differed from alternative approaches for representing change by its explicit
notion of time, where situations are first-order objects that can be quantified over. Although
this is a standard feature on the present day, various attempts to solve the frame problem did
not employ explicit time. In another seminal paper, [McCarthy, 1977] extended this reification
of time points to fluents and introduced the Holds predicate. Essentially, world properties
that are usually expressed by predicates are lifted to objects of the universe, which allows an
axiomatiser to quantify over them.

Remarkably, the first solution to the frame problem [Reiter, 1991] was formulated in the
language of the Situation Calculus. It also introduced unique-names axioms for actions and
started to axiomatise situations as sequences of actions, which was later completed by [Pirri
and Reiter, 1999]. Their axiomatisation allows to view situations as hypothetical future time
points or as histories encoding the actions that led to a time point.

There are several solutions to the ramification problem for the Situation Calculus (among
them [Lin, 1995; Mcllraith, 2000]). The qualification problem has received somewhat less
attention [Lin and Reiter, 1994], partly because its endogenous version can be delegated to the
user (“Make sure your action precondition specifications are complete!”) and partly because it
requires nonmonotonic reasoning.

To date, [Reiter, 2001] remains the most important book about the Situation Calculus.
Therein, Reiter’s successor state axioms, formalisation of situations and many more of his
contributions culminate in the concept of Basic Action Theories.

1.1.2 Fluent Calculus

The Fluent Calculus is a close relative of the Situation Calculus and shares with its precursor
the branching time structure of situations. It takes reification one step further and not only
reifies fluents, but states. They are extensionally axiomatised as sets of fluents where intu-
itively, a state is identified with the fluents that hold in it. The Fluent Calculus originated
in the logic-programming based planning formalism of [Holldobler and Schneeberger, 1990]
that first combined the notions state and situation. Its solution to the frame problem is the
action-centred dual of the Situation Calculus solution: instead of successor state axioms for
each fluent, the Fluent Calculus has state update axioms for each action [Thielscher, 1999]. So
for each of m actions, a state update axiom specifies which e; fluents are affected by the action

2Although in McCarthy’s original reading, a situation was more like what was later to be called a state, “the
complete state of the universe at an instance of time” [McCarthy and Hayes, 1969].
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Chapter 1. Introduction 1.1. Reasoning about Actions

A; and also encodes that the remaining fluents stay unchanged. This axiomatisation technique
of effects consequently leads to a size in O(m - ¢). Moreover, it does not only solve the rep-
resentational aspect of the frame problem, but also the inferential aspect: concluding that a
fluent did not change during action execution requires no extra amount of work. In fact, all
major problems of reasoning about actions that we mentioned above are solved for the Fluent
Calculus [Thielscher, 2005b].

1.1.3 Event Calculus

The Event Calculus originated in [Kowalski and Sergot, 1986] as a logic programming-based
formalism for reasoning about the dynamics of knowledge bases. It was further developed
and logically reformulated in [Shanahan, 1997] and most recently by [Mueller, 2006].

In contrast to the Situation and Fluent Calculus — that use the branching time of situations
—, the underlying ontology is based on an explicit notion of time that is independent of action
occurrence. Instead of defining a time point as something which is reached by executing
an action, time points are stand-alone ontological elements which exist per se without any
additional assumptions.

Interdependence of time points, fluents, and actions — which is the crux of any action theory
— is catered for by narratives. A narrative talks about the domain during a specific time span,
about what actions actually happened and what actually holds at various time points.

1.1.4 Action Languages

Action languages are simple declarative languages for describing actions and their effects on
the world. They are close to natural languages and thus allow for an intuitive yet concise spe-
cification of action domains. As a precursor of action languages, STRIPS [Fikes and Nilsson,
1971] offered simple statements expressing unconditional positive and negative effects. This
was later extended to conditional effects in ADL [Pednault, 1989]. The propositional fragment
of ADL gave rise to the first action language A [Gelfond and Lifschitz, 1993]. It was introduced
to enhance the traditionally example-oriented mode of operation of reasoning about actions
research. This original language .4 allowed only for very basic action descriptions, and so was
soon extended to B [Gelfond and Lifschitz, 1998], that handles indirect effects through static
laws and AR [Giunchiglia et al., 1997] that also offers (among other things) nondeterministic
effects. A further extension came with C [Giunchiglia and Lifschitz, 1998] enabling convenient
description of concurrency and non-determinism. C+ [Giunchiglia et al., 2004] then provided
expressions to talk about causal dependencies between concurrently executed actions. The
language £ [Kakas and Miller, 1997] introduced an explicit notion of (linear) time into ac-
tion languages, that had hitherto only possessed an implicit, branching time structure. The
semantics of all those traditional action languages is defined in terms of transition systems
— graphs whose nodes represent states (time points) and whose edges represent transitions
between states due to actions. An exception for this is the language /C [Eiter et al., 2000],
which allows to represent transitions between (possibly incomplete) states of knowledge as
opposed to fully specified states of the world.

1.1.5 Unifying Action Calculus

With the plethora of formalisms for reasoning about actions that we have seen so far, we
inevitably face the question which of these we should use for combining them with default
reasoning in order to achieve our objectives. In particular, we have to think about which

7
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time structure we should use. These are important questions, since the underlying ontological
assumptions of different formalisms are likely to affect the generality of their extensions. We
do not commit to a particular time structure here, but use a general, abstract calculus that is
parametric in its notion of time, the Unifying Action Calculus (UAC). We provide an in-depth
presentation of it in the next chapter.

1.2 Nonmonotonic Reasoning

Nonmonotonic reasoning formalises jumping to conclusions in the absence of information
to the contrary. The name “nonmonotonic” itself — obviously the negation of “monotonic”
— pertains to the absence of the monotonicity property of entailment. In classical logic, a
conclusion that can be drawn from a set S of premises can also be drawn from all supersets
of S. This is inherent in the definition of classical semantical entailment. It also has profound
implications for logic-based knowledge representation: by adding information to a knowledge
base, previous conclusions can never be invalidated.

As discussed earlier, human reasoning crucially depends on making and withdrawing as-
sumptions due to the constant addition of information to (constantly) incomplete knowledge
bases. This observation was also made by artificial intelligence researchers: [Sandewall, 1972]
was one of the first papers that dealt explicitly with nonmonotonic reasoning. Sandewall pro-
posed the Unless operator to make statements about what cannot be inferred. In his language,
a rule A, Unless B + C would mean “C can be inferred if A can be inferred and B cannot be
inferred.”

An approach that was more directly inspired by human reasoning [Minsky, 1974] intro-
duced so-called frames. A frame in the social sciences is a mental stance that provides a short-
cut to evaluate a situation or an event. In Minsky’s formalisation, a frame is a data structure
that has a number of slots, that represent world properties; each slot has a value that indicates
the status of the world property. The slots may be initialised with default values that can later
be replaced by new values. For example, the slot flies of the frame bird may be initialised with
the value default:true to indicate that birds fly by default.

In terminological languages for representing the relations between classes of objects, [Fahl-
man, 1979; Fahlman et al., 1981] proposed nonmonotonic inheritance networks. These are
graphs whose nodes are classes and objects and where edges express relations between them
such as subclass, membership or non-membership. However, nonmonotonic inheritance net-
works did not have a clearly defined semantics. Their meaning was given only operationally
by the software systems operating on them, where different systems would yield different
conclusions on the same graph.

Since these early days, nonmonotonic reasoning has undergone rigorous logical formal-
isation and has produced a great number of frameworks. At the present day, three major
formalisms stand out: default logic, circumscription and autoepistemic logic. Default logic
can be considered as the most influential nonmonotonic formalism of all. At the time of print-
ing (June 2012), [Reiter, 1980] has amassed 2023 citations,® while the respective original papers
introducing circumscription [McCarthy, 1980] and autoepistemic logic [Moore, 1985] have been
cited 989 and 611 times, respectively.*

3 According to Microsoft Academic Research at http://academic.research.microsoft.com. Alternative numbers
come from the Thomson Reuters Web of Science at http://apps.webofknowledge.com (1227 citations), and Google
Scholar at http://scholar.google. com (3952) whose figures are however grossly inflated [Jacso, 2009; Beel and Gipp,
2010].

4These are Microsoft Academic Research numbers again. Thomson Reuters Web of Science gives 666 and 333,
Google Scholar 2137 and 1285.
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1.2.1 Default Logic

Reiter’s seminal formalism for default reasoning will be used in this thesis to make and with-
draw assumptions about dynamic domains. A technical in-depth presentation can be found
in the next chapter. Here, we only look at some criticisms of default logic that have emerged
over the years.

[Lifschitz, 1990] finds fault with Reiter’s treatment of variables in defaults via grounding,
and provides an alternative semantics which accesses elements of the universe directly instead
of referring to them by ground terms. He concurs that with domain closure there are no prob-
lems with open defaults [Lifschitz, 1990, Proposition 4] but calls domain closure “sometimes
unacceptable.” As our intended usage is concerned, however, the domain closure assump-
tion is mostly acceptable. For practical implementations, assuming a finite domain is often
necessary purely for feasibility. But that does not make it overly limiting: in [Pagnucco et al.,
2011], we show how to use a designated set of object names to refer to as-of-yet unidentified
objects. In any case, the worst that can happen in an axiomatisation where the domain closure
assumption was not feasible is that the user gets less default conclusions than they expected.

[Halpern, 1997] attacks the very definition of extensions. Reiter states natural-language
properties (D1-D3) that extensions should possess and then goes on to formalise these prop-
erties as in Definition 2.8. Halpern now argues that Reiter’s extensions are not the only objects
that satisfy the properties. He provides alternative characterisations that lead to autoepistemic
logic and different notions of “only knowing.” Today, the relationships between the different
nonmonotonic formalisms are much better understood [Denecker et al., 2003] and Reiter’s ini-
tial choice has stood the test of time. In particular the groundedness property of default logic
extensions is useful as we shall see later on.

1.2.2 Circumscription

Circumscription [McCarthy, 1980] can be used to express that certain objects with a specified
property are the only objects with this property. It can be equivalently cast as syntactical
manipulation in higher-order logic or entailment with respect to a certain class of preferred
models. This is where circumscription differs from default logic and autoepistemic logic, that
define sets of acceptable beliefs and define conclusions with respect to these sets. [Lifschitz,
1985; Lifschitz, 1986] further extended circumscription to a general and powerful method.
Today, it is also used for first-order logic programming in an answer set semantics that does
not refer to grounding [Ferraris et al., 2011].

1.2.3 Autoepistemic Logic

[Moore, 1985] strives to formalise an ideally rational agent reasoning about its own beliefs. He
uses a belief modality L to explicitly refer to the agent’s belief within the language. Given a set
A of formulas (the initial beliefs), a set T is an expansion of A if it coincides with the deductive
closure of the set AU{LP |P € T}U{—-LP | P ¢ T}. In words, T is an expansion if it equals
what can be derived using the initial beliefs A and positive and negative introspection with
respect to T itself. It was later discovered that this definition of expansions allows unfounded,
self-justifying beliefs. Such beliefs are however not always desirable when representing the
knowledge of reasoning agents. Nonetheless, autoepistemic logic was a major influence for
nonmonotonic logics of belief. For example, it formed the basis of the logic of “only knowing”
[Levesque, 1990], which in turn gave rise to the language £Sp [Lakemeyer and Levesque,
2009].
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1.3 Previous Approaches for Combinations

This thesis is by no means the first work to combine reasoning about actions with nonmono-
tonic reasoning. Most remarkably, the first explicit mention of nonmonotonic reasoning pro-
posed to use it to solve the frame problem [Sandewall, 1972]. In the same spirit, [Reiter, 1980]
presented defaults that concluded persistence of world properties to model the commonsense
assumption of inertia. Solving the qualification problem of reasoning about actions was among
the stated objectives for creating circumscription [McCarthy, 1980] and was later worked out
in more detail [McCarthy, 1986]. We stated earlier that the first satisfactory solution to the
frame problem was monotonic, so the reader can already guess that most nonmonotonic ac-
tion theories did not catch on. What is more, [Hanks and McDermott, 1987] even claimed
that nonmonotonic reasoning is generally unsuited to solve temporal projection problems in
reasoning about actions. Although their criticisms were refuted [Baker, 1991], soon [Kartha,
1994] pointed out new problems with nondeterministic effects. When alternative monotonic
solutions to the frame problem were found [Thielscher, 1999], the role of default reasoning in
action theories was — if at all present — mostly restricted to the qualification problem.

* * *

In the remainder of the thesis, we will show how action theories and default logic can
be combined in a novel way. Nonmonotonic reasoning will not be used to solve the frame
problem: our solution is monotonic, drawing inspirations from [Reiter, 1991; Thielscher, 1999;
Giunchiglia et al., 2004]. Defaults are used to make assumptions about what is normally
the case in the domain in question, and to withdraw such assumptions in case of conflicting
information.

1.4 Publications

Most of the results in this thesis have been published in refereed conferences and workshops.
For reference, we provide pointers here.

o The results of Section 3.2 have been published in [Strass and Thielscher, 2009a] which
received an Outstanding Student Paper Award at Commonsense 2009, and in [Strass and
Thielscher, 2009b];

e Section 3.3 has appeared in [Strass and Thielscher, 2009¢];

e a previous version of Section 3.4 was published in [Baumann et al., 2010];
e Sections 3.5-3.7 have appeared as [Strass, 2011];

o parts of Chapter 4 are contained in [Strass and Thielscher, 2010a];

e a condensed version of Chapter 4 has been published in [Strass, 2012];

e in [Pagnucco et al., 2011] we demonstrated how the system of Section 4.3 can be used to
plan with erroneous information;

e a preliminary version of Chapter 5 has been published in [Strass and Thielscher, 2010b];

o first steps towards solving the qualification problem as outlined in Chapter 6 has ap-
peared in [Strass and Thielscher, 2012].
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Chapter 2

Preliminaries

This chapter introduces the notation and the fundamental technical concepts we will use
throughout the thesis. All defined notions of this thesis are typeset in italics, and an index-like
list of page references to the definitions can be found at the end of the document.

Mathematical Notation
o @ is the empty set;
{x | P(x)} is the set of all x for which P(x) holds;

e &,U,N denote set membership, union and intersection;

e C, D denote sub- and superset relations (allowing set equality);

e |S| denotes the cardinality of the set S;

e A X B is the Cartesian product of sets A and B — the set of pairs {(a,b) | a € A,b € B};
e for a set S, the powerset of S (the set of all of its subsets) is denoted by 2°;

o f:D1 x---x D, = R denotes an n-ary function f with domains Dy, ..., D, and range
R;

e X stands for a sequence x1, ..., x, of syntactical objects (such as variables or terms);
e Ny denotes the set of natural numbers including zero;

o the symbol & defines a syntactical macro, where the left-hand side is shorthand for the
right-hand side.

Many-sorted First-order Logic with Equality
Signatures A signature 2 is a quadruple (&,%, §, X) where

e G is a non-empty set of sorts. It has an associated reflexive, transitive and anti-symmetric
relation CC & x & where for 51,5, € 6, 51 C s, means that s is a subsort of s,.

e P is a set of predicate symbols with an associated arity, a non-negative integer. To express
that an n-ary predicate symbol P has argument sorts sy, ...,5, we write P : 51 X -+ X 5.

11
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e § is a set of function symbols with an associated arity. To indicate that an n-ary function
symbol F has argument sorts si,...,5, and range sort s we write F : 51 X - -+ X §, — 5.
In particular, sorted constant symbols will be referred to as C : s.

e X is a family of non-empty sets X, of variables, one for each sort s € &.

When it is clear what we mean from the context, we abbreviate C: s € §by C : s € E and do
the same for sorts, predicates and variables. A signature is relational iff it contains no function
symbols of positive arity. An unsorted signature contains only a single sort. A signature is
propositional iff 3 contains only zero-ary predicate symbols. In this case, the choice of &, §, X
is immaterial and we will denote the signature by B.

Terms For a fixed signature, the set of terms is the smallest set such that:
e each sorted variable x of sort s is a term of sort s and

o if F:5; X - X8, - s € Eis a function symbol and ¢y, ..., ¢, are terms of respective
sorts 61,...,5y, then F(t1,...,t,) is a term of sort s.

So in particular, constant symbols (the case where n = 0 above) are terms. The set of variables
of a term is defined by

Vars(x) & {x}
Vars(F(t1,...,ta)) & | J Vars(t)

1<i<n

A term t is called ground iff Vars(t) = @. To express that a term t over a signature is of sort
s, we write t : 5. The term depth indicates the maximal nesting of function symbols in a given
term. It is defined recursively by

Depth(t) & 0 if t is a variable or constant

Depth(F(t1,...,t:)) & 14+ max{Depth(ty),...,Depth(t,)}

e

Formulas For a fixed signature, the set of formulas is the smallest set such that
e T (true) and L (false) are formulas,

o if P: 5y x ---Xs, € Eis a predicate symbol and t; : s1,...,t; : 5, are terms then
P(t,...,t;) is a formula,

e if t; : s and t, : 5 are terms then t; = t; is a formula,
o if ® is a formula then —® is a formula,

o if &1, P, are formulas then P A P, (a conjunction) and $; V P, (a disjunction) are
formulas,

e if x is a variable of sort s and ® is a formula then (Vx : s§)® (a universal quantification)
and (Jx : 5)® (an existential quantification) are formulas.

12
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A formula of the form P(ty,...,t,) or t; = t, is an atomic formula or atom. A literal is an atom
(a positive literal) or its negation (a negative literal). To reverse the polarity of a literal, we use
meta-level negation -, which for an atom P is defined by P & —Pand =P % P. The notation
|-| will be used to extract the affirmative component of a literal, that is, |[=P| = |P| = P. For
a set S of literals, let S & {L | L € S}. A clause is a literal (a unit clause) or a disjunction of
clauses. A clause containing exactly one positive literal is a definite Horn clause. A formula
is in conjunctive normal form (CNF) iff it is a clause or a conjunction of CNFs; Conversely, a
conjunctive clause is a unit clause or a conjunction of conjunctive clauses; a formula is in
disjunctive normal form (DNF) iff it is a conjunctive clause or a disjunction of DNFs. A formula
is in negation normal form (NNF) iff negation only precedes atoms. Some logical connectives we
use are only shorthands, among them
b # bt 2 =1b)

D DDy, & Py VD,

D =P, & (@1 D) @2)A (CDZ D) @1)

Dy # Dy & (P = D)
We will not introduce an explicit precedence ordering over the logical connectives, but use
parentheses and indentation to clarify the structure of formulas.

The size of a term is given by

l|x:s| &1
n
IF(t, )]l 2 14 ) 1]
i=1

For a formula ®, its size || P|| is defined as follows.
Tl =1
L] =1

n
IP(t, - )| 22 14 [l
i=1

[th =t & 1+t + [t
-] & 1+ |
[ @10 Dy & 1+ [Py + || 2] for o € {A,V}
[(Qx:s)®|| & 1+ ||®| for Q € {V,3}

The size of a finite set T of formulas is ||T|| & Y e ||P||-

Free variables, sentences The set of free variables of a formula is defined as follows.

FreeVars(T) & @
FreeVars(L) & @
FreeVars(P(ty, ..., t,)) & | Vars(t;)
1<i<n
& Vars(t1) U Vars(t)
& FreeVars(®)
& FreeVars(®q) U FreeVars(®,) for o € {A,V}
& FreeVars(®) \ {x} for Q € {V,3}

FreeVars(t; = tp
FreeVars(—~®
FreeVars(Pq o Oy
FreeVars((Qx : 5)®

)
)
)
)

13
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A formula ® is closed (or a sentence) if FreeVars(®) = @; otherwise, it is open. To indicate that
® is a formula with free variables among X, we write it as ®(X).

Interpretations A structure 9 for a signature E consists of the following.

e For each sort 5, a non-empty set ®; (the domain of sort s) such that s; C s, implies
©5] g 952/.

e for each function symbol F : 51 X - - - X s, — 5 € 5, a function M., X% Ds, — Ds;

1

e for each predicate symbol P : 51 X - -+ X s, € E, a function P™' : D, x - -+ x Dy, — {t,f}
that assigns truth values to tuples of domain elements of the right sorts. We will at times
specify them by enumerating all the tuples f such that P™*(t) = t.

A variable assignment 0 on a structure is a function from sorted variables x : s to their sort’s
domain ®,. An interpretation J is a pair (9, V) consisting of a structure and a variable assign-
ment. We denote by @3 the domain of sort s of the structure of J. For terms, define

e x7 & (x) for variables x : s and

o F(ty,..., ty))7 & FM(¢J,..., ) for compound terms.
For an interpretation J = (9,%7), a variable x : s and an r € D,, we denote by J,x — ¢ the
interpretation that is as J except that 20 maps x to r.
Models For a signature Z and an interpretation J for &, the satisfaction relation |= between
interpretations and formulas is defined as follows.

e JE=TandJ = L

JEPty,... ) iff PP, E8) =t

JEt =t iff ] and ¢ are identical

JE-Diff T D

JE @ AD, iff both T = @1 and T = @,

(S

E® VO iffoneof T =PjorJ = Dy
e J=(Vx:5)®iff J,x — 1 |= ® for each r € D4
(I

e I :6)Piff J,x — ¢ = O for some 1 € D

An interpretation J is a model for a formula ® if and only if J = ®. From these definitions, it
follows that conjunction A and disjunction V are associative and idempotent. We will use these
properties to ease reading, for example by using notation such as ®; o Py o0...0P,_; 0 P, for
o € {A, V} with the understanding that placement of parentheses is immaterial.

Entailment A formula @ is satisfiable if there is an interpretation J with J |= ®. If J |= @ for
all interpretations J, then ® is valid. For a set S of formulas, we write J |= S iff J |= @ for all
® € S. Then, we say that the set S entails the formula ® and write S = ® iff J = S implies
J [= @ for each interpretation 3. We abbreviate @ |= ® by |= ®. The deductive closure (or theory)
of a set of formulas S is Th(S) & {® | S = P}.

14
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Unification A substitution is a mapping from variables to terms. Applying a substitution 6 to
a term t is written in postfix notation 0 and defined by the structural recursion

x0 & f(x) forx € X
F(tl,...,tn)e g F(tle,...,tHG)

We will sometimes use anonymous substitutions and write them as sets of pairs {x; — t1,...}.
Two terms ty, t; are unifiable if there exists a substitution 6 such that ;6 = t,0. In this case, 0 is
a unifier of t; and tp. For two unifiers 6; and 6, we say that 6 is more general than 6, if there is
a substitution 03 such that 6103 = 6,. Substitution 6 is the most general unifier of t; and t, if it is
more general than all unifiers of t; and t,.

Resolution Let c; = {ky,...,kn} and ¢y = {l3,...,1,} be literal sets that represent ground
clauses. c¢; and c; are resolvable iff there are r € {1,...,m} and s € {1,...,n} such that for
some atom P we have {k;, s} = {P,—~P}. In this case, the resolvent of ¢1 and c; is Res(cq, ¢2), the
disjunction of the literals in {kq, ..., k—1, kpq1, ..., km U{l1, ..., Is-1, 1541, - - ,ln}. For a set C
of literal sets ¢y, . .., c;; representing a conjunction of ground clauses, C and ¢’ are resolvable iff
c; and ¢’ are resolvable for some 1 < i < m; in this case Res(C, ") £ A and ¢ resolvable Res(ci, ')

Equivalences Some equivalences that we will use are

= (V2) (Vy)@(x,y) = (Vy) (V) D(x, y)
= (V2) (@1 (x) A Da(x)) = ((Vx)P1(x) A (Vi) P2 (x))
F (@2 (¥1=Y2)) = ((PAY) = (PAY2))

Unique-names axioms Let Fy,...,F, be distinct function symbols. The unigue-names axiom
for Fy, ..., Eyis

N E@#FEGAN N\ KE) =kE) ox=7 2.1)

1<i<j<n 1<k<n

where X = ij for ¥ = xq,...,xy and ¥ = yq,...,ym stands for x; = y1 A ... A Xy = Y. For a
sort s, the unique-names axioms for sort s are the unique-names axioms for the function symbols
of sort s.

Second-order logic For the specification of the foundational axioms for situations in the next
section, we will need second-order logic. Since this is the only time we use second-order
logic in this thesis, we do not formally introduce it. We just remark that second-order logic
extends the afore introduced first-order logic by object-level variables P that range not only
over domain elements, but functions and relations over domain elements.

2.1 Unifying Action Calculus

[Thielscher, 2011] proposed a Unifying Action Calculus (UAC) with the objective of bundling
research efforts in action formalisms. It does not confine to a particular time structure and can
thus be instantiated with situation-based action calculi, like the Situation Calculus or the Fluent
Calculus, as well as with formalisms using a linear time structure, like the Event Calculus.
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The UAC is based on a finite sorted signature with predefined sorts for the basic building
blocks of virtually all action formalisms: time itself, world properties that change over time
(fluents), and actions, that initiate these changes.

Definition 2.1. A domain signature is a signature which includes the sorts TIME, FLUENT and
ACTION along with the predicates

e < :TIME X TIME denoting an ordering of time points,
e Holds : FLUENT X TIME stating whether a fluent evaluates to true at a given time point,

e Poss : ACTION X TIME X TIME indicating whether an action is applicable for particular
starting and ending time points.

The following definition introduces the most important types of formulas of the Unifying
Action Calculus: they allow to express properties of states and applicability conditions and
effects of actions.

Definition 2.2. Let § be a sequence of variables of sort TIME.
e A state formula ®[S] in § is a first-order formula with free variables § where

— for each occurrence of Holds(f,s) in ®[S] we have s € 5 and

— predicate Poss does not occur.
Let s, t be variables of sort TIME and A be a function into sort ACTION.
o A UAC precondition axiom is of the form
Poss(A(X),s, t) = mals] (2.2)
where 714]s] is a state formula in s with free variables among s, t, ¥.
o An UAC effect axiom is of the form
Poss(A(X),s,t) D Y1[s, ] V...V Yi[s, 1] (2.3)
where k > 1 and each Y; (1 < i < k) is a formula of the form
(37:) (Bi[s] A (V) (T > Holds(f, 1)) 4
AN (V)T D —~Holds(f,t)))

in which ®;[s] is a state formula in s with free variables among s, X, 7, and both I'f[s, t]
and I'"[s, t] are state formulas in s, t with free variables among f,s, t, X, i/.

Next, we formalise the concept of an (action) domain axiomatisation with its notion of time
and action laws.

Definition 2.3. Consider a fixed domain signature. A UAC domain axiomatisation is a set of
axioms X = QUITUY U X,;,,, where

e () is a finite set of foundational axioms that define the underlying time structure,
e Il is a set of precondition axioms (2.2),

e Y is a set of effect axioms (2.3),

16



Chapter 2. Preliminaries 2.1. Unifying Action Calculus

e IT and Y contain exactly one axiom for each function into sort action and

® Y,y is a set of auxiliary axioms containing unique-names axioms for sorts FLUENT and
ACTION.

The auxiliary axioms will later be extended for various purposes like action occurrences,
default closure axioms and formulas for inferring direct effects.

In this thesis, we will only be concerned with two specific time structures, situations
(known from Situation and Fluent Calculus) and the natural numbers (as used by the Event
Calculus). The foundational axioms for situations from [Pirri and Reiter, 1999] are below. The
first axiom (2.5) says that Sy has no predecessor and is thus indeed the initial situation. The
next axiom (2.6) defines the ordering < on situations, and (2.7) states that Do is injective. Fi-
nally, (2.8) allows to prove properties of situations with the help of induction. It says that any
property P (expressed by a second-order predicate variable) that holds for the initial situation
So and is preserved through action application (from s to Do(a,s)) holds for all situations s’.

(s < So) 2.5)
s<Do(a,s)=(s<sVvs=54) (2.6)
Do(a,s) = Do(d',s') = (a=da Ns=5) (2.7)
(VP)((P(So) A (P(s) D P(Do(a,s)))) O P(s")) (2.8)

We abbreviate these axioms by Qg;; & {(2.5),(2.6), (2.7), (2.8) }. The notation Do(ay, ..., ax],s)
will be used as abbreviation for Do(a,, Do(...,Do(ay,s)...)).

As is common practice in the Event Calculus literature [Shanahan, 1997; Mueller, 2006],
we do not provide an axiomatisation of the natural numbers here, but just assume a standard
model of the natural numbers including zero for sort TIME in every interpretation and indicate
this by writing (),,;; in place of the foundational axioms. In particular, in the domain signatures
of linear time domains, we assume the constants of sort TIME given by INjy.

By abstracting from a specific time structure, the UAC introduces some general notions
concerning useful properties of time structures in domain axiomatisations.

Definition 2.4. A domain axiomatisation is progressing, if
e () |=(3s:1ME)(Vt: TIME)s < t and
e QUII = Poss(a,s, t) Ds < t.
A domain axiomatisation is sequential, if it is progressing and
QUII [= (Poss(a,s, t) APoss(a’,s',t')) D (t<t Dt<)YA({t=FtD(a=d Ns=5)))

That is, a domain axiomatisation is progressing if there exists a least time point and time
always increases when applying an action. A sequential domain axiomatisation furthermore
requires that no two actions overlap. For progressing domain axiomatisations, we define
Init(t) & —(3s)s < t. For the two time structures we use in this thesis, it readily follows
that they each have a unique initial time point:

Qg EInit(t) =t=Sy) and  Quu =Init(t) =t =0

The definition of Init above also works for more general time structures with multiple initial
(minimal) time points. We are however only concerned with progressing domain axiomatisa-
tions in this thesis.
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We next define what it means for a time point to be reachable in an action domain. Intuit-
ively, it means that there is a sequence of actions that leads to the time point when applied in
sequence starting in the initial time point. In particular, the initial time point itself is reachable.

Definition 2.5. Let X be a domain axiomatisation. A time point 7 is called reachable in ¥ if
there exist ground actions a4, ..., &, and time points 1, . . ., T, such that

o X E Init(1)
e X = Poss(a;, T;_1,T;) forall1 <i<mn,
°* T, =T.

This notion of reachability coincides with the one from [Reiter, 1993] for the Situation
Calculus. Reachability allows us to do induction on reachable time points — to show that a
given property P holds for all reachable time points, it suffices to prove the following: (1) P
holds for the initial time point; and (2) whenever P holds for a time point s, and an action a is
possible from s to ¢, then P holds for t. We will use this technique in several proofs.

2.2 Default Logic

Default logic [Reiter, 1980] is for closing gaps in incomplete knowledge bases. This is done
by defaults, that allow to express rules of thumb such as “birds usually fly” and “tools usually
work.”

Definition 2.6. For a given logical signature, a default is any expression of the form

B:ixi,..., Ky

- (2.9)

where B,x1, ..., &, w are formulas of the underlying logical signature. § is called the prerequis-
ite, the x; are the justifications and w is called the consequent. A default is

o justification-free if n = 0,
o prerequisite-free if p =T,

e normal if n =1 and x; = w,

supernormal if it is normal and prerequisite-free,

disjunction-free if B is a conjunction of literals and «, ..., x,, w are literals,

definite Horn if B is a conjunction of atoms, all the «; are negative literals and w is an
atom,

e open if it contains free variables, otherwise it is closed.

For supernormal defaults, we will usually drop the prerequisite T and simply write .
In plain text, we will write the default (2.9) as B : xy,...,x,/w. In this thesis, we will only
be concerned with defaults with at most one justification, but usually give definitions for the
general case. To access the consequent of a default, we use Consequent(B : «1,...,k,/w) & w.
This generalises to sets of defaults via Consequents(D) & {Consequent(d) | 6 € D}.
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Definition 2.7. A default theory is a pair (W, D), where W is a set of closed formulas and D is
a set of defaults. (W, D) is called closed if all defaults in D are closed, otherwise it is open. All
other properties of defaults (e.g. normal) generalise similarly to default theories.

The meaning of default theories is given through the notion of extensions. An extension of a
default theory (W, D) is “interpreted as an acceptable set of beliefs that one may hold about the
incompletely specified world W” [Reiter, 1980]. The following definition is for closed default
theories only. When speaking about a set D of open defaults, we take it to mean the set of all
ground instances of defaults in D.

Definition 2.8. Let (W, D) be a closed default theory. For any set S of closed formulas let I'(S)
be the smallest set satisfying

1. WCTI(S)

2. Th(T(S)) = I(S)
3. If w €D, BeT(S)and ~xi, ..., ~ky ¢ S, then w € T(S).

A set E of closed formulas is called an extension for (W, D) iff T'(E) = E.
An alternative characterisation of extensions is given by the following result.

Theorem 2.9 (Theorem 2.1, [Reiter, 1980]). Let (W, D) be a closed default theory and E be a set of
closed formulas. Define Ey & W and E; 1 % Th(E;) U Consequents(D;) for i > 0, where

D, a {,B:Kl,...,;cn
l:

w

ﬁ:Kl'a')”'K" € Dwith B € E;and —xy, ..., ~ky & E}

Then E is an extension for (W, D) iff E = | J E;.
i=0

The defaults in the D; are E’s generating defaults GD(E) & (J2, D;. Throughout the thesis,
whenever we refer to extensions E or sets D of defaults with subscripts, we mean the E; and
D; from the theorem above.

Based on extensions, one can define sceptical and credulous conclusions for default theor-
ies: sceptical conclusions are formulas that are contained in every extension, credulous con-
clusions are those that are contained in at least one extension.

Definition 2.10. Let (W, D) be a normal default theory and ¥ be a formula. We say that ¥ is
a sceptical consequence of (W, D) and write (W, D) k= ¥ iff ¥ is contained in every extension of
(W, D). Similarly, we say that ¥ is a credulous consequence of (W, D) and write (W, D) Rqeq ¥
iff ¥ is contained in some extension of (W, D).

In this thesis, we will mostly be concerned with sceptical consequences.
At several points we apply a useful result for default theories of a special form.

Theorem 2.11 (Theorem 3.1, [Reiter, 1980]). Every closed normal default theory has an extension.
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2.3 Logic Programming

Definite logic programs Robert Kowalski and others [Kowalski and Kuehner, 1971; Kowal-
ski, 1974; van Emden and Kowalski, 1976] shaped this important formalism for declarative
programming and knowledge representation. For a propositional or first-order signature, a
definite logic program rule is of the form

H+« By, ..., Bn (2.10)

where H, By, ..., By, are atoms; H is the head and the B; are the body atoms. A definite logic
program rule represents the definite Horn clause H V —B; V ...V =B, which could itself be
written as the implication (B A... A By,) D H. A definite logic program A is a set of definite
logic program rules.

Herbrand interpretations and models For an unsorted first-order signature =, the Herbrand
universe is the set of all ground terms over E. The Herbrand base is the set of all ground atoms
over E. An Herbrand interpretation is an interpretation whose domain is the Herbrand universe.
All the function symbols are interpreted by themselves, hence each Herbrand interpretation
can be written as a subset of the Herbrand base. For a definite logic program A, we define
Herbrand entailment A |=y P iff P is true in all Herbrand models of A.

Normal logic programs To treat negation in rule bodies in a declarative way, [Gelfond and
Lifschitz, 1988] introduced the stable model semantics. For a given signature, a normal logic
program rule is of the form

H<+ By, ..., By, not Cq, ..., not Cy,

where H, By, ..., By, Cy,...,Cy are atoms — By, ... ., By, are the positive body atoms and Cy, ..., Cy,
are the negative body atoms. A variable occurs positively in a rule if it occurs in a positive body
atom. A variable occurs negatively in a rule if it occurs in the head or in a negative body atom.
A rule is called safe if any variable that occurs negatively in the rule also occurs positively. A
variable is called local if it occurs in the body but not in the head.

A rule is called ground if it does not contain variables. A normal logic program is a set of
normal logic program rules. A normal logic program is ground if all its rules are ground.

For a ground normal logic program A and a set M of ground atoms, the Gelfond-Lifschitz
reduct AM is the definite logic program obtained from A by

e eliminating each rule whose body contains a literal not C with C € M, and
o deleting all literals of the form not C from the bodies of the remaining rules.

M is called a stable model (or answer set) for A iff M is the subset-minimal model of AM.

Loops and Loop Formulas [Lin and Zhao, 2004] discovered an interesting relationship
between Clark’s completion for definite logic programs [Clark, 1978] and the answer set se-
mantics. The relationship focuses on dependencies among program atoms, where P depends on
Q if there is a program rule with head P such that Q is among the rule’s body atoms. Answer
set semantics implicitly “checks” for positive cyclic dependencies among program atoms and
disallows answer sets that contain unjustified self-referential loops. As Clark completion does
not check for cycles, it may allow models that do not correspond to answer sets. [Lin and Zhao,
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2004] showed that adding so-called loop formulas for each loop of A to the Clark completion,
there is a one-to-one correspondence between the models of the resulting propositional theory
and the answer sets of A.

[Chen et al., 2006] later generalised the notion of a loop for programs with variables to
avoid computing essentially the same loops on different ground instantiations of a program.
They provided a theoretical result that guarantees the existence of a finite, complete set of
loops for programs over relational signatures. In their work, open program clauses are viewed
as representative of their ground instances.

Let A be a logic program over a relational signature Z. The dependency graph G for A
is the (possibly infinite) graph (V, E) where V is the set of atoms over E and for y,v € V,
we have (y,v) € E iff there is a program rule H < By, ..., By, not Cq, ..., not C, € A and a
substitution 6 such that H0 = u and B;6 = v for some 1 <i < m. A finite, non-empty subset L
of V is called a first-order loop of A iff for all u,v € L, there is a directed, non-zero length path
from u to v in the subgraph of G, induced by L. For two sets of literals L;, L, we say that
Ly subsumes Lj if there is a substitution 6 with L10 = L. A set £ of loops of a program A is
complete, if for each loop L of A there is an L’ € £ that subsumes L.

Lemma 2.12 (Proposition 9, [Chen et al., 2006]). Let A be a normal logic program over a relational
signature. A has a finite, complete set of loops if no rule in A contains local variables.

Stable models and default theory extensions Soon after the discovery of the stable model
semantics, researchers began to investigate the relationship between this new logic program-
ming semantics and the already known nonmonotonic formalisms [Bidoit and Froidevaux,
1987]. It turned out that there exist translations from normal logic programs to default theor-
ies such that there is a one-to-one correspondence between stable models and default theory
extensions [Marek and Truszczyniski, 1989; Bidoit and Froidevaux, 1991]. This means that de-
fault logic can be used to specify a meaning for logic programs that coincides with the stable
model semantics. Marek and Truszcziniski’s translation fr3 and its respective correspondence
result below is the basis of the implementation presented in Chapter 4.

Theorem 2.13 (Theorem 3.7, [Marek and Truszczyriski, 1989]). Let A be a normal logic program
containing clausesr = H <— By, ..., By, not Cy, ..., not Cy, over a propositional signature 3. Define
the default theory (W, D) of the logic program A by

Wy & {(Bl/\.../\Bm)DH|T€A,1’ZIO}

BiAN...ABy:Cq,...,—
Dy dcf{ 1A A mH Cy, ,Ch VEA,I’Z#O}

A set M of atoms is stable for A iff there is an extension E for (Wp, D) such that M = E NB.

The proof of this theorem is quite involved, but mainly based on the fact that both semantics
can be recast in a guess-and-check form: for the stable model semantics, that means guessing
a model, computing the Gelfond-Lifschitz reduct and checking whether the minimal model of
the reduct coincides with the initial guess; for default logic, it means guessing an extension
E, constructing the E; of Theorem 2.9 and checking whether the resulting theory is the initial
guess.

2.4 Notational Conventions

A few words on notation and naming conventions:
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® SORTs are typeset in small caps

o lower-case letters will denote object-level variables, we use (unless indicated otherwise)

£, f1, f2, ... for sort FLUENT,

- a,aq,4p,... for sort ACTION,

- s,t,t1,to,... for sort TIME,

- x,1,z, possibly with indices, for all other sorts

e Predicates start with a capital letter and are typeset in italics;

e Fluents, Actions and other function symbols of all sorts start with a capital letter and are
typeset in sans serif;

o lower case Greek letters will denote meta-level variables, we use

- @, 91, @2, ... for sort FLUENT,

- o,&q1,&y,... for sort ACTION,

- 0,0,T,T,T, ... for sort TIME,

- U, X, ¢, possibly with indices, for fluent literals,
- 60,601,6,,... for substitutions;

e capital Greek letters are used for a variety of objects:

— @, ¥ are used for formulas,
- = for signatures,

O for action domain specifications,
Y. for domain axiomatisations with constituents Q,I1,Y, ¥, and

A for logic programs
e capital Fraktur letters are used for components of signatures

- & ...sorts

- B ... predicates
- § ... functions
— X ...variables

e lower case Fraktur letters are used as meta-level variables:

- 4,4, 1,... for (possibly non-ground) terms
- 5,51,52,... for sorts
- 0,01,0p,... for domain objects

et b oy =hland 1 <H L H<HLVH =1t
o formulas with occurrences of free variables are assumed universally prenex-quantified;
e We collapse consecutive quantifiers, e.g. (Vx,y)® abbreviates (Vx)((Vy)®)

o for predicates with an obvious polarity (like DirT, DirF), we use a neutral version (like
Dir) with fluent literals L, where Dir(L,a,s,t) denotes DirF(F,a,s,t) if L = —F for some
fluent F and DirT(L,a,s, t) otherwise.
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Action Default Theories

Action default theories are for default reasoning about actions. They combine the research
areas of reasoning about actions — concerned with action theories —, and non-monotonic reas-
oning — concerned with default theories. Traditional action theories allow to model dynamic
domains and make definite predictions about how the domain will behave. Extending this,
action default theories allow to model dynamic domains with an additional focus on what
usually holds true in the domain. Techniques from nonmonotonic reasoning are employed to
make and withdraw normality assumptions in a principled manner.

To allow an end-user to specify a dynamic world, we first define a language for specifying
action domains, D.! The description language only determines the time-independent aspects
of a domain, the time-dependent aspects are added separately. This provides a clean distinc-
tion between domain — the general properties of the world —, and instance — a specific starting
configuration or a specific narrative. From action domain descriptions in this language, we
automatically create action default theories for this domain. We start out with basic defaults
that express static normal world properties and later extend this step by step to defaults for
dynamic normal world properties. It turns out that it is useful to reify normality into the lo-
gical language and that it is necessary to pay special attention to abnormal states — states where
default assumptions are violated.

3.1 An Action Description Language

In some fields of KR, researchers deal with great numbers of interrelated formal languages and
thus began to introduce a nomenclature for naming these languages. For example, in the area
of description logics [Baader et al., 2003], the basic language ALC (for Attributive Language
with Complements) extended with transitive roles is abbreviated by S, which in turn gives rise
to language names as SHOZQ via further extensions. In knowledge compilation [Darwiche
and Marquis, 2002], researchers investigate properties of propositional negation normal forms,
so-called NNFs. A formula in this language that is also smooth, deterministic and decomposable
is then a member of the language sd-DNNF.

In reasoning about actions, there have not been any attempts of introducing a similar no-
menclature for description languages. Although there exists a multitude of action languages
(see also Section 1.1.4), their names rarely make an indication about language features or

To be precise, we define a whole family of action description languages, but this is only an aside from a user’s
point of view.
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expressiveness. For the languages we are concerned with in this thesis, we use a naming
methodology that clarifies language features with respect to defaults and action effects. Con-
structions we define from these D languages will always be with respect to a fixed domain
signature, but not depending on a specific one — they are parametric in the domain signature.

3.1.1 Syntax

Since our treatment of time should be as general as possible, we first introduce an important
syntactical device. It allows us to make statements about the world without making any
reference to a time point or time at all?> These fluent formulas are just like FOL formulas
with atomic formulas replaced by fluent terms. If we want to express that the world property
expressed by a fluent formula ® holds at a time point 7, it is straightforward to create a state
formula ®[7] for precisely that purpose.

Definition 3.1. For a fixed domain signature E, an atomic fluent formula is of the form
F(ty,...,t;), where F : 51 X - -+ X 8, — FLUENT € Z is a function symbol and t; : s1,...,t, : 8,
are terms. Accordingly, fluent formulas are defined inductively like formulas of sorted first-
order logic without equality, with the only difference that atomic fluent formulas play the role
of atomic formulas. The notion of a fluent literal and all literal-related notation carries over.
For a given fluent formula ® and a term 7 : TIME, the notation ®[7] is defined as follows.

T[r] & T
L[] & L
F(ty,...,t;)[t] & Holds(F(ty,...,t:), T)
(=®)[7] & ~(P[1])
(D1 0Dy)[1] & D[] 0 Dy[7] for o € {A,V}
((Qx:5)®)[r] # (Qx: 8)(@[r]) for Q € {V,3}

These fluent formulas are used to make general, time-independent statements about ac-
tion domains. In particular, the following definition formalises how action preconditions and
effects and normality statements about the world can be expressed.

Definition 3.2. Consider a fixed domain signature. Let A be a function into sort AcTIoN and
X be a sequence of variables matching A’s arity.

e A precondition law for A(X) is of the form
possible A(X) iff Oy (3.1)

where @4 is a fluent formula with free variables in ¥. A precondition law is disjunction-
free iff ® 4 is a conjunction of fluent literals.

o A direct effect law for A(X) is of the form
action A(X) causes ¢; or ... or P, if ® (3.2)

where n > 1, the i; for 1 < i < n (the effects) are fluent literals and & (the condition) is a
fluent formula. An effect law is:

— deterministic if n = 1, otherwise it is disjunctive;

2In general logic, this is trivial. In action theories however, one is usually concerned with timed domains.
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— an occlusion for A(X) if n =2 and ¢, = ¢ and ¢ = —¢ for some fluent term ¢;
— local-effect if all free variables in ® and the ; are among X, otherwise it is global-effect;

— unconditional if ® = T, otherwise it is conditional. Unconditional direct effect laws
will be written as action A(X) causes 1 or ... or ;.

A law is either a precondition law or a direct effect law for some action.

o A state default is of the form
normally ¢ if @ (3.3)

where ¢ (the consequent) is a fluent literal and ® (the prerequisite) is a fluent formula’3 A
state default is:

— disjunction-free if ® is a conjunction of fluent literals;
— atomic if ® is a single fluent literal;

— prerequisite-free if ® = T and will be written as normally .

We will define additional laws in later chapters; when speaking about laws, we always
mean the latest definition. To describe an action domain, all a user now has to do is write laws
and state defaults. The laws state how the domain always behaves, while the state defaults
indicate how the domain normally behaves. Note that such a domain description does not
explicitly mention time.

Definition 3.3. Consider a fixed domain signature. An action domain specification (ADS) ® — for
short, domain - is a finite set of laws and state defaults.

We assume without loss of generality that different effect laws for the same action A(X)
share only variables among ¥, and that these constitute the only pairs of elements of action
domain specifications that share variables.

Whenever all state defaults of an action domain specification ® have certain properties, the
ADS inherits this property. For example, if all state defaults in ® are prerequisite-free, we will
also call the action domain specification @ prerequisite-free. The same holds for properties
of effect laws, so an unconditional ADS contains only unconditional direct effect laws. An
exception will be made for occlusions: in terms of nomenclature, “ADSs with occlusions”
refers to ADSs where all direct effect laws are occlusions or deterministic effects. Naturally,
we can combine these properties and speak about, say, an action domain specification that
is prerequisite-free, unconditional and local-effect. We will use structured prefixes to refer
to specific sublanguages of D, where the first part of the prefix classifies the state defaults,
the second part classifies the action effects and the prefix parts are separated by a hyphen
“-”. For example, p-D denotes the set of all prerequisite-free action domain specifications, -I'D
the set of all local-effect ADSs and p-ID is the intersection of the two. Table 3.1 shows all
possible endorsements that create the D family of action specification languages. So strictly,
Definition 3.3 speaks about ADSs for n-cgsD.

3The notions prerequisite and consequent have already been defined for defaults. It will however be clear from the
context which of the two we refer to.
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State defaults | prerequisite-free: p  atomic: a disjunction-free: d normal: n
unconditional: u conditional: ¢

Direct effects | local: [ global: ¢
deterministic: e with occlusions: 0 disjunctive: s

Table 3.1: The D family of action description languages. Properties of state defaults will be referenced
via the part before the “-” and the part afterwards refers to properties of laws. Expressiveness increases
from left to right along the dimension specified by the first column: for example, according to the second
row u-D C ¢-D. Although several of the properties are binary, we always use endorsements to avoid
confusion.

3.1.2 Semantics

In contrast to transition-system based semantics of existing action languages, the semantics of
the D family will be defined in terms of a translation to default logic. Roughly, the laws of a
domain specification will be translated into a UAC domain axiomatisation, and the state de-
faults will be translated into Reiter defaults. Alas, the domain specification makes no mention
of a time structure or world properties at any time point. Indeed, laws and state defaults are
wholly independent of a specific notion of time. However, for the translation into a domain
axiomatisation to be fully defined this information needs to be added. At the point of trans-
lation the user opts for a time structure and according to their choice completes the domain
specification: for branching time, they specify the state of the world at the initial situation; for
linear time, they specify a narrative consisting of action occurrences and states of the world
at various points in time. As specification completeness is concerned, we generally take a
user-friendly stance: if an ADS contains no precondition law for some action A, we take it to
be @ A= T.

Branching Time: Situations

To specify a branching-time domain axiomatisation, we need the following for each function
A into sort AcTION and matching sequence of variables ¥

e a fluent formula ®, with free variables among ¥, that denotes the necessary and suffi-
cient preconditions for executing A(¥),

e an effect axiom (2.3) and

e alogical axiomatisation X of the state of the world in the initial situation Sp.

Since we already have the foundational axioms for situations () at our perusal, it is
straightforward to create a UAC axiomatisation for this domain. Note that the syntactic form
of the precondition axioms together with () entail that these branching-time axiomatisations
are always sequential.

Definition 3.4. Let © be a D action domain specification. A branching-time domain axiomatisation
for ® is a set of axioms ¥ = Qg UTTUY U Xy U Zyyx, where

o () are the foundational axioms for situations,
e [T contains a precondition axiom of the form
Poss(A(X),s,t) = (®als] ANt = Do(A(%),s)) (34)
for each possible A(X) iff &4 € O,
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e Y contains an effect axiom (2.3) for each function into sort ACTION,
e Y is a set of state formulas in Sy characterising the initial situation and

® Y,y is a set of auxiliary axioms containing unique-names axioms for sorts FLUENT and
ACTION.

As we define more and more general forms of domain axiomatisations, we will (ab)use X;,x
to accommodate a variety of additional auxiliary axioms. For brevity, we will only ever state
the latest addition, hence unique-names axioms are always part of our domain axiomatisations.

Linear Time

For linear-time domain axiomatisations, the user also needs to provide action preconditions
and effect axioms, just as for branching time. Additionally, they specify a narrative — a finite set
of action occurrences and world properties at specific time points. To this end, we introduce
a new fluent Happens(a, s, ) expressing occurrence of an action a from time points s to t. The
actions of a narrative are now easily written by the user as a sequence of ground fluent atoms

Happens(ay,01, 1), .. ., Happens(ay,, 0y, T) (3.5)

which will be translated into an action occurrence axiom in the resulting domain axiomatisa-
tion, similar to minimisation of event occurrence via circumscription of the predicate Happens
in the Event Calculus [Mueller, 2006]. Properties of the world at certain time points in the
narrative are specified by a set Xy of state formulas. The linear-time precondition axiom as
defined below is restricted to time-consuming actions, thus our linear-time domain axiomat-
isations will always be progressing.

Definition 3.5. Let ©® be a D action domain specification and extend its domain signature by
the (w.l.o.g.) fresh function symbol Happens : ACTION X TIME X TIME — FLUENT. A [inear-time
domain axiomatisation is a set of axioms £ = O, UITUY U Zn U Xy, Wwhere

e (), contains an axiomatisation of the natural numbers,
o II contains a precondition axiom of the form
Poss(A(X),s, t) = (®a[s] A Holds(Happens(A(X),s,t),s) As < ) (3.6)
for each possible A(X) iff &4 € O,
e Y contains an effect axiom (2.3) for each function into sort ACTION,
e Y\ contains
— for a sequence (3.5) an action occurrence axiom of the form
(Va,s,t)(Holds(Happens(a,s,t),s) = ((a=a1 As=0y At=7) V...V (3.7)
(a=anANs=0, Nt =1y))
— closed state formulas in single time points.

® Yy is a set of auxiliary axioms containing unique-names axioms for sorts FLUENT and
ACTION.
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This specification of narratives makes no implicit persistence assumption for time spans
without action occurrence: for example, if the narrative only contains a state formula about 0
and action occurrences from 0 to 1 and 3 to 5, then state properties do not carry over from 1 to
3. If this is desired, the user can explicitly add the occurrence of an action without effects like
Happens(Wait, 1,3). Even more interestingly, they can use occlusions to exclude only specific
fluents from the frame assumption and let all others persist.

We can see that this compilation/representation of narratives does not allow incomplete
knowledge about actions. As we have in mind agents that reason about their own past, in-
complete knowledge about their own actions seems however far-fetched. The specification of
linear-time domains in the UAC shown here is indeed only one possibility among several,
alternative formulations can be found in [Thielscher, 2011].

* * *

We will see examples for domain axiomatisations of both of these specific forms in the
remainder of this chapter. We will work our way up from basic action domain descriptions to
fairly elaborate and expressive ones. The next section starts out with the most basic language
p-uleD, where all state defaults are prerequisite-free and the actions have only unconditional,
local, deterministic effects. Section 3.3 then introduces state defaults with atomic prerequisites
and actions with occlusions, hence deals with the language a-uloD. More general state default
prerequisites along with a novel axiomatisation technique are presented in Section 3.4. This
axiomatisation technique is then further extended to conditional effects (Section 3.5), global
effects (Section 3.6) and disjunctive effects (Section 3.7).

3.2 Basic Action Default Theories

This section is concerned with p-uleD action domain specifications, where all state defaults are
prerequisite-free and all actions have only unconditional, local and deterministic effects. As
we shall see, the action default theories for these domains have certain nice properties. Most
notably, it suffices to instantiate the defaults with the least time point to exhaustively draw all
possible intuitive conclusions. Here, intuitive means the conclusions are independent of future
time points. We begin with illustrating the language p-uleD using a variant of the well-known
Yale Shooting scenario [Hanks and McDermott, 1987].

Example 3.6 (Fred Meets Destiny). Bestowed with an almost Promethean fate, turkey Fred
lives only to get shot at, die, and then be resurrected again (since 1987). Let the signature
of this domain consist of the actions Load, Wait and Shoot with obvious meanings, fluents
Loaded, Broken and Alive saying that the gun is loaded, broken and Fred is alive, respectively.
It is possible to shoot the gun if it is loaded and not broken, loading and waiting are always
possible. Loading the gun causes it to be loaded, and after shooting it Fred ceases to be alive.
Normally, the gun works fine. In D, this domain is specified as follows.

Oy, = {possible Shoot iff Loaded A —Broken,
action Shoot causes —Alive,

action Load causes Loaded,

normally —Broken}

To reason about this domain, we will translate it into a default theory of a specific syntactic
form. The semantics of default logic then specifies the meaning of the domain. At first, we
define the effect axioms expressing unconditional, local and deterministic effects.
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Definition 3.7. Let ©® be a p-uleD action domain specification. Let A be a function into sort
ACTION and X be a sequence of variables matching A’s arity. An effect axiom with unconditional
effects is of the form

Poss(A(%),s,t) D (Vf)(Holds(f,t) = (v} Vv (Holds(f,s) A—7v,))) (3.8)
where
Va = V f=9¢ and 7, = V f=9
action A(X) causes p€® action A(X) causes —p€®

This fully automatic way of creating effect axioms from direct effect laws together with
the translation of precondition laws seen in the previous section yields a translation of action
domain specifications into UAC domain axiomatisations. The following definition extends
such a domain axiomatisation with a set of defaults created from state defaults.

Definition 3.8. Let ©® be a p-uleD action domain specification. A p-uleD action default theory is
a pair (X, A[s]) for some variable s : TIME, where

e Y is a UAC domain axiomatisation with effect axioms (3.8) and
e Als] is a set of supernormal defaults, containing

: Holds(¢, s)
— a default W

: =Holds (¢, s)
— a default W

a variable.

for each state default normally ¢ € ® and

for each state default normally —¢ € ©, where s : TIME is

By Alc] we denote the set of defaults in A[s] where s has been instantiated by the term o.

Example 3.6 (Continued). Let us compile ®y,, into the branching-time domain axiomatisation
Zyale = Qi UITUY U Xgyx. The precondition law possible Shoot iff Loaded A =Broken and
the omitted preconditions of Load and Wait determine

IT = {Poss(Shoot, s, ) = (Holds(Loaded, s) A =Holds(Broken,s) A t = Do(Shoot, s)),
Poss(Load, s, t) =t = Do(Load, s),
Poss(Wait, s, t) =t = Do(Wait, s) }

Translating the direct effect laws is equally easy: all effect axioms in Y are of the form (3.8), we
state only the 7* different from the empty disjunction:

Yohoot = (f = Alive) and 7., = (f = Loaded)
Waiting has no effects, thus the effect axiom of Wait is equivalent to
Poss(Wait, s, t) D (Vf)(Holds(f,t) = Holds(f,s))
Finally, we state that the turkey is alive in the initial situation:

ZO = {HOldS(A“VG, So)}

29



3.2. Basic Action Default Theories Chapter 3. Action Default Theories

The state default normally —Broken saying the gun works properly yields the set of defaults

Als] = : =Holds(Broken, s)
| —Holds(Broken, s)

We can now employ sceptical entailment to answer the question whether Fred is still alive
after applying the actions Load, Wait, and Shoot, respectively. Observe that without the default
assumption, it cannot be concluded that the action Shoot is possible after performing Load
and Wait since it cannot be inferred that the gun is not broken. Using the abbreviations S; =
Do(Load, Sy), So = Do(Wait, S1), and Sz = Do(Shoot, S;), we illustrate how the nonmonotonic
entailment relation defined earlier enables us to use the default to draw the desired conclusion:

(2 U X, A[Sp]) = —Holds(Broken, Sp) A Poss(Shoot, Sy, S3) A —Holds(Alive, S3)

The default conclusion that the gun works correctly, drawn in Sy, carries over to S; and allows
to conclude applicability of Shoot in S; and its effects on Ss.

In the example just seen, default reasoning could be restricted to the initial situation. As
it turns out, this is sufficient for the type of action domains considered in this section: effect
axiom (3.8) never “removes” information about fluents and thus never makes more defaults
active after executing an action. This observation is formalised by the following lemma. It
essentially says that to reason about a time point in which an action ends, it makes no differ-
ence whether we apply the defaults to the resulting time point or to the time point when the
action starts. This holds of course only due to the restricted nature of effect axiom (3.8). For
the lemma and all theoretical results in the remainder of this section, by action default theory
we mean p-uleD action default theory.

Lemma 3.9. Let (X,A[s]) be a p-uleD action default theory, « be a ground action such that
Y. |= Poss(w, o, T) for some o, T : TIME, and let ¥ [T be a state formula in T. Then

(2, Ale]) R ¥t iff (2 Alr]) R ¥

Proof. By induction on the structure of state formulas; we restrict our attention to the case
where ¥[7] is a fluent literal [7]. If X is inconsistent or X |= [7] the claim is immediate, so
for the following we assume X U {1} is consistent. This immediately rules out a direct effect
Y of x and leaves a default as only option:

(%, Ale]) k= y[t]
iff ¢[t] € E for each extension E for (%, A[o])

iff thereisa T : ¢[o]/¢[o] € Ale] and no T : ¢[o]/ o] € Alo]

iff thereisa T : ¢[s]/¢[s] € Als] and no T : ¢[s]/¢]s] € Als]

iff thereisa T : y[t]/y[t] € Alr] and no T : [t]/ P[] € AT]

iff 1] € E’ for each extension E’ for (X, A[t]) O
We next introduce a helpful regression operator which is inspired by the one from [Reiter,

1991]. It uses the structure of the effect axioms to reduce reasoning about a time point that is
the result of applying an action to reasoning about the time point in which the action started.
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Definition 3.10. The operator Ry’* maps, for a given action «, a state formula in T into a state
formula in ¢ as follows.

Re" (Holds(, 7)) & (73 {f — ¢}V (Holds(p,0) A =7, {f = ¢}))
RIT(P(T)) & P(T) (where P is not Holds)
RYT(~¥) & ~RYT(¥)

Ry (Y102
RyT((Qx:8)¥

¢ Ry (Y1) o Ry (¥2) (Where o € {A,V})
< (Qx:5)Ry™(Y) (where Q € {V,3})

~— — N
o
e

g Nz

Now whenever an action « is possible and its effect axiom is available, a state formula in
the resulting time point and its regression are indeed equivalent.

Proposition 3.11. Let « be a ground term of sort ACTION and S be a consistent set of closed formulas
that contains an effect axiom (3.8) for action o and where S |= Poss(«, o, T) for some ¢, T : TIME and
let ¥[s] be a state formula. Then

S =¥t =Ryt (Y)lo]

Proof. By structural induction on ¥. The only interesting case is ¥ = Holds(¢, T) for some
fluent ¢. Let J be a model for S.

J |= Holds(¢, T)
iff 3 = vy {f — ¢} V (Holds(¢,0) A=y {f = ¢})

(since J \: Poss(a, 0, T) and J is a model for a’s effect axiom)
iff 3 = Ry (Holds(¢, T)) (by definition) O
We next define what it means for a time point to be reachable by default in an action
default theory. This is an enhancement of the reachability notion from Definition 2.5: where

monotonic reachability only considers provably applicable actions, default reachability also
takes into account actions that are only executable by default.

Definition 3.12. Let (X, A[s]) be an action default theory. A time point T is

e weakly sceptically reachable in (¥, Alo]), if ¢ is finitely reachable in X and for all extensions
E for (¥, A[c]), T is reachable in E;

e strongly sceptically reachable in (¥, A[c]), if o is finitely reachable in ¥ and there exist
ground actions w7, ...,«, and time points T, ..., T; such that

- 0=71,
- (%, A[0]) ke Poss(aj, Ti—1,T;) forall1 <i<mn
- T =T

For action default theories (X, A) without explicitly mentioned TIME variable, a time point 7 is
o weakly sceptically reachable in (X, A), if T is reachable in all extensions E for (X, A);

e strongly sceptically reachable in (X, A), there exist ground actions &y, ..., &, and time points
T, ..., Ty such that

- ¥ E Init(w),
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- (X,A) R Poss(a;, 71, T;) forall1 <i<mn

- T, =T

While weak sceptical reachability only requires reachability in all extensions, the strong
version also needs agreement on the path by which the time point is reached. With situations
as underlying time structure, weak and strong sceptical reachability coincide. This is because
the foundational axioms for situations () entail that situations have unique predecessors.

For instance, in @y, from Example 3.6, we have the following:

e S is reachable in X simply because it is initial,

e Do(Load, Sp) is reachable in X because Sy is reachable and Load has a trivial precondition
law possible Load iff T,

e Do(Shoot, Do(Load, Sp)) is not reachable in X because, although Do(Load,Sy)
is reachable we have  possible Shoot iff Loaded A ~Broken € @y, but
¥ = —Holds(Broken, Do(Load, Sy)),

e Do(Shoot, Do(Load, Sp)) is strongly sceptically reachable in (X, A[Sy]) since Do(Load, Sp)
is reachable in ¥ and (%, A[Sp]) | Poss(Shoot, Do(Load, Sp), Do(Shoot, Do(Load, Sy))).

The next theorem says that all local conclusions about a finitely reachable time point ¢ (that
is, all conclusions about ¢ using defaults from A[c]) are exactly the conclusions about ¢ that
we can draw by instantiating the defaults only with the least time point.

Theorem 3.13. Let (X, A[s]) be a p-uleD action default theory, A its least time point, o : TIME be
finitely reachable in ¥, and ¥[c] be a state formula. Then

(%, Ale]) R Yol if (2 A[A]) R Y(o]

Proof. By induction on ¢. The base case is trivial. For the induction step, assume that
Y = Poss(a, 0, T).

(%, A[t]) o ¥[7)
iff (£, Alo]) R ¥[7] (Lemma 3.9)
iff (2, Alo]) R RYT(F)[0] (Proposition 3.11)
iff (X, A[A]) R RYT(Y)[0] (induction hypothesis)
iff (£,A[A]) R YI7] (Proposition 3.11) O

It thus remains to show that local defaults are indeed exhaustive with respect to local
conclusions. The next lemma takes a step into this direction: it states that action application
does not increase default knowledge about past time points.

Lemma 3.14. Let (X,A[s]) be a p-uleD action default theory, a be a ground action such that
Y |= Poss(w, 0, T) for some o, T : TIME, and let ¥|p] be a state formula in p : TIME where p < 0.
Then

(X, Alt]) ke ¥lp] implies (%, Alo]) = ¥lp]

Proof. We presume that ¢ is reachable from p in ¥ for otherwise the claim is immediate. To
show the contrapositive, let (X, Alo]) [ ¥[p]. Then there exists an extension E for (%, A[o])
such that ¥[p] ¢ E. We construct an extension F for (X, A[t]) with ¥[p] ¢ F as follows. Set Fy &
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Y and fori > 0 let Fiyq; & Th(F) U{w[t]| T :wlt]/w[t] € Alt],w[t] € E}. (Observe that
¥[p] ¢ E and E = Th(E) means that E is consistent and hence w|7] € E implies ~w|7] ¢ E.)
Now Consequents(GD(F)) C E and F = Th(X U Consequent(GD(F))) imply that every model
for E is a model for F. Hence ¥|[p] ¢ F and (X, A[t]) & ¥|p]. O

The converse of the lemma does not hold, since an action effect might preclude a default
conclusion about the past. Using the above lemma and simple induction on the length of
action sequences, one can establish the following.

Theorem 3.15. Let (X, Als]) be a p-uleD action default theory, let ¥[s] be a state formula, o < T be
time points, and o be reachable in X.. Then

(X, AlT)) R Yo implies (%, Alo]) k= ¥[o]

Proof. If T is not reachable from ¢ in %, the result is immediate, so let T be reachable from ¢
in 2. We do induction on the length of the action sequence connecting ¢ and 7. The base case
is obvious. For the induction step assume that (X, A[T']) & ¥[co] implies (£,A[0]) R ¥lo],
Y = Poss(a, T/, 7) and (X, A[1]) R Y[r]. By Lemma 3.14, we get (X, A[T']) & ¥[o]; the claim
now follows from the induction hypothesis. O

The next theorem, the first main result of this section, now combines Theorems 3.13 and
3.15 and tells us that default instantiation to the least time point subsumes default instantiation
in any time point in the future of the time point we want to reason about.

Theorem 3.16. Let (X, A[s]) be a p-uleD action default theory, A be its least time point, ¥[s] be a
state formula, and o < T be terms of sort TIME where ¢ is finitely reachable in X.. Then

(%, AlT]) R Y(o] implies (£, A[A]) R ¥]o]

Proof. (£,A[7]) R ¥[c] implies (£, Alo]) | ¥[c] by Theorem 3.15. By Theorem 3.13, this is the
case iff (X, A[A]) R ¥[o]. O

What this theorem misses out, however, are time points that are not finitely reachable
in X only, but where some action application along the way depends crucially on a default
conclusion. To illustrate this, recall Example 3.6: the situation Do([Load, Wait, Shoot], Sp) is
not reachable in %, because the necessary precondition that the gun is not broken cannot be
inferred without the respective default.

The following theorem, the second main result of this section, now assures sufficiency of
instantiation with the least time point also for time points that are only reachable by default.

Theorem 3.17. Let (X, A[s]) be a p-uleD action default theory, A its least time point, o be a time point
that is reachable in ¥, ¥[s| be a state formula, and T be a time point that is strongly sceptically reachable
in (¥, Alo]).

1. T is strongly sceptically reachable in (X, A[A]).
2. (,A[0]) e Y[t] if (2 A[A]) R 7).
Proof. 1. Obvious: ¢ is reachable in ¥ and 7 is strongly sceptically reachable in (X, A[o]).

2. By assumption, there exist ground actions «j, ..., &, and time points T, ..., T, such that
(X,Al0]) R Poss(aj, Ti—1,T;) forall1 <i < mn, 1p = 0, and 7, = 7. We will now prove by
induction (on natural numbers) that (X, Alc]) k ¥[75] iff (X, A[A]) R ¥[7] for all i; the
claim then follows from 1, = T.
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i =0: By Theorem 3.13 and 7y = 0, we have (X, A[o]) k& ¥[w] iff (X, A[A]) R ¥[™w)-

i=i+1: Let (X,A[0]) R ¥[n] iff (£,A[A]) R ¥[r] (IH) and @f, ,[s] be the right-hand
side of w;1’s precondition axiom. We have

(%, Alo]) ke Poss(aji1, T, Tig1) (presumption)
iff (X, Alo]) @[] (precondition axiom)
iff (X, A[A]) R @F 4[] (IH)
iff (X, A[A]) ke Poss(aiv1, T, Tiv1) (precondition axiom)

Hence, by effect axiom (3.8), we have (X, Alo]) k& ¥[741] iff (X, A[A]) R ¥[1i41]. O

An immediate consequence of this result is that instantiation in the least time point also
provides a “maximal” number of reachable time points: default instantiation with a later time
point might potentially prevent actions in the least time point, which in turn might render yet
another time point unreachable. Furthermore, it is even enough to make default assumptions
only about a single time point — the initial state — without losing any of the conclusions.

3.3 Atomic State Defaults

In the previous section, we have used atomic, normal defaults without prerequisites to express
static world properties. These properties are assumed once if consistent and then persist over
time until supported or refuted by a definite action effect.

But concluding atomic propositions about the world is not always enough. Sometimes we
wish to express defaults of the form “in general, x are y” — for example, “in general, paper
airplanes fly.”4 Surely, we could instantiate the state default normally Flies(x) by all objects x
which are known to be paper airplanes. But this is by no means elaboration tolerant [McCarthy,
2003] and furthermore does not account for previously unknown paper airplanes. We would
much rather have a state default

normally Flies(x) if PA(x)

which will let us draw the desired conclusion whenever there is no contradicting information.

In this section, we extend the mechanism of the previous section to state defaults with
prerequisites. They allow us to specify dynamic defaults, that is, default properties that arise
and elapse with changing world features.

First, we show two straightforward generalisations of the approach presented in the pre-
vious section. As an example shows, these naive treatments of default prerequisites allow for
unintended default conclusions. To overcome this, we introduce a general, automatic method
that is proven to render such conclusions impossible. Finally, we show how the idea behind
this method can also be used to specify default effects of simple non-deterministic actions.

The language we are dealing with in this section is a-uleD, where the actions are as before
and the state defaults are atomic, that is, of the form

normally (—)¢@s if (—)¢; (3.9)

for fluents ¢y, 7.

*Yes, paper airplanes. Birds are not the only objects that should fly by default.
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Naive Generalisations

In this section, we present two methods of representing state default prerequisites in action de-
fault theories and show how these representations clash with our intuitive notion of relevance.
The first method represents a state default (3.9) as a supernormal default

: (—)Holds(¢1,s) D (—)Holds(¢y,s)
(—)Holds(¢1,s) D (—)Holds(¢y,s)

and the second method expresses the same state default as a normal default

(—)Holds(¢1,s) : (—)Holds(¢y,s)
(—)Holds(¢a,s)

While the second method is arguably more intuitive in terms of causality (it does not let us
conclude the contrapositive of the state default), both methods enable default conclusions to
be “carried back in time.” This clearly disqualifies for solving projection problems, since we
would have to take an infinite number of future time points into account.

Example 3.18 (I Fought the Law of Persistence and the Law Won). In the paper airplane
domain, the objective is to fold a sheet of paper (fluent SOP) into a paper airplane (fluent PA)
and conclude by default that it flies (fluent Flies). The logical formalisation should be able to
consistently incorporate the subsequent observation that the paper airplane does not fly. The
D action domain specification is:

®py = {possible Fold(x) iff SOP(x),
action Fold(x) causes PA(x),
action Fold(x) causes =SOP(x),

normally Flies(y) if PA(y)}

Let the corresponding domain axiomatisation be X = Qg UITUY U X U Xy according to
Definition 3.8 where the initial situation is characterised by Xy = {Holds(SOP(P),So)}. The
rest of the example is the same regardless of which of the two straightforward translations of
state defaults into Reiter defaults we use, that is, regardless of whether we employ default

: Holds(PA(x),s) D Holds(Flies(x),s) Holds(PA(x),s) : Holds(Flies(x),s)
Holds(PA(x),s) D Holds(Flies(x),s) or Holds(Flies(x),s)

After folding P into a paper airplane (using the abbreviation S; = Do(Fold(P), Sp)), we can
indeed make the desired conclusion that it flies:

(%, A[S1]) ke Holds(Flies(P), S1)
So far, so good. But there is another conclusion we can draw in S; and that refers to the past:
(%, A[S1]) ke Holds(Flies(P), So)

Spelled out, the sheet of paper already flew before it was folded! Moreover, this conclusion about
Sp could not be drawn in the initial situation itself without utilising a future situation:

(%, A[So]) W Holds(Flies(P), So)
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This line of argument could be read as: “If I folded the sheet of paper into a paper airplane, it
would fly. Therefore, it flies.” This is counterfactual reasoning gone awry. So what happened?

The problem stems from effect axiom (3.8) and its incorporated solution to the frame prob-
lem: since Flies(P) holds after Fold(P) but was not a positive effect of the action, according to
the effect axiom it must have held beforehand.

This example shows that state defaults with prerequisites (when expressed in the above
way) can have unintended effects in the presence of actions: they are, locally instantiated, not
exhaustive with respect to local conclusions. A proposition similar to Theorem 3.15 can thus
not be made when using defaults with disjunctive consequents or non-tautological prerequis-
ites. In the following subsections, we will extend our definition of effect axioms to incorporate
the more general form of state defaults considered here.

Relaxing the Frame Assumption

We next extend the way actions can influence the truth values of fluents. Up to now we only
had positive and negative effects and persistence — the action could make fluents true or false,
respectively, or not change them at all. In this subsection, we extend the compilation procedure
to occlusions (the term first occurred in [Sandewall, 1994]; our usage of occlusions is inspired
by this work). They do not fix a truth value for the respective fluents in the resulting time point
of the action and thus allow them to fluctuate freely. In particular, it is then impossible to de-
termine an occluded fluent’s truth value at the starting time point employing only information
about the ending time point. The resulting action description language a-uloD allows atomic
normal defaults and unconditional, local action effects with occlusions.

Definition 3.19. Let ® be a a-uloD action domain specification and A be a function into sort
ACTION with matching sequence of variables ¥. An effect axiom with unconditional effects and
occlusions is of the form

Poss(A(X),s,t) D (V) (v4 V (Holds(f,t) = (v} V (Holds(f,s) A=74)))) (3.10)

where

i = \V f=9

action A(X) causes ¢ €©®

Ya = V f=9

action A(X) causes "¢ <€®

Va = V f=9

action A(X) causes ¢ or 7€ @

For any p-uleD action domain specification ®, p-uloD effect axiom (3.10) is logically equi-
valent to its p-uleD counterpart (3.8). This is easy to see, since ® contains no occlusions and
thus 'y?A = 1.

...to Prevent Default Reasoning Backwards in Time

With this new tool of being able to “forget about” fluents, we can now treat the paper airplane
domain right.
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Example 3.20 (I Fought the Law of Persistence and I Won). We extend ®p4 by the occlusion
action Fold(x) causes Flies(x) or —Flies(x)

saying that x may or may not fly after folding. The obtained axiomatisation is ¥’ = Qg UTTU
Y' UZXy, where Y contains effect axiom (3.10) for the action Fold(x). We see that the desired
conclusion is preserved, and the undesired one is now disabled:

(%, A[S1]) b Holds(Flies(P), ;) and (%, A[S1]) W Holds(Flies(P), So)

Specifying the occlusions for the action in the example was easy — there was only one
default, and we had a precise understanding of the desired and undesired inferences. In
general, however, defaults might interact and it might become less obvious which of them to
exclude from the frame assumption.

Definition 3.21 below shows a general method of identifying the fluents that are to be
occluded, taking into account given defaults. It takes as input positive and negative effects of
an action A and the state defaults of a domain ©® and computes the set of default occlusions
of © for A. The intuition behind it is simple: it iterates over a set S of fluents potentially
influenced by A. This set is initialised with the definite action effects and then extended
according to defaults until a fixed point is obtained.

Definition 3.21. Let ® be an a-uloD action domain specification and A be a function into
sort ACTION with matching sequence of variables X. The occlusion completion of ® for A(X) is
computed by the following procedure:

1. Seti:=0and S%:={y | action A(¥) causes ¢ € ®}.

2. Set S't1:=S"U {¢f | normally ¢ if x € @ and x6 € S’ for some 6} and increment i.
3. Repeat step 2 until a fixed point S’ is obtained.
4. For each fluent ¢ € {|y| | p € S} \ {|¢| | ¢ € S°}, add to © the direct effect law

action A(X) causes ¢ or —¢

The occlusion completion of ® is then the union of the occlusion completions for all functions
into sort ACTION in ®’s signature.

Note that prerequisite-free state defaults do not contribute to the computation of occlusions.
This is semantically perfectly alright: the intended reading of prerequisite-free defaults is that
of static world properties that are once assumed (if consistent) and then persist over time until
an action effect either refutes or confirms them.

Example 3.20 (Continued). Applying Definition 3.21 to our running example initialises S° =
{PA(x),=SOP(x)}. The first iteration sets S! = S°U {Flies(x)} due to the state default
normally Flies(y) if PA(y) and substitution {y — x}. The procedure then computes

[{PA(x), ~SOP(x), Flies(x) }| \ |[{PA(x), =SOP(x)}| = {Flies(x)}

in its last step and returns the occlusion action Fold(x) causes Flies(x) or —Flies(x) that we
already figured out earlier “by hand.”
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The following theoretical results of this section apply to a-uleD action domain specifications
and their action default theories (%, A[s]) with effect axioms of the form (3.10) where the
default occlusions are constructed for each action of X as in Definition 3.21. We start out
with an observation that follows immediately from the syntactic structure of the effect axioms:
any fluent not explicitly mentioned by neither effects nor occlusions is captured by the frame
assumption.

Proposition 3.22. Let o, T be time points and « be a ground action such that ¥. |= Poss(a, 0, T). For
all fluents @ that do not occur as effects in direct effect laws for a, we have

Y = Holds(¢,0) iff ¥ |= Holds(¢, T)

Proof. By assumption, we have

=1 {f = ¢}V (Holds(g,7) = (v {f = @} V (Holds(¢,0) A =15 {f = ¢})))
and v} {f— ¢} =95 {f — ¢} =92 {f — ¢} = L. Combining the two assumptions yields
X = Holds(¢, T) = Holds(¢,0)
which makes the claim obvious. O

Similar to Lemma 3.14, the following lemma says that action application does not increase
default knowledge about the past, even in the presence of occlusions. This is intuitively
straightforward since occlusions by definition only affect knowledge about the future.

Lemma 3.23. Let « be a ground action and p,o, T be terms of sort TIME such that ¥ |= Poss(a, 0, T)
and p < o, and let ¥[s] be a state formula.

(%, Al]) e Ylo] implies (%, Alo]) & ¥p]

Proof. We first assume that X is consistent and p is reachable in X for otherwise the claim
is immediate. We do structural induction on ¥[p] (with the only interesting case ¥[p] =
Holds(¢,p) for a fluent ¢) and prove the contrapositive, hence let (X, Alc]) ¥ Holds(¢,p).
Then there exists an extension E for (X, Alo]) with Holds(¢,p) ¢ E. We construct an extension
F for (X, A[t]) as follows. Select a maximal

GD(F) C {®@[t] : p[r]/y[t] € A[t] | E |= ®[t], E = ~¢[t]}

such that X U Consequents(GD(F)) is consistent. Now assume to the contrary that Holds(¢, p) €
F. We make a case distinction on the reason for that.

1. X |= Holds(¢, p). Contradiction to the presumption.

2. There is a supernormal default T : Holds(¢, T)/Holds(¢,T) € GD(F). Then there is a
default T : Holds(¢, o) /Holds(¢,0) € GD(E) in contradiction to Holds(¢,p) ¢ E.

3. There is a default with consequent Holds(¢, T) in GD(F) that is not supernormal. Then
by the construction in Definition 3.21 ¢ is also an occlusion of a. By effect axiom (3.10)
we have Holds(¢,0) ¢ F and hence Holds(¢,p) ¢ F, contradiction. O

The absence of unintended inferences about time points connected via a single action then
immediately generalises to time points connected via a sequence of actions and trivially gener-
alises to unconnected time points. This is the main result of this section stating the impossib-
ility of undesired default conclusions about the past.
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Theorem 3.24. Let o, T be time points such that o is reachable and o < T.
(X, Al7]) R Y[o] implies (£, Alo]) k= ¥[o]

Proof. If T is not reachable from o, then X |= ¥[o] and the claim is obvious; so let T be reachable
from ¢. We use induction on o, thus let (X,A[7]) & ¥[c]. The base case, ¢ = T, is trivial.
For the induction step, assume X = Poss(a, T/, T) for some « and 7/, and (X, A[T']) k ¥]o]
implies (X, A[c]) k ¥[o] (IH). By assumption (%,A[r]) k ¥[o] and Lemma 3.23, we have
(%,A]7']) R |o]. This enables the induction hypothesis to conclude the proof of the claim. [

Another noteworthy property of the presented default reasoning mechanism is the pre-
servation of default conclusions: even if the prerequisite of a default is invalidated due to
a contradicting action effect, the associated consequent (if not also contradicted) stays intact.
This means the definition does not occlude unnecessarily many fluents. It would be fairly
easy to modify Definition 3.21 such that the resulting effect axioms also “forget” default con-
clusions whose generating rules have become inapplicable — we would just have to replace all
occurrences of literals by their respective affirmative component.

...to Model Default Effects of Actions

The usage of occlusions as advocated up to this point is of course not the only way to make
use of this concept. When we allow the user to specify them along with action effects in
a-uloD domains instead of computing them automatically, occlusions are an excellent means
of modelling default effects of simple non-deterministic actions:

Example 3.25 (Tales of Heads and Tails). We model the action of tossing a coin via excluding
the fluent Heads (whose intention is to denote whether heads is showing upwards) from the
action Toss’s frame axiom. However, the coin of this example is unbalanced and has a strong
tendency towards landing with heads facing upwards. This is modelled by having a state
default that states the result Heads as usual outcome. There is another action, Wait, that is
always possible and does not change the truth value of any fluent.

Ocoin = {action Toss causes Heads or —Heads,

normally Heads}

Using the branching-time domain axiomatisation X containing effect axioms (3.10) for Toss and
Wait and the observation Yo = {—Holds(Heads, Do(Toss, Sg))} we can draw the conclusion

¥ UXp = —Holds(Heads, Do(Wait, Do(Toss, Sp))) (3.11)

which shows that the observation “the outcome of tossing was tails” persists during Wait, that
is, the fluent Heads does not change its truth value during an “irrelevant” action. Tossing the
coin again (which results in situation S3 = Do(Toss, Do(Wait, Do(Toss, Sp)))), this time without
an observation about the outcome, the state default can be applied and yields the normal result
regardless of previous observations:

(X UZXp,A[S3]) e Holds(Heads, S3)

Hence, Definition 3.21 can also be used to complete a user-specified set of occlusions
regarding potential default effects of actions. When trying to achieve the above behaviour
without specifying the occlusions manually, that is, using a procedure in the spirit of Defin-
ition 3.21 that takes as input only definite effects and defaults, one is unlikely to succeed:
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automatically creating occlusions for all prerequisite-free defaults will cause all these defaults
to apply after every action. In the example above, the coin would then magically flip its side
(into the default state Heads) after Wait in Do(Toss, Sp). We could not infer (3.11) contrary to
our intuition that Wait has no effects.

3.4 Normal Defaults

In the previous section, defaults had only atomic prerequisites. We used a syntax-based al-
gorithm to exclude all fluents from the frame assumption that might become a default effect
of an action. This simple algorithm however is not easily adapted to more general default pre-
requisites. For example, even for the simple case of a state default normally H if F A G and
an action that makes F true, the question whether to exclude H from the frame assumption
cannot be answered statically, that is, without knowing the status of G.°

In this section, we deal with the problem on a semantical level. Becoming true by default
will be reified and treated by a special predicate. To incorporate the predicate into the effect
axiom, we will use a specific axiomatisation technique that implements the principle of uni-
versal causation. These new effect axioms easily allow the addition of new causes and will
form the basis not only for the action default theories in the rest of this chapter, but also for
our solution to the ramification problem in Chapter 5.

The action description language we deal with in this section is n-uleD — normal state de-
faults and unconditional, local and deterministic effects. In the remainder, we first motivate
our choice of default prerequisites; we present the effect axiom and how we integrate default
effects into it; finally, we compare the new axiomatisation technique to the ones from the
previous sections.

3.4.1 The Prerequisite

Devising a suitable Reiter-default prerequisite from a user-given state default is a delicate
task. Often, an appeal to human intuition is the only sensible justification we can give for
writing a default one way or the other. In the following, we consider several possible default
prerequisites for the state default / = normally ¢ if ® and its application during an action
happening from s to t.

Straightforward The first prerequisite that comes to mind is the straightforward ®[t], that
just checks whether the state default’s prerequisite holds at the resulting time point . But
with this prerequisite, the defaults are too eagerly applied, which is unintended in particular
during dummy actions:

D, ﬂl[) D, lp

C Wait C
Assume that the default is violated at the starting time point, that is, we have ®[s] A =¢]s].
Now we apply an action that — from a designer’s perspective — does not interfere with fluents
mentioned in ® and ¢. It is precisely this non-interference that lets ®[s] persist and causes

®[t]. This in turn makes the default applicable and concludes [t] in contrast to —[s] and the
action not interfering with !

50f course, we could be cautious and occlude H anyway, but this generally leads to a loss of knowledge rather
than a gain.
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Requiring change Apparently, part of the problem with the straightforward prerequisite was
caused by the fact that ® did not change from s to ¢, yet ¢ did. So an easy fix might be to
require that ® change during the action by writing the prerequisite =®[s] A ®[t]. The one
obvious flaw of the straightforward prerequisite is gone, but another one awaits. Assume
there is a second state default 6 = normally —y if &' with an opposite conclusion. If both
prerequisites become true at the same time — =®[s] A =®'[s] and P[t] A P’[t] - the defaults are
in conflict and we get two extensions:

P @, P <1>
-/ ol -/ @, -y

This is perfectly acceptable, in this case we cannot settle for one default conclusion or the other.
But now imagine that the change from —®’ to @’ is delayed by one (irrelevant) action, and we
get the following picture.

- ) @, , @
()
-’ -~/ P, -y

At first, =®[s] A =P’[s]. Then an action occurs from s to u that affects only ®, hence ®[u] A
P[u] A —=P'[u]. Then another action happens that affects only @', and we have ®[t| A &[] A
—ip[t]. Intuitively, both state defaults are applicable in this state, yet only one of them is applied.
It is preferred simply because it happens to have been made applicable later in time. Swapping
the order in which the two actions occurred, we would draw the opposite conclusion. This is
clearly unintended — we would rather preserve the intuitive conflict between the state defaults
irrespective of whether they have been made applicable at the same time or in some arbitrary
order.

There may be cases where different orders of action application should influence the default
conclusions. This behaviour can be emulated in the approach we chose. The converse is not
possible: prerequisites that only require change cannot emulate irrelevance of action order.

Checking for violation If we require a change in the truth of the state default’s prerequisite
to be able to make the default conclusion, the consequent is essentially inferred once and then
persists until there is evidence to the contrary. This evidence might as well be a conflicting
default conclusion, thus leading to undesired temporal minimisation as seen above.

In this thesis, we have settled for a prerequisite that checks (1) that the state default’s
prerequisite holds at the resulting time point and (2) that the state default was not violated
at the starting time point of the action. By default violation, we mean that the prerequisite of
a state default is known to be met, yet the opposite of the consequent prevails. We use the
macro Violateds(s) = ®[s] A —~p[s] to indicate this for state default 6. The prerequisite is now
®[t] A =Violateds(s), and the default conclusion is re-drawn as long as it was previously not
violated. In the example of the previous paragraph, we get the desired two extensions and
thereby eliminate the temporal minimisation-like behaviour:
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_|¢ ! Q,lp 1 ®/llj _|¢ !/ ©,l/) 1 q)
O DD O (D
-~ -~/ @’ ' -~ ',

In both extensions, the state default § = normally ¢ if & is applied from s to u, while
0’ = normally —¢ if @’ stays inapplicable. At this time point, neither state default is violated.
Between u and t, &' becomes applicable, leading to two conflicting defaults being applicable at
the same time and thus to two extensions. Later, we will extend this prerequisite to cope with
conflicts arising from conditional and indirect effects.

* * *

Getting the default prerequisite right is necessary, but not sufficient to get the overall be-
haviour right. Indeed, the above reflections are of course dependent on the rest of the logical
theory. The next part of our axiomatisation that needs careful attention is the effect axiom.

3.4.2 The Effect Axiom

An axiom of the form we use here was first presented in a particular example scenario of
[Thielscher, 2011] and is, as mentioned there, inspired by the work of [Giunchiglia et al., 2004].
It formalises the idea of truth by causation: everything that is true must be caused, and vice
versa. In the most simple form of the effect axiom, we allow two causes to determine a fluent’s
truth value: persistence and direct effects. Before introducing the axiom itself, we formalise the
individual causes. For the first cause — persistence — we introduce a pair of macros expressing
that a fluent f persists from s to t.

FrameT(f,s,t) & Holds(f,s) A Holds(f,t) (3.12)
FrameF(f,s,t) % —Holds(f,s) A —~Holds(f,t) (3.13)

For the second cause — a fluent being a direct effect of an action — we introduce two new pre-
dicates DirT(f,a,s,t) and DirF(f,a,s,t) expressing that a fluent f is a direct positive/negative
effect of an action a from s to f. When the direct (positive and negative) effects of an action
are given by unconditional direct effect laws, they can easily be translated into formulas that
determine the truth values of all relevant DirT and DirF atoms.

Definition 3.26. Let ©® be a n-uleD action domain specification and A be a function into sort
ACTION with matching sequence of variables ¥. The direct positive and negative effect formulas for
A(X) are

DirT(f, A(%),s,t) = \/ f=¢ (3.14)
action A(X) causes g €©®
DirF(f, A(Z),s,1) = \/ = (3.15)

action A(X) causes ~¢p€©

In fact, the truth values of DirT and DirF atoms will always be fully determined for un-
conditional effects. We should remark that we did not introduce these predicates in [Baumann
et al., 2010], but used macros with the same name instead. The two variants are logically
equivalent (modulo truth values for the newly introduced predicates). When we introduce
conditional effects in the next section, it will become apparent why we have opted for the pre-
dicate instead of the macro variant. The direct effect formulas that determine DirT and DirF
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will later be redefined twice; we will understand the above definition to be retrofitted with
their latest version.

Now taking the two causes “persistence” and “direct effect” and putting them together
yields the basic version of this section’s effect axiom.

Definition 3.27. Let ® be an n-uleD action domain specification and A be a function into sort
ACTION. An effect axiom with unconditional effects and the frame assumption is of the form

Poss(A(X),s, t) D (Vf)(Holds(f,t) = CausedT(f, A(X),s,t)) A
(Vf)(—Holds(f,t) = CausedF(f, A(X),s,t)) (3.16)
where
CausedT(f, A(X),s, t) & FrameT(f,s,t)V DirT(f, A(X),s,t) (3.17)
CausedF(f, A(X),s,t) & FrameF(f,s,t)V DirF(f, A(X),s,t) (3.18)

The macros CausedT, CausedF will be re-defined several times throughout the rest of this
chapter. When speaking about effect axiom (3.16), we will understand it retrofitted with their
latest version.

The design principle underlying our axiomatisation technique is that of causation: a fluent
holds at a time point that is the end point of an action if and only if there is a cause for that;
similarly, a fluent does not hold if and only if there is a cause for that, too.

Definition 3.28. Let © be a n-uleD action domain specification. The corresponding n-uleD do-
main axiomatisation ¥ has the following properties:

o all effect axioms in X are of the form (3.16) and

o Y,y contains the direct positive and negative effect formulas (3.14, 3.15) for each function
into sort ACTION of ®’s domain signature.

As usual, an example will demonstrate how the definition works.

Example 3.29 (Rowboat Robot). The missionaries and cannibals puzzle [McCarthy, 2003] in-
volves crossing a river in a rowboat, which we model here in isolation. The fluent Usable(x)
shall say that a tool x is usable; fluent At(x) shall express that the agent is at a location x,
which is either Left or Right — the left and right banks of the river.

Opost = {possible CrossRL iff At(Right) A Usable(Boat),
action CrossRL causes At(Left),
action CrossRL causes —At(Right)}

For the action CrossRL of crossing from the right to the left bank, the precondition law says
that this is possible whenever the agent is at the right bank and the boat is usable. The effects
express that after crossing, the agent is at the left and not at the right bank any more. Applying
Definition 3.26 above creates the direct effect formulas

DirT(f,CrossRL,s,t) = f = At(Left)
DirF(f,CrossRL, s, t) = f = At(Right)

®The attentive reader will have noticed that the syntax of axiom (3.16) does not quite correspond to (2.3). Simple
syntactical manipulations can however be conducted to transform the effect axiom into a form that matches the
structure of (2.3).
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Irrespective of the underlying time structure, these direct effect formulas along with effect
axiom (3.16) entail that after crossing, the agent is at the right bank and not at the left any
more.

YBoat = Poss(CrossRL, t1,t2) D (Holds(At(Right), £2) A —Holds(At(Left), t,))

The first formal result about our effect axiom shows that it correctly establishes action
effects while still providing a solution to the frame problem.

Proposition 3.30. Let © be an n-uleD action domain specification and X its corresponding domain
axiomatisation. Assume X |= Poss(a, 0, T) for some ground action « = A(0) and time points o, T.

1. Direct effects override persistence: action A(X) causes ¢ € © implies X |= [t] {X — }.

2. The frame assumption is correctly implemented: if the fluent function of a ground fluent literal ¢
is not mentioned as an effect in any direct effect law for A(X), we have ¥ |= (o] = ¢]1].

Proof.

1. By Definition 3.26, Dir(y,a,0,7) = 9| = |p| V..., hence
Caused(,a,0,T) = || = || V .. .. By axiom (3.16) and the assumption X |= Poss(«, 0, T),
we have X |= ¢[1].

2. DirT(|¢|,a,0,7) = L and DirF(|¢|,a,0,T) = L due to the assumption. Hence, by ex-
panding macros (3.17) and (3.18), we get CausedT(|y|,«,0,T) = FrameT(¢,0,T) and
CausedF(|y|,a, 0, T) = FrameF(¢,0, 7). Together with assumption X |= Poss(«, 0, T), this
yields & = (y[t] = (y[o] A[T])) A (=yp[t] = (—¢[o] A =¢[1])) and, in consequence,
X k= (9] > lo]) A (<[] > —glo]). =

3.4.3 Reifying Default Conclusions

Assuming a user has given their impression of how the world normally behaves by including
state defaults into the action domain specification, we can now turn to translating these into
the logical language we employ in this work. The special predicate symbol DefT(f,s, t) will be
used to express that a fluent f is normally true at time point ¢. Likewise, DefF(f,s,t) means
that f is normally false at . Note that this is not the same as —=DefT(f,s, t), which only means
that f is not normally true at time point . The additional TIME argument s is used to keep
track of the starting time point of the action that led to t. With this in mind, we can now define
how to (automatically) create Reiter defaults from user-specified state defaults. (Observe that
all defaults thus created are normal.)

Definition 3.31. Let 0 = normally i if ® be a state default.
Init(t) A ®[t] : [t]
ylt]
®[t] A —Violateds(s) : Def (¢,s,t)
Def (,s,t)
Violateds(s) & ®[s] A —ip([s]

DefT(y,s, 1) if =[]
DefF(|y|,s,t) otherwise

def
Omit &

(3.19)

def
5P055 =

(3.20)

Def (,s, t) &

For an action domain specification ®, the corresponding set of defaults is defined as

A = {Opit, Oposs | 6 = normally ¢ if ® € O} (3.21)
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The intuition behind the Init defaults for the initial time point should be clear: whenever,
initially, the prerequisite is fulfilled and there is no reason to believe otherwise, we can safely
assume the consequent. Note that we bypass the Def predicate in this case — this is not a
problem since there is no action leading to the initial time point and thus no effect axiom
interfering with the default conclusion. For the Poss defaults concerning two time points s, ¢
connected via action application, we require that (1) the state default’s prerequisite hold at the
resulting time point ¢, and (2) the state default not be violated at the starting time point s.

Example 3.29 (Continued). A further modification to the rowboat domain could take the boat
to be usable if the agent has at least one oar:”

692" — normally Usable(Boat) if Has(Oar1) V Has(Qars)

The rowboat state default from above is translated to 692

e for the initial time point, where
®Oar(t) & Holds(Has(Oary), t) V Holds(Has(Qars), t):

Init(t) A ©9 (t) : Holds(Usable(Boat), t)
Holds(Usable(Boat), f)

The respective default 692" for action application is

@O (1) A =Violated sox (s) : DefT(Usable(Boat), s, t)
DefT (Usable(Boat), s, t)

with Violatedou (s) = ®927(s) A =Holds(Usable(Boat),s).

Up to here, default conclusions and “hard facts” live in completely different, disconnected
worlds (Init defaults aside). It is the first modification to our effect axiom that brings them
together: if a fluent is normally true (false) after applying an action we accept this as a cause
for its being actually true (false).

Definition 3.32. Let A be a function into sort ACTION. An effect axiom with unconditional effects,
the frame assumption and normal state defaults is of the form (3.16), where

CausedT (f, A(X),s,t) & FrameT(f,s,t)V DirT(f, A(X),s,t) V DefT(f,s,t) (3.22)
CausedF(f, A(X),s,t) & FrameF(f,s,t)V DirF(f, A(X),s,t) V DefF(f,s,t) (3.23)

Whenever it is definitely known that Holds(f, t) after Poss(a, s, t), it follows from the effect
axiom that —DefF(f,s,t); a symmetrical argument applies if =Holds(f,t). This means that
definite knowledge about a fluent inhibits the opposite default conclusion.

But now imagine the following scenario: we know that a fluent f holds at a time
point, Holds(f,s). Nothing further is known about f — in particular no default informa-
tion. Then an action a4 occurs and leads to time point f, that is, Poss(a,s,t), where the ef-
fects of action a do not involve f. Intuitively, by persistence, we should be able to con-
clude that f still holds at t. But instead of Holds(f,t), we only get the weaker conclusion
Holds(f,t) V (—Holds(f,t) A DefF(f,s,t)), which means that f either stays true or becomes
false due to a default conclusion. Since we know the latter is impossible, we would like to
incorporate this information somewhere, rather than let the solution of one problem (the state

7Observe that this is stronger than the two state defaults normally Usable(Boat) if Has(Oar;) and
normally Usable(Boat) if Has(Oar).
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default problem) disrupt the solution of another (the frame problem). The following addi-
tion ensures that knowledge about inapplicability of defaults is adequately represented in our
automatic translations. Obviously, a state default is inapplicable if its prerequisite is false or it
was previously violated.

Definition 3.33. Let §(i/) = normally i if ® be a state default with free variables among j.
Inapplicableé(i)(s, t) & =®[t] v Violateds i (s)

Let ® be a D action domain specification, F be a function into sort fluent with matching
sequence of variables ¥ and s, t be variables of sort TIME. The default closure axioms for F(X)
with respect to the state defaults in © are

0(j)=normally F(j) if ®(7)€©

( A (F(f) = F(§) A Inapplicabley ;;) (s,t))) D —DefT(F(X),s,t)

(3.24)

(5(_.) /\( v @) (1 (X) =1 (y) A lnupplicables(g)(s, t))) D) ﬁDeﬂ:(F(—») ), , [)
J)=normally —F(j) if ®(¥)€®

The default closure axioms for © are all default closure axioms for functions into sort FLUENT of
®’s signature.

E.g., the default closure axioms for Flies(x) with respect to the state defaults in ®@py are

(Flies(x) = Flies(y) A Inapplicabley, ) (s,t)) D =DefT(Flies(x),s,t)
T D —DefF(Flies(x),s, t)

where Inapplicabley ., (s,t) = =Holds(PA(y), t) V (Holds(PA(y),s) A —=Holds(Flies(y),s)). If Opy

contained another state default ¢'(z) = normally Flies(z) if Bird(z), we would get the positive
default closure axiom

((Flies(x) = Flies(y) A Inapplicables,, (s,1)) A
(Flies(x) = Flies(z) A Inapplicabley.,, (s,t))) D —DefT(Flies(x),s, t)

In general, for a fluent function F not mentioned as a consequent of a state default in ® the
default closure axiom is equivalent to T D —=DefT(F(X),s, t), which correctly says that a default
conclusion about F can never be made. This definition of default closure axioms is slightly
different from the one given in [Baumann et al., 2010]. There, the default closure axioms are
defined for general fluent literals and the resulting set of axioms need not necessarily be finite.

We are now ready to define the fundamental notion of our solution to the state default
problem: a default theory where the incompletely specified world consists of a UAC domain
axiomatisation augmented by suitable default closure axioms, and the defaults are the auto-
matic translations of user-specified, domain-dependent state defaults.

Definition 3.34. Let © be a n-uleD action domain specification. The corresponding n-uleD ac-
tion default theory is the pair (X, A), where

e all effect axioms in % are of the form (3.16),
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e X,y contains

- unique—names axioms for sorts FLUENT and ACTION,

— the direct positive and negative effect formulas (3.14, 3.15) for each function into
sort ACTION of @’'s domain signature and

— the default closure axioms for ®, and
e A is defined from ® as in Definition 3.31.

The workings of all of the preceding definitions are best understood with the help of the
example domain.

Example 3.29 (Continued). Choosing situations as underlying time structure and assuming
the agent is initially at the right bank — Xy = {Holds(At(Right), So) } —, Definitions 3.4 and 3.34
create from @p,,; the action default theory (X,A), where ¥ = Qg UTTUY U Xy U Xy As it
is, crossing to the left is initially not necessarily possible, since the boat may be not usable,
(X, A) & Poss(CrossRL, Sg, Do(CrossRL, Sp)). But once we learn the agent has at least one of the
oars, crossing becomes possible:

(X U {Holds(Has(Oary), Sp) V Holds(Has(Oar2), Sg)} ,A) ke Poss(CrossRL, Sy, Do(CrossRL, S))

Much like it was the case for the simple form of our effect axiom, there is also a formal
result which shows that axiom (3.16), apart from solving the frame problem, implements a
particular preference ordering among potential reasons for a fluent to hold or not to hold.
Taking state defaults into account, the priorities become (from most to least preferred)

direct effects < default conclusions < persistence.

Theorem 3.35. Let © be an n-uleD action domain specification and (X, A) be its action default theory,
E be an extension for (¥, A) with E |= Poss(«, o, T) for some ground action « = A(0) and time points
o,T.

1. Effects override everything: action A(X) causes i € © implies E |= [t] {X — 7}.

2. Defaults override persistence: let 6 = normally ¢ if O € O be a state default,

(A) ¢ not be mentioned as an effect of a in ©,

(B) for each ¢’ = normally —¢ if ' € O, let E [~ ®'[t]; and
(C) E = ®[t] A —~Violateds (o).
Then E = yl1].

3. The frame assumption is correctly implemented:
Let the fluent of ¢ not be mentioned as an effect of A(X) in © and for all state defaults 61 =
normally ¢ if ®q,8, = normally —¢p if ®p € O, let E [~ ®;[t| or E = Violateds, (). Then

E = ¢lo] = y[7]
Proof. If E is inconsistent, the claims are immediate, so in what follows assume that E is
consistent.

1. By  Definition  3.32, Dir(p,a,0,7) = || = |p| V... and  consequently
Caused(,a,0,7) = || = || V..., thus by effect axiom (3.16) and assumption
E |= Poss(a,0,T), we get E |= i[t].
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2. Assume E [~ —Def(¢,0,7). Together with assumption (C) this means that default
Opess is applicable to E. Since E is an extension, we have E |= Def(¢,0, 7). Invok-
ing effect axiom (3.16) yields the claim. It remains to establish E [~ —Def(y,o, T).
By Theorem 2.9, there exist E;, i>0, with Ey=%X and for i >0, E3 =
Th(E;)) U{B|a:B/BE A acE,~p&E} such that E=U2,E. We first show
Ey [~ —Def (¢, 0, T). Due to (A) and effect axiom (3.16), we know that
Ey [~ ¢[t] and Ep |~ —y[r]. By assumption (C), consistency of E, and Ey C E,
we get Egy = —®[1]V Violateds(c). In combination with Eg & —¢[t] this yields
Ey [= —Def (¢, o, T), since default closure axioms and a’s effect axiom are the only ways to
conclude —Def (1,0, T). Now assume to the contrary that E |= —Def(, o, T). Then there
is a minimal integer i > 0 such that E; &= —Def (¢, 0, T) and E; 1 = —Def (¢, 0, T). This
must be due to a default ¢’ = normally —¢ if &' € © with E; = ®'[t] A ~Violatedy (0).
But then E; C E implies E |= ®'[t], which is a contradiction to assumption (B).

3. By the assumption that ¢ and —¢ are not amongst a’s direct effects,
Y = -Dir(y,0,T) A =Dir(=¢, 0, T). The second assumption ensures that the
left-hand sides of all relevant default closure axioms become true, hence
E = —Def(y,0,7) A —Def(—9,0,7). In consequence, Caused(yp,a,0,7) reduces to
Frame(y, o, T), which proves the claim. O

As important and nice as these properties are, a default theory would be useless if it
did not admit any extension at all. But the existence of extensions for our default theories
follows immediately from a result by [Reiter, 1980], since the defaults automatically created
by Definition 3.31 are all normal. If the involved domain axiomatisation is consistent, we can
even guarantee all its extensions are consistent, too.

Theorem 3.36. Let ® be an n-uleD action domain specification. Then its corresponding action default
theory (X, A) has an extension. If furthermore . without the default closure axioms is consistent, then
so are all extensions for (X, A).

Proof. Existence of an extension is a corollary of [Reiter, 1980, Theorem 3.1] since all defaults in
A are normal. Let ¥’ be ¥ without default closure axioms. The default closure axioms cannot
make X inconsistent: for any model J for ¥’ which violates a default closure axiom we have

(w.lo.g.) T = (3f,s,t)DefT(f,s, t). We can build a model 7’ for ¥ with ‘Deﬂ"j/’ < ‘Deﬂ"j‘

by removing an element from DefT” and adjusting Holds” and Poss”’ accordingly. The same
can be done with respect to DefF, hence there exists a model for ¥’ which is by the syntactic
structure of (3.24,3.25) also a model for X. Consistency of all extensions now follows from
[Reiter, 1980, Corollary 2.2]. O

3.4.4 Comparison to the Previous Approaches

For the action description language a-uleD we provided two different translations to action
default theories. Since it is not obvious from the definitions how they formally relate to each
other, we provide an example that illuminates the most significant difference between the two.

Example 3.37. Consider a simplified version of the paper airplane domain given by
action Fold causes PA and normally Flies if PA. Let us first compile the statements into
the action default theory (X!, A!) according to Definition 3.19. After Definition 3.21 adds the
default occlusion action Fold causes Flies or —Flies, we obtain the effect axiom

Poss(Fold, s, t) D (Vf)(f = Flies vV (Holds(f,t) = (f = PAV Holds(f,s))))

48



Chapter 3. Action Default Theories 3.5. Conditional Effects

and the single default

Holds(PA, s) : Holds(Flies, s) c Al
Holds(Flies, s)

Using Definition 3.34 to compile the specification above into the action default theory (£2, A?)
yields the direct effect formulas DirT(f, Fold,s, t) = f = PA and DirF(f,Fold,s,t) = L, and the
effect axiom

Poss(Fold, s, t) D (Vf)(Holds(f,t) = (FrameT(f,s,t) V DirT(f,Fold,s,t) V DefT(f,s,t)) A
(Vf)(—Holds(f,t) = (FrameF(f,s,t) V Dir(f,Fold,s, t) VV DefF(f,s,t))

The defaults created by Definition 3.31 are

A2 {Init(t) A Holds(PA, t) : Holds(Flies, t)
Holds(Flies, t) ’
Holds(PA, t) A =(Holds(PA, s) A ~Holds(Flies,s)) : DefT(Flies, s, t)
DefT (Flies, s, t) }

We assume that Xy = @ is the same for both axiomatisations, and look at what we can conclude
about the situation Do(Fold, Sp). In (X1, A1), the action effect PA and the occlusion of Flies make
the default applicable and we get (X!, A') k= Holds(Flies, Do(Fold, Sp)).

In (Zz, Az) on the other hand, due to the underspecified initial situation, it does not follow
that the state default normally Flies if PA was not violated at Sg. Its corresponding Poss
default is thus inapplicable, whence we get (22, A%) & Holds(Flies, Do(Fold, Sp)).

According to this example, it may seem that the simpler approach allows an intuitive con-
clusion while the more complicated one is too cautious. But this has to be qualified: the con-
clusions shown above would be the same for Xy = {Holds(PA, Sy) A —Holds(Flies, Sp)}! That
is because the simple approach does not check for default violations at all. While this allows
more conclusions in general, these conclusions are not always sensible.

3.5 Conditional Effects

We now investigate how the default reasoning framework of the previous sections can be ex-
tended to conditional effect actions. As we will show, there is subtle interdependence between
conditional effects and default conclusions, which requires a revision of the defaults construc-
ted in Definition 3.31.

Allowing preconditions of effects means stepping from n-uleD to n-cleD by allowing effect
laws of the form

action A(X) causes ¢ if ®

with a possibly non-trivial fluent formula & that specifies the conditions under which the
effect materialises. With this specification of action effects, it is easy to express the implica-
tion “effect precondition implies effect” via suitable formulas. For this purpose, we modify
the direct effect formulas (3.14) and (3.15) to account for effect preconditions. In a slight
abuse of notation, we set the sign of a direct effect law to be the sign of its effect, that is,
sign(action A(X) causes ¢ if ®) & sign(y).
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Definition 3.38. Let ® be a n-cleD action domain specification, A be a function into sort
ACTION with matching sequence of variables X, ¢ = action A(X) causes i if ® be a direct
effect law and f : FLUENT and s, ¢ : TIME be variables. The following macro expresses that € has
been activated for f from s to t:3

Activatedg (f,s, t) & (f = || A D]s])

The direct positive and negative effect formulas for A(X) are

DirT(f, A(X),s,t) = \/ Activated, (f,s, 1) (3.26)
e€ O,sign(e)=+

DirF(f, A(X),s, t) = \ Activated,(f,s, t) (3.27)
e€O,sign(e)=—

An effect axiom with conditional effects, the frame assumption and normal state defaults is of the form
(3.16).

While this extended definition of action effects is straightforward, it severely affects the
correctness of default reasoning in the action theory: as the following example shows, one
cannot naively take this updated version of the effect axioms and use the Reiter defaults as
before.

Example 3.39 (Handle with Care). Imagine a robot that can move around and carry objects,
among them a vase. When the robot drops an object x, it does not carry x any more and
additionally x is broken if it was fragile. Usually, however, objects are not broken unless there
is information to the contrary. The fluents that we use to describe this domain are Carries(x)
(the robot carries x), Fragile(x) (x is fragile) and Broken(x) (x is broken); the only function
of sort AcTION is Drop(x). Dropping an object is possible if and only if the robot carries the
object; the state defaults of this domain say that objects are normally not broken. In D, this
natural-language specification is written as

Opreak = {possible Drop(x) iff Carries(x),
action Drop(x) causes —Carries(x),

action Drop(x) causes Broken(x) if Fragile(x),
normally —Broken(x)}

Applying the definitions from above to this specification results in the domain axiomatisation
with defaults (ZB”“k, \Break ), where yBreak contains effect axiom (3.16), the above precondition
axiom for Drop and the default closure axioms. For the defaults, we have

ABreak _ Init(t) : =Holds(Broken(x),t) —Holds(Broken(x),s) : DefF(Broken(x),s, t)
B —Holds(Broken(x),t) ’ DefF (Broken(x), s, t)

Assume now that all we know is that the robot initially carries the vase,
Holds(Carries(Vase), Sp). The effect axiom tells us that the robot does not carry the
vase any more at S; & Do(Drop(Vase),Sp).  Additionally, since we do not know
whether the vase was fragile at Sp, there is no reason to believe that it is broken
after dropping it, hence —Broken(Vase) still holds by default at S;. But now, due

8The second time argument t of macro Activated.(f,s,t) will only be needed later when we introduce non-
deterministic effects.
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to the presence of conditional effects, the effect axiom for Drop(Vase) clearly entails
—Holds(Broken(Vase), S1) D —Holds(Fragile(Vase), Sp),” and thus we can draw the conclusion

(zBreak | ABreaky 1o —Holds (Fragile(Vase), So)

This is undesired as it lets us conclude something about the present (Sp) using knowledge
about the future (S1) which we could not conclude using only knowledge and default know-
ledge about the present — there is no default that could conclude —Fragile(Vase).

The flaw with this inference is that it makes a default conclusion about a fluent whose truth
value is affected by an action at the same time. This somewhat contradicts our intended usage
of defaults about states: we originally wanted to express reasonable assumptions about fluents
whose values are unknown.

Generalising the example, the undesired behaviour occurs whenever there exists a state
default normally ¢ if ®p with conclusion ¢ whose negation -1 might be brought about by
a conditional effect action « causes 1 if ®c. The faulty inference then goes like this:

Dpt] D Def(,s,t) D P[t] D —Dir(—y,s,t) DO ~Pc|s]

From the default’s prerequisite, we conclude the default’s consequent normally holds; by the
effect axiom, we reason from this that it indeed holds; hence its opposite effect cannot have
occurred and the precondition of the effect cannot have been true at the starting time point.
Obviously, this inference is only undesired if there is no information about the effect’s pre-
condition at the starting time point of the action. This motivates our formal definition of the
conditions under which a so-called conflict between an action effect and a default conclusion
arises.

Definition 3.40. Let (X,A) be an action default theory, E be an extension for (X,A), « be a
ground action and § = normally ¢ if ® be a ground state default. We say that there is a
conflict between « and J in E iff there exist ground time points ¢ and 7 such that for some i > 0
we have

1. (a) E; & Poss(a,0,T) D —Dir(—¢,a,0,T)
(b) E; [~ Def(,a,0,7)

2. (a) Eiy1 = Poss(a,0,T) D —Dir(—,a,0,T)
(b) Eir1 = Def(¢,0,7)

In words, a conflict arises in an extension if up to some stage i, before we make the default
conclusion ¢, we cannot conclude the effect —¢ will not occur (1); after concluding ¢ by
default, we infer that -1 cannot occur as direct effect (2). We can now go back to the example
seen earlier and verify that the counter-intuitive conclusion drawn there was indeed due to a
conflict in the sense of the above definition.

Example 3.39 (Continued). Consider the only extension EB™ for (xBreak ABreaky — Be.
fore applying any defaults whatsoever, we know that dropping the vase is possible:
EBreak = Poss(Drop(Vase), Sy, S1); but we do not know if the vase is fragile and hence EF®* |~
—DirT(Broken(Vase), Drop(Vase), So, S1) (item 1). After applying all the defaults, we know that
the vase is not broken at Sy: EP™® |= DefF(Broken(Vase), So, S1). Hence, it cannot have been
broken by dropping it in Sy, that is, EF* |= —DirT(Broken(Vase), Drop(Vase), So, S1) (item 2),
thus cannot have been fragile in the initial situation.

9This is just the contrapositive of the implication expressed by the effect axiom.
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In the following, we will modify the definition of Reiter defaults to eliminate the possibility
of such conflicts. The underlying idea is to apply a default only if it is known that a conflict
cannot arise, that is, if it is known that the contradictory direct effect cannot materialise. To
this end, we extend the original default prerequisite ®[t] A —Violateds(s) that only requires the
state default’s prerequisite to hold at the resulting time point and the state default not to be
violated at the starting time point: we will additionally stipulate that any action a happening
at the same time cannot create a conflict.

Definition 3.41. Let § = normally ¢ if ® be a state default and s, t : TIME be variables.

Safes(s, t) & (Va)(Poss(a,s,t) D —Dir(—,a,s,t))

. P[t] A —Violateds(s) A Safes(s,t) : Def (¢, s, t)
Oposs = Def(llJ, s, t) (3.28)

In the example domain, applying the above definition yields the following.

Example 3.39 (Continued). For the state default 65 saying that objects are usually not
broken, we have

Safessrea (s, t) = (Va)(Poss(a, s, t) D —DirT(Broken(x),a,s, t))

This expresses that the state default can be safely applied from s to ¢t whenever for any action
a happening at the same time, it is known that 2 does not cause the opposite conclusion of this
default at the ending time point ¢. The resulting default 65 is
—Holds(Broken(x),s) A Safess (s, t) : DefF (Broken(x),s, t)
DefF (Broken(x), s, t)

As we will see later (Theorem 3.35), the default closure axioms for preserving the common-
sense principle of inertia in the presence of inapplicable defaults need not be modified. The
extension to conditional effects is a proper generalisation of the approach of the previous sec-
tion for the special case of unconditional effect actions: this is immediate from the respective
definitions of the direct effect formulas (3.14,3.15) and (3.26, 3.27).

3.6 Global Effects

Up to here, we only looked at local effect laws ¢ for an action A(X), where the variables in e
were restricted to variables among X. Considering a ground instance A(G) of an action, this
means that the set of objects that can possibly be affected by this action is already fixed to ¢.
This is a restriction because it can make the specification of certain actions at least cumbersome
or utterly impossible, for example actions that affect a vast number of (or all of the) domain
elements at once.

The gain in expressiveness when allowing non-local action effects comes at a relatively
low cost: it suffices to allow additional free variables i in the effect laws. They represent the
objects that may be affected by the action without being among the action arguments ¥. Thus
we transition from action description language n-cleD to language n-cgeD.

Definition 3.42. Let © be an n-cgeD action domain specification, A be a function into
sort ACTION with matching sequence of variables ¥, € be a direct effect law of the form
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action A(X) causes F(X',7) if ® or action A(X) causes —F(¥X', i) if ® with free vari-
ables ¥, 1, where ¥’ C X and ¥ is disjoint from ¥. For variables f : FLUENT and s, ¢ : TIME, the
following macro expresses that € has been activated for f from s to t:

Activatede(f,s,t) & (37)(f = F(¥,7) A ®[s])
The direct positive and negative effect formulas are of the form (3.26) and (3.27).

Note that according to this definition, free variables i/ are quantified existentially when
they occur in the condition ® and universally when they occur in the effect . In addition to
non-local effects they thus also express non-local conditions.

Example 3.43 (Exploding Bomb [Reiter, 1991]). In this domain, objects might get broken not
by being dropped, but because a bomb in their proximity explodes:

action Detonate(b) causes Broken(x) if Near(b, x)

Definition 3.42 vyields the direct effect formulas DirF(f,Detonate(b),s, t) =L and
DirT(f, Detonate(b), s, t) = (3x)(f = Broken(x) A Holds(Near(x,b),s)).

For this example, the defaults from Definition 3.41 also prevent conflicts possibly arising
from non-local effects. We will later see that this is the case for all domains with local and
non-local effect actions.

Like the compilation for n-uleD domains, the extension of this section implements a partic-
ular preference ordering between causes that determine a fluent’s truth value. This means that
whenever two causes are in conflict — for example, a state default says an object is not broken,
and an action effect says it is — the preferred cause takes precedence. The preferences are (still)

direct effects < default conclusions < persistence,
The theorem below proves that this preference ordering is indeed established.

Theorem 3.44. Let © be a n-cgeD action domain specification with action default theory (¥,A),
0 = normally ¢ if ® € O be a state default, E be an extension for the action default theory (¥, A)
with E |= Poss(w, o, T) for a ground action &« = A(G) and time points o, T.

1. Effects override everything:
action A(X) causes ¢/ if ® € @ implies E = (®'[¢] D ¢/[1]) {¥ — &}
2. Defaults override persistence:

(A) Let action a causes i if ®”,action a causes —¢p if & ¢ O for all D”;
(B) for each ¢’ = normally —p if ®' € A, let &' not be applicable to E; and
(C) E |= @[t] A ~Violateds (o) N Safes(c, 7).

Then E = ¢|T].

3. The frame assumption is correctly implemented:
For all fluent formulas ®”, let action a causes ¢ if ®”, action ®” causes ¢ if —§O
and for all state defaults &' with consequent  or —p, let E = —(®[t] A =Violateds(c)). Then
E = ylo] =yl
Proof. If E is inconsistent, the claims are immediate, so in what follows assume that E is
consistent. The proofs of 2 and 3 carry over from Theorem 3.35, so we only show 1.

1. By Definition 3.26, we get E = ®'[¢] D Dir(¢',a,0,7) {X¥ — 0} and consequently
E = ®'[o] D CausedT(¢',a,0,7) {X — 0} Thus by effect axiom (3.16) and assumption
E |= Poss(a,0,T), we get E |= @'[0] D ¢'[1] {¥ — G} O

53



3.7. Disjunctive Effects Chapter 3. Action Default Theories

3.7 Disjunctive Effects

The next and final addition to effect axiom (3.16) is the step of generalising the purely determ-
inistic action effects of n-cleD to the disjunctive ones of n-clsD. Disjunctive action effects have
been studied in the past [Kartha, 1994; Shanahan, 1997; Giunchiglia et al., 1997; Thielscher,
2000]. Our contribution here is two-fold. First, we express disjunctive effects directly, by build-
ing them into the effect axiom. This works without introducing additional function symbols —
called determining fluents [Shanahan, 1997] — for which persistence is not assumed and that are
used to derive indeterminate effects via conditional effects. The second and more important
contribution is the combination of non-deterministic effects with state defaults. We claim that
it brings a significant representational advantage: Disjunctive effects can explicitly represent
potentially different outcomes of an action of which none is necessarily predictable. At the
same time, state defaults can be used to model the action effect that normally obtains. For
example, dropping an object might not always completely break it, but most of the time only
damage it. This can be modelled in our framework by specifying “broken or damaged” as dis-
junctive effect of the drop action, and then including the default “normally, dropped objects
are damaged” to express the usual outcome.

Next, we define how disjunctive effects are accommodated into the theory. The basic idea
is to allow disjunctions of fluent literals 11 or ... or ¥, in the effect part of an effect law. The
intended meaning of these disjunctions is that after action execution, some of the ; hold.
To achieve this, we firstly want to guarantee that at least one effect out of 1 or ... or ¢,
occurs. Hence, we say for each ; that non-occurrence of all the other effects ; with j # i is a
sufficient cause for ¢; to occur. We build into the effect axiom (in the same way as before) the
n implications

D[s] A =yn[t] A... A=y t] D Caused(yn,a,s,t)

D[s] A yq[] A ... Ay, _1[t] D Caused(y, a,s,t)

This, together with the persistence assumption, effectively axiomatises an exclusive disjunc-
tion where only exactly one effect ¢; occurs (given that no other effects occur simultaneously).
Thus we add, for each literal, its truth as sufficient cause for itself being true:

D[s] A y1[t] D Caused(yy,a,s,t)

D[s] A pn[t] D Caused(pn,a,s,t)

This makes every interpretation where at least one of the mentioned literals became true
a model of the effect axiom. For the next definition, we identify a D-disjunction of literals
Y = ¢; or ... or P, with the set of literals {¢1,..., ¢, }.

Definition 3.45. Let © be an n-cgsD action domain specification, A be a function into sort
ACTION with matching sequence of variables X, ¢ = action A(X) causes ¥ if ® be a direct
effect law, ¥ € ¥ and f : FLUENT and s, : TIME be variables. The following macro expresses
that effect ¢ of direct effect law € has been activated for f from s to t:

Activatedey(f,5,) = f=lpl @A | [ A —9/lH] vl (3:29)
P eY\{y}
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The direct positive and negative effect formulas are

DirT(f, A(X),s,t) = \/ Activatedey (f, s, t) (3.30)
action A(X) causes ¥ if ® €O,
YeY, sign(p)=+
DirF(f, A(X),s, t) = \/ Activatedey (f, s, t) (3.31)
action A(X) causes ¥ if &€,
pe¥, sign(p)=—

The implementation of the example sketched above illustrates the definition.

Example 3.46 (Definitely Maybe). We once again modify the action Drop(x) from Example 3.39.
Now a fragile object that is dropped becomes not necessarily completely broken, but might
only get damaged. To this end, we record in the new fluent Dropped(x) that the object has
been dropped and write the state default § below saying that dropped objects are usually
damaged. Together, these two express the normal outcome of the drop action. Still, it is
definite knowledge that an object may be broken or may be damaged after dropping, even if
this hints at non-determinism. Formally, the domain is given by

© = {normally Damaged(x) if Dropped(x),
action Drop(x) causes —Carries(x),

x
action Drop(x) causes Dropped(x),
action Drop(x) causes Broken(x) or Damaged(x) if Fragile(x)}

Constructing the direct effect formulas as per Definition 3.45 yields

DirT(f,Drop(x),s,t) = f = Dropped(x)
V (f = Broken(x) A Holds(Fragile(x),s) A
(—Holds(Damaged(x), t) V Holds(Broken(x),f)))
V (f = Damaged(x) A Holds(Fragile(x),s) A
(—Holds(Broken(x), t) VV Holds(Damaged(x), t)))
Since the effect axiom of Drop(x) is itself not determined about the status of Broken(x) and

Damaged(x) (but is determined about Damaged(x) not being among its negative effects), the
default dpyss is applicable and we conclude

(zBreak | ABreaky o Holds(Carries(Vase), So) A Holds(Damaged(Vase), S1)

If we now observe that the vase is broken after all — Holds(Broken(Vase), S1) — and add this
information to the knowledge base, we will learn that this was an action effect:

(zBreak ABreak) v Holds(Broken(Vase), S1) D DirT(Broken(Vase), Drop(Vase), So, S1)

Furthermore, the observation allows us to rightly infer that the vase was fragile at Sy.

It is worth noting that for an effect law action a causes Y if @ with deterministic ef-
fect ¥ = {¢}, the macro Activatedaction « causes ¥ it @,y (f, 5, t) expressing activation of this
effect is equivalent to Activatedaction o causes p if o(f,s,t) from Definition 3.26 for activation
of the deterministic effect; hence the direct effect formulas (3.30) for disjunctive effects are
a generalisation of (3.26), the ones for deterministic effects. We have considered here only
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local non-deterministic effects to keep the presentation simple. Of course, the notion can be
extended to non-local effects without harm.

We finally prove that conflicts between conditional effects and default conclusions in the
sense of Definition 3.40 cannot occur.

Theorem 3.47. Let (X,A) be an action default theory, E be an extension for (X,A) and § =
normally ¢ if ® be a state default. Furthermore, let i > 0 be such that Def(,0,7) ¢ E; and
Def(p,0,7) € E;yq. Then for all ground actions «, Poss(a,0,T) D —Dir(—y,a,0,T) € E;.

Proof. According to Theorem 2.9, we have E; 1 = Th(E;) UA;; hence, Def (,0,T) € Ej1 can
have two possible reasons:

1. Def(¢,0,T) € Th(E;). By construction, this can only be due to effect axiom (3.16), more
specifically, we have (1) E; |= Caused(¢,a,0,T) N —=Frame(p, o, T) A =Dir(¢, 0, T) and (2)
E; E —Caused(—y, a, 0, T), whence E; |= —Dir(—,a, 0, T) proving the claim.

2. Def(¢,0,7) € A;. By definition of dp,s in Def. 3.41, Pres(c, T) A Safes(o, T) € E;, whereby
we can conclude Poss(a, 0, T) D =Dir(—¢,a,0,T) € E;. O

Note that conflicts already arise with conditional, local effects; the framework however
makes sure there are no conflicts even for conditional, non-local, disjunctive effects.

The existence of extensions for domain axiomatisations with state defaults can still be guar-
anteed for the extended framework. Additionally, it is easy to see that the domain specific-
ations provided by the user are still modular: different parts of the specifications, such as
conditional effect expressions and state defaults, are completely independent of each other
from a user’s point of view. Yet, the intricate semantic interactions between them are correctly
dealt with.

3.8 Concluding Remarks

Relation to Reiter’s Successor State Axioms

By a result due to Vadim Zaslawski [Baumann et al., 2010, Theorem 2], the effect axioms (3.16)
with direct effects and a solution to the frame problem instantiated by a fluent F are in principle
Reiter-style successor state axioms [Reiter, 1991] enhanced by the consistency criterion

—(vf(a,8) Ay (a,s)) (3.32)

which requires that an action 2 must not make F both true and false at the same time. In
the Situation Calculus, it is left to the axiomatiser to make sure the consistency condition is
satisfied for all actions. In particular, the violation of (3.32) in a Situation Calculus action
theory may keep consistency but still give nonsensical results.

Example 3.48 (Dead or Alive). Ann and Bob want to axiomatise an action domain that involves
shooting turkeys.!’ They agree to use the Situation Calculus with reified fluents and Reiter-
style successor state axioms

Holds(F,Do(a,s)) = (vf (a,s) V (Holds(F,s) A =z (a,s)))

A single fluent shall describe whether the turkey is still living, the only action Shoot is intended
to end the turkey’s poor existence. The two come up with the following axiomatisations:

101t remains unclear why in the world they (or anybody else, for that matter) would want to do that.
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Ann specifies a fluent Alive that denotes whether the turkey is still alive and characterises
the action Shoot by the negative effect of making Alive false, that is, setting v, . (2,5) & (a =

Shoot). The resulting successor state axiom is, quite correctly,
Holds(Alive, Do(a,s)) = (Holds(Alive,s) A a # Shoot)

Bob, on the other hand, takes a different approach. He uses the fluent Dead to indicate that
the turkey is not alive and axiomatises the action Shoot by the positive effect of making Dead

true, i.e. 71 ,4(a,5) & (a = Shoot). His (equally correct) successor state axiom looks like this:

Holds(Dead, Do(a,s)) = (a = Shoot \V (Holds(Dead, s)))

Both of them “verify” their axiomatisations by observing that the resulting formulas entail the
desired result that an initially vivid turkey drops dead after shooting it.

But now imagine they had wanted to axiomatise a more challenging example, and both of
them fell prey to a complicated subtlety of a sophisticated domain, which expresses itself in
that they violated assumption (3.32) for some action. For the purpose of illustration, transfer
this error scenario back to our example domain concerning the shooting of turkeys. Here, in
Ann’s axiomatisation X 4, the (erroneous) successor state axiom looks thus:

Holds(Alive, Do(a,s)) = (a = Shoot V (Holds(Alive,s) A a # Shoot))
In Bob’s version of the domain, £g, the same error has resulted in
Holds(Dead, Do(a,s)) = (a = Shoot V (Holds(Dead,s) A a # Shoot))

During reasoning, Ann finds that X4 |= Holds(Alive, Do(Shoot, Sp)) contrary to her expecta-
tions, and concludes she made a mistake. Bob observes that X = Holds(Dead, Do(Shoot, Sy))
as he desired, and assumes his axiomatisation is correct.

The advertent reader however knows that neither of their axiomatisations is free of errors:
they are structurally identical, only the meaning of fluents and effects of actions are swapped.
Had the two initially agreed to use the dual form of the successor state axioms

—Holds(F,Do(a,s)) = (g (a,s) V (=Holds(F,s) A =y{ (a,s)))
they would draw the opposite conclusions
'\ = —Holds(Alive, Do(Shoot, So)) and ¥} = —Holds(Dead, Do(Shoot, Sp))

The cause of this problem is the asymmetry of the successor state axiom, which is not equi-
valent to its dual and prefers the positive effect in case of conflict. Using such an asymmetric
effect axiom complicates the debugging process since axiomatisation errors like the above go
unnoticed easily. Although the error in this example was quite obvious and involved only
direct effects, this need not always be the case. The same error would manifest itself if a direct
effect contradicted the final effect of an arbitrarily long chain of indirect effects.

Our effect axioms (3.16) on the other hand, directly entail (3.32)’s equivalent
—(CausedT(f,a,s,t) N\ CausedF(f,a,s,t))

which means that a violation of this consistency principle immediately makes the effect axioms
and thus the domain axiomatisation inconsistent.
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Further Generalisations

While the action part of our action default theories is quite general, the state defaults are still
restricted to literal consequents. To gain expressivity, it might be worthwhile to generalise state
defaults to consequents that are arbitrary formulas. Alas, this would also remarkably increase
the axiomatisation’s complexity: Consider a “general” state default / = normally ¥ if ®
where ® and ¥ are formulas. Translating the state default to a (normal) Reiter default seems
fairly easy — replace all negative fluent literals —¢ occurring in ¥ by DefF(¢,s,t) and sym-
metrically all positive fluent literals ¢ in ¥ by DefT'(¢,s,t). But now the trouble begins: how
should we treat interactions of direct/indirect and default effects as in Example 3.39? It is not
easy to identify conditional action effects that might possibly lead to conflicts. And even if we
restrict ourselves to unconditional effects, how should default closure axioms for such general
Reiter defaults look like? For both cases, trying to generalise our current approaches seems to
be prone to be too restrictive towards possible default conclusions.

A user might sometimes even desire the expressivity of general, non-normal defaults. In
addition to the problems mentioned above, this might deprive the default theories of extension
existence and brings along the risk of introducing errors that are hard to spot.

Example 3.49 (Meta-Level Domain Constraint). Consider the default Holds(F,s) : =P/P € A of
an action default theory (X, A) with general defaults. Whenever X entails Holds(F, ) for some
time point o, the default theory has no extension. In a way, the default can thus be seen as a
state constraint saying “F may never be true.” However, this is not reflected in that the default
theory entails —Holds(F, s) for all time points, but it is only discovered in case of violation.

In some cases, non-normal features of defaults are only used to encode specificity as in

Bird(x) : Flies(x), ~Penguin(x) d Penguin(x) : —Flies(x)
Flies(x) an —Flies(x)

saying that birds normally fly unless they are penguins, that normally do not fly. For this
purpose the user should rather use explicit qualitative preferences and preferred default logic
[Brewka, 1994; Brewka and Eiter, 1999; Delgrande and Schaub, 2000] such as dpenguin < 0pird-
(See also Section 6.2.2.)
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Chapter 4

Implementation

This thesis has so far stayed entirely on the theoretical level. In this chapter, we present an
actual implementation of default reasoning about actions. The implemented system takes as
input a D action domain specification and answers queries about the domain. To the best of
our knowledge, this system is the first implementation of default reasoning in action theories.

Of course, we cannot expect to be able to implement full-fledged reasoning in Reiter’s
default logic: after all, extension existence for closed normal first-order default theories is not
even semi-decidable [Reiter, 1980]. A high computational complexity is retained even through
restriction to propositional logic: sceptical reasoning is I15-complete for propositional normal
default theories [Gottlob, 1992]. Thus, we will have to make some restricting assumptions on
our input domains that make an implementation feasible in principle (that is, make the relevant
reasoning problems decidable) and in practice (that is, allow for efficient implementations of
reasoning procedures).

But even for a sufficiently expressive yet simple enough input language, implementing a
reasoner from scratch is complicated and error-prone. Although it could be adapted and tuned
for efficiency, its range of applicability would be rather limited. Fortunately, there exist efficient
general-purpose reasoners for default theories of a particular form: answer set programming
solvers.

In Theorem 2.13 we have seen that there is a close connection between default logic and
answer set programming. This connection will form the basis of our implementation. For
finite domains and a finite time horizon, current ASP technology can be used off the shelf
to efficiently reason about action domains. This efficiency is due to significant advancements
the area of answer set programming has made in the last decade. Current solvers can treat
programs with millions of variables despite the theoretical worst-case NP-hardness. Still, if the
polynomial hierarchy does not collapse there remains an exponential gap between IT, = NPNP
(sceptical reasoning in propositional normal default theories) and NP (answer set existence for
normal logic programs).

When aiming for an approach that compiles action domain specifications into logic pro-
grams and reduces reasoning about the domains to reasoning in these programs, we therefore
have to expect a worst-case exponential blowup or at least a worst-case exponential runtime
for these translations. This is acceptable if we compile only once to ask multiple queries
afterwards. But in the case of an agent situated in a changing domain that constantly ex-
ecutes actions and makes new observations, it may be too costly to recompile its whole world
knowledge after adding to it the observations associated to each action. Consequently, we are
looking for a translation where the domain description is compiled once and additional in-
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formation about action executions and observations can be added in a modular way. Formally,
for two languages L1, Ly, a translation function f : 2L1 — 2L2 is modular iff for all A C Ly,
the function satisfies f(A) = U,ca f({a}), that is, sets of language elements can be translated
element-wise.

Also, since we are dealing with a non-monotonic formalism, another issue is getting into the
way of a straightforward implementation: for monotonic semantics, there exists the possibility
of an efficient implementation that is sound, but not complete. (Examples of such systems
are [Gelfond and Lifschitz, 1993; Thielscher, 2005a].) With non-monotonic semantics, this
possibility does not exist in general: for any conclusion that follows semantically but is not
made by the system due to incompleteness, there may exist a default that relies on absence of
this conclusion and thus makes an unsound default conclusion. (In the case of default logic
this works even with only supernormal defaults.)

The system we present in this chapter is motivated by these reflections and rests on a
fragment of D for which a sound and complete modular translation from the resulting action
default theories into answer set programs exists. Figure 4.1 on the right details the architecture
of the translation and sets out a roadmap for the rest of the chapter.

We begin the rest of the chapter by presenting the translation in detail and identifying a
class of domains for which a sound and complete modular translation to logic programs exists.
As we will see afterwards (Section 4.2), the efficiency of the overall translation can be greatly
improved by simply swapping two of the constituent steps. We show that this change does not
affect the semantics of the translation. In Section 4.3 we sketch our implementation prototype.
Section 4.4 discusses related work and concludes.

4.1 From Action Domain Specifications to Answer Set Pro-
grams

Marek and Truszczinski’s translation from normal logic programs yields propositional definite
Horn default theories. In order to reverse the translation, we need to create default theories
of this precise form. This will be done in two steps: first, we transform the first-order default
theories into propositional default theories; afterwards, the propositional theories are trans-
formed into definite Horn default theories. To illustrate the various translation steps, we use
the following running example domain.

Example 4.1 (Swipe Card Domain). The objective of this domain is to open an electronically
Locked door using a swipe card. If the agent has a card (HasCard), it can Swipe the card to
unlock the door; if the door is unlocked and not Jammed, it can be Pushed Open. Normally,
the door is not jammed. The D action domain specification is

Oswipecard = {possible Swipe iff HasCard,
possible Push iff —Locked A =Jammed,
action Swipe causes —Locked,
action Push causes Open,

normally —Jammed}
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Figure 4.1: Idea behind the implementation. The previous chapter defined how action domain specific-
ations (top layer) are translated into first-order default theories. Consequently, the meaning of these
specifications is defined via the extensions of action default theories (second layer). For finite domains,
first-order default theories can be replaced by propositional default theories (layer three). A certain class
of domains can be faithfully transformed in definite Horn action default theories. By Theorem 2.13 their
extensions correspond one-to-one to the answer sets of the respective logic programs. Existing answer
set programming systems can efficiently compute answer sets of normal logic programs (bottom layer).

41.1 From Action Domain Specifications to CNF Default Theories

In the previous chapter, we have defined how to turn action domain specifications of various
D dialects into default theories. For the purpose of this chapter, we modify the definitions
from the previous chapter to create open default theories where all formulas are quantifier-
free. This is possible because we will be dealing with a D fragment whose translations do not
use existential quantification. Although we could equally well keep the universal quantifiers,
our reasons for dropping them will become clear in the next section. We also assume that the
formulas in domain axiomatisations are in conjunctive normal form to simplify the definitions
in the sequel.

Additionally, we make some more syntactical manipulations. First, we turn the macros
FrameT and FrameF into predicates and add the respective defining axioms. The same is done
for Violated and Inapplicable, except that for supernormal state defaults § = normally i we
have Inapplicableg(s,t) = Violated;(s) = —[s] and do not need these additional predicates.
For syntactic uniformity, we introduce a new predicate Occurs : ACTION X TIME X TIME that
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speaks about hypothetical or actual action occurrence: for situations, Occurs(a, s, t) means hy-
pothetical occurrence t = Do(a,s) (t is the hypothetical time point that results from executing
a in s); for linear time, Occurs(a, s, t) means actual occurrence Holds(Happens(a, s, t),s) (action
a happened from s to t). We do not translate axiomatisations of time points into answer set
programs, but instead explicitly enumerate all the time points we will need and distinguish
the initial one by the predicate Init : TIME (that was used as a macro before). For linear time,
this only turns the domain of sort TIME from infinite to finite. For situations, the foundational
axioms for situations are adequately represented in our translation: axiom (2.5) saying that
So is the initial situation is expressed by the atom Init(Sp); the next axiom (2.6) defines the
ordering < on situations which we do not use; (2.7) is a unique-names axiom for Do, which
is implicitly encoded in our target language; finally, the second-order induction axiom (2.8) is
not needed since we do not intend to prove properties about all situations.

The creation of Reiter defaults A remains unchanged, that is, as in Definition 3.41. At this
point in the translation, we have a quantifier-free default theory (X, A) that speaks about the
domain in general.

Example 4.1 (Continued). The quantifier-free action default theory of the swipe card domain
is (xSwipeCard ASwipeCard) helow, We have omitted the conversion to CNF for readability. In
ySwipeCard wve find the precondition axioms

Poss(Swipe, tp, t3) = (Holds(HasCard, ;) A Occurs(Swipe, £, t3))
Poss(Push, tp,t3) = ((—Holds(Locked, t,) A =Holds(Jammed, t2)) A Occurs(Push, t5,t3))

the effect axiom (UAC-compliant effect axioms can be obtained by instantiating a1)

POSS(ﬂ1, ty, t3) D HOldS(f4, t3) = (FrameT(f4, tr, i’3) V (Di?’T(f4, ay, ta, t3) \% Deﬂ'(f4, to, t3))) A
—Holds(fy, t3) = (FrameF(fy, tp, t3) V (DirF(fy, a1, t2,t3) V DefF(fy, t2,t3)))

the direct effect formulas

—DirT(Locked, Push, t5, t3) —DirF(Locked, Push, t5, t3)
DirT(Open, Push, 5, t3) —DirF(Open, Push, 5, t3)
—DirT(HasCard, Push, t5, t3) —DirF(HasCard, Push, t,, t3)
=DirT(Jammed, Push, 5, t3) —DirF(Jammed, Push, 5, t3)
—=DirT(Locked, Swipe, t5, t3) DirF(Locked, Swipe, t3, t3)
—DirT(Open, Swipe, t5, t3) —DirF(Open, Swipe, 7, t3)
—DirT(HasCard, Swipe, t5, £3) —DirF(HasCard, Swipe, t5, t3)

=DirT(Jammed, Swipe, 7, t3) —DirF(Jammed, Swipe, 7, t3)

the default closure axioms

—DefT (Locked, ty, t3) —DefF(Locked, t5, t3)

—DefT(HasCard, ty, t3) —DefF(HasCard, ty, t3)

—DefT (Open, t5, t3) —DefF(Open, ty, t3)

—DefT (Jammed, t, t3) Holds(Jammed, ;) D —DefF(Jammed, t;, t3)

the macro definition axioms

FrameT (fy, tp, t3) = (Holds(fy, t2) A Holds(f4,t3))
FrameF (fy, tp,t3) = (—Holds(fy, t2) A —=Holds(fy,t3))
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The Reiter defaults are

ASwipeCard _ Init(ts) : ~Holds(Jammed, t5) —Holds(Jammed, t) : DefF(Jammed, t5, t3)
N —Holds(Jammed, t5) ’ DefF(Jammed, ty, t3)

In addition to this general domain information, the user can specify information about
certain instances of the domain. An instance is first characterised by a time structure, situations
or linear time. Technically, this extends the signature of the domain by the appropriate function
symbols into sort TIME. Second, the instance information contains additional world knowledge
whose form depends on the chosen notion of time. For situations, the user can provide a
characterisation of the initial situation via a conjunction of literals (—)Holds(¢, Sp). For linear
time, they can specify a narrative consisting of action occurrence statements and Holds literals.

This user-specified information is easily transformed into a set of formulas ;4

e in the case of situations,

— the axioms Init(Sy) and Occurs(a,s, t) =t = Do(a, s)
- ground literals (—)Holds(¢1, So), . - ., (—)Holds(¢m, So);

e in the case of linear time, a narrative consisting of

- ground atoms Occurs(a1,01,7), ..., Occurs(ay, 0y, ) for actual action occurrences
and

- the axiom Init(yp) for some ground 17, and ground literals
(=)Holds(¢1, 1), ..., (—)Holds(¢y, 1) for observations.

The instance formulas X;,5; are added to the default theory about the domain, resulting in
(Z U Zinst/ A)

Example 4.1 (Continued). For situations as time structure and an initial time point where the
agent has a card, we get

yowipeCard _ {Init(Sy), Occurs(ay, tp, t3) = t3 = Do(ay, t2), Holds(HasCard, Sp) }

inst

4.1.2 ...to Propositional Default Theories

Although the semantics defined in the previous chapter can in principle deal with infinite
domains, the same cannot be expected from a general implementation. In particular, answer
set programming systems are based on propositional logic, which precludes the use of function
symbols of positive arity in any way that leads to infinite domains. So for the implementation,
we restrict our attention to domains with a finite number of objects. Furthermore, we assume
for the time being that we are dealing with relational domain signatures, that contain no
function symbols of positive arity. We will later see that these restrictions can be lifted in order
to ease domain specification for the user.

To model a finite and fully known domain logically, we use so-called domain closure
axioms. Generally, the domain closure axiom for a sort s says that the set ©; of constant
symbols contains the only objects of this sort. For a sort s of a relational signature with
D ={C|C:s € §}, the domain closure axiom for s is

(Vx:s) \/ x=C

Ce®
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In the implementation, we express the same circumstance with a different device: when
the domain of a sort is finite and fully known, we can syntactically replace formulas with
universally quantified variables by ground conjunctions. There, each ground conjunct repres-
ents the proposition of the formula for a specific ground valuation of the variables. Universal
quantification is expressed by having a ground conjunct for each possible valuation. Formally,
this well-sorted grounding is defined as follows.

Definition 4.2. Let E be a relational domain signature with a finite set ©; = {C | C: s € E} for
each of its sorts s. For a quantifier-free formula ®(xy, ..., x,) with free variables xy : §1,...,x, :
sy, its well-sorted grounding |®(x1,...,xy)] is defined inductively by

| P(01,...,00)] & D(01,...,0,) Where (01,...,04) €Dy X -+ X Dy

|_CI)(01, ey 051, X, Xig 1 - lxn)J oo /\ LQ(OD ey 0i-1,04, X417, - /xn)J
0;€9;

For a set W of formulas, |W]| & {|®] | P € W}.

For example, grounding the formula P(x) = x = A where P : s and over the domain ©, =
{A, B} yields the formula (P(A) = A = A) A (P(B) = B = A) which is equivalent to P(A) A
—P(B) under the unique-names assumption. For a more complicated example with another
free variable, consider the clause C(x,y) = P(x) V Q(x,y) with P as above and Q : s x s’ where
Dy = {1,2}. We get

= [P(A) vQ(A )| A [P(B)VQ(B,y)]
= [P(A) v QA A[P(A) vV Q(A,2)] A[P(B)VQ(B,1)] A[P(B) VQ(B,2)]
(P(A)VQ(A 1)) A (P(A)VQ(A,2)) A(P(B) VQ(B,1)) A (P(B) VQ(B,2))

In general, grounding involves a blowup in formula size that is exponential in the number
of free variables and polynomial in the domain sizes: for a set W of quantifier-free formulas
with 7 free variables and domains ©, we have || |[W ]| < |[W]| - |D|".

According to the following lemma, domain closure axioms ensure that the well-sorted
grounding of formulas indeed captures the semantics of universal quantification over a finite
and fully known domain. Notice that unique-names axioms are also needed here to establish
a one-to-one correspondence between a sort’s domain and its constant symbols.

Lemma 4.3. Let & = (6,B,3, %) be a relational domain signature. For each sort s; € & =
{s1,...,8m}, denote by ©; & {C|C:s; € F} the set of constant symbols of this sort. Further,
let Yjc U Xyna be the set of domain closure (with respect to ;) and unique-names axioms for E's sorts.
For a quantifier-free formula ®(x1, ..., x,) we have

chuzuna ': (Vxl,...,xn)d>(x1,...,xn) = LCID(xl,...,xn)J

Proof. Let J be an interpretation for & with J |= £ ;. UX,,,. We first observe that this implies the
existence of a bijection f : @g — ®; for each sort s; with 1 < i < m. (Since J is an interpretation,
the constant symbols of each sort must be interpreted by some domain elements; since J |=
Y.una, there must be at least |D;| distinct elements in each sort domain @2; since J |= X, there
can be at most |D;| elements in each sort domain @g.) In the proof, we will therefore without
loss of generality assume that in each structure 9t for &, the sort domains @53,, are given by the
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9;. In the remainder, we proceed by induction on the number n of free variables. The base
case is trivial. For the induction step, let

YaeUZumg = (V1,00 x0)D(x1, ., x0) = [ D(x1,..., %) ] (IH)

for all ® and consider the formula ¥(xg,x1,...,x,) where xy : 59 and let J be a model for
e Uy

JE (Vxg,x1,. -, 20)¥(x0, %1, -+, Xn)

iff 3,x0 — 0o | (Vxq,...,x0)¥(x0,%1,-..,%,) forall o € D (Definition of )

iff 3= (Vx1,...,x,)¥(0,x1,...,x,) forall o € D

iff 3= |¥(o,x1,...,x,)] forallo € D (TH)

iff I A [Y(ox1,...,x4)] (D is finite)
0€®

iff 3 = [ ¥ (x0,x1,-.-, %) (Definition 4.2)

O

Hence considering our quantifier-free action default theories for finite domains, we can
equivalently replace them by essentially propositional action default theories. The expression
“essentially propositional” captures the intuition that the syntax of first-order logic is used to
ease specification but not semantically necessary.

Theorem 4.4. Let E be a relational domain signature, (¥, A) be a quantifier-free action default theory
over Z and let X, be the domain closure axioms with respect to the constants of all of E's sorts. The
default theories (Lj. U Zyng UL, A) and (Xg. U Xyna U | 2], A) are equivalent.

Proof. The result is straightforward from Lemma 4.3, since we can replace each ® € X by its
equivalent |®]|. O

For any such essentially propositional default theory, it is straightforward how to truly
propositionalise it: for each ground atom P(f) mentioned in the theory, we introduce a new
null-ary predicate and replace all occurrences of P(t) by the new predicate. Note that defaults
with free variables are only notational representatives of their (well-sorted) ground instances,
so any A is already essentially propositional. It is also finite due to the finiteness of the involved
sort domains.

Definition 4.5. Let & = (&,B, §, X) be a relational domain signature. For a ground atomic for-
mula P(¥), its propositional counterpart Prop(P(t)) is the new predicate Q p(i)- For a composite
formula ®, its propositional counterpart Prop(®) is defined by structural induction:

Prop(T) & T
Prop(Ll) & 1

{T if t; and t, are identical

Prop(t1 = tp) &
p(t 2) 1 otherwise

Prop(—~®) & —Prop(P)
Prop(®q 0 ®y) & Prop(Pq) o Prop(Py) for o € {A,V}
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For a closed, quantifier-free (i.e., ground) default, we have

Pro B:xi,...,kn . Prop(B): Prop(xi),...,Prop(kn)
P w - Prop(w)

Let (X,A) be a quantifier-free action default theory over E. Its propositional counterpart is
Prop(X,A) & ({Prop(®) | ® € X}, {Prop(d) | 6 € A}) over the propositional signature that
contains all Qp(q) for atoms P(t (t) that occur in (Z,A).

Note that ground atoms P(f;) and P(;) where {; and f, differ will be mapped to different
propositional variables. That way, the once explicit unique-names assumption is implicitly
encoded into the language. For the sake of readability we drop the Qp ) notation in the
sequel and use ground first-order atoms and their propositionalisations interchangeably. In
particular, we will speak about time points, fluents and actions as if using the grounded first-
order axiomatisation.

4.1.3 ...to Propositional Definite Horn Default Theories

Now we know how to translate action domain specifications into propositional action default
theories in conjunctive normal form. The next step will turn a set of general clauses into a
set of definite Horn clauses, that is, clauses of the form PV —P; V...V P, for m > 0. The
obvious difference between such a definite Horn clause and a general clause is that the latter
can contain any number of positive literals, while the former must contain exactly one. To
conform to this restriction, we extend the signature to allow us to express negative literals of
the original signature through atoms of the extended signature. The structure of the original
clauses is conveyed by making explicit all implications contained in them. For example, for the
clause PV Q we express that in any model of the clause, (1) “P must be true if Q is false” and
(2) “Q must be true if P is false.” What goes missing, however, is the more general information
that “at least one of P or Q must be true.”

We start the presentation of our translation with (in a sense) removing classical negation
from the underlying language. The basic idea of “reifying negation” is to duplicate the predic-
ates of the language. So for each (possibly non-propositional, sorted) predicate symbol P, we
add a placeholder -P (of the same sort) for its negation. This goes back to [Gelfond and Lif-
schitz, 1991] and has become a standard method in ASP-based encodings of logical languages.
Although it would suffice at this point to give the definition for propositional signatures only,
we already introduce the general translation that we will need later.

Definition 4.6. Let & = (&, B, §, X) be a signature. Define a new signature 2+ = (&, 8+, §, X)
as follows. Set PF & PU{-P:51 X -+ x5, | P15 X - - X 5, € P} and furthermore add the
new binary predicate # for inequality.! For P € 3, the positive name (-)* and negative name
(-)~ of a B literal are defined by

(P(E))" & P(T) (P(€))~ « -P(t
(=P(6))" = -P(Y) (~P(0))" = P()
(-P(6))" = -P(1) (-P(t))” = P({)

(=-P(D))" = P(1) (=-P(t))”~ £ -P(0)
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For equality literals, the positive and negative names are given by?

(=t)" ¥4 =t (h=t) =th#b

(i=0)" E £y (th=t)) =t
We first point out that for all literals ¢ over ¥, the name functions satisfy (—¢)™ = (y)
and (—¢)~ = (). The crucial thing to note for this definition is however that (-)™ and ()~

always return positive atoms over f=. The next definition now uses these name functions to
encode the implications of a given clause into definite Horn clauses of the extended signature.

Definition 4.7. Let c=1; V...V, with m > 1 be a clause over a signature Z. The definite
Horn translation of clause c is the conjunction of definite Horn clauses [c] & [c]; A ... A [c],,
over B+ where for1 <i<m

el & TV =T
1<j<m,
j#i
Accordingly, for a conjunction C = ¢1 A ... A ¢, of clauses we define [C] & [c1] A ... A [en];
for a set ® of CNFs, [®] & {[C] | C € ®}. The empty clause remains unchanged by the
translation, [L] & L.

For a clause ¢ = I; V... V I, the construction for [c] above expands to

[cly = ()T V(L) " V=)~ V...V =(ly)~
Tl = )TV =({I)) ™V ={l3) " V...V =(ly)~

el = ()™ V (L)~ V =)™ VoV ()

Each of the individual clauses encodes an implication contained in the original clause; for
example, [c]; expresses ((I2)~ A (I3)~ A...A(lm)”) D (I1)" that says “I; is true if all other
literals are false.” There, falsity of original atoms is modelled through truth of auxiliary atoms.
Note that a unit clause ¢ = I; becomes an atom [c] = (I7)™.

The first and most important property of the translation [-] is that it is sound with re-
spect to consequences in propositional logic. To show this, we will first define how to extend
interpretations for a propositional signature 8 to interpretations for the extended signature

P
Definition 4.8. Let B be a propositional signature and I be an interpretation for 3. The

interpretation’s Horn extension [I] is an interpretation for 8= that coincides with I on B, and
for each predicate -P € P+ \ B, we have

f ifI(P)=t
I (-P) &
[11-P) {t otherwise

It immediately follows from this definition that for an interpretation I and an atom P € 3,
we have I = P iff [I] |= P iff [I] & -P. Conversely, for -P € $* \ B, it holds that I |= =P iff
[I] k= -P iff [I] [~ P. This leads to the following lemma.

2Strictly technically speaking, introducing inequality as a separate predicate requires the existence of a universal
supersort, say TERM, which allows us to set # : TERM X TERM. This is however straightforward to achieve and we do
not present it for the sake of readability.
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Lemma4.9. Let C =11 V...V I, be a propositional clause and I be an interpretation for C’s signature.

I'=cif 1] =I[C]
Proof.

I=C

iff I =L V...V
iff [=lhor...orl[=1y,
iff [I1E ()" or ... or [I] | (Ln)™"
iff [I] |= ()" or [I] = ()" or ... or [I] = (1) ™ or [I] f= (1) " or ...

or [I] = (In)™ for all i
iff [I] |= ()" or [I] }& (L)~ or ... or [I] & {liz1) ™ or [I] & (lisa)~ or ...

or [I] ¥ (lm)~ forall i
i [1] = (1)* or [1] = ~(h)~ or ... or [I] = (1)~ or [1] = ~(lis1) ™ or ..

or [I] = —(ly)~ foralli
iff [I] = ()T or [I] = (L)~ V...V={li_1)” V=lliz1)” V...V =(ly,)” foralli
iff [I] = (DT V =)~ V... Vv={li_)” V{liq)” V...V ~=(ly)” foralli
iff [I] = [C] O

This model correspondence holds of course only for “meaningful” interpretations [I] that

correspond to interpretations I of the original signature. Using the lemma, soundness of [-] is
easy to prove.

Theorem 4.10. Let W U {C} be a set of propositional clauses.
[W] E [C] implies W = C

Proof. We show the contrapositive. Let W = C. Then there is an interpretation I with I = W
and I = C. By Lemma 4.9, we have [I] = [W] and [I] }~ [C], thus [W] ¥ [C]. O

Another useful property of the translation is that it preserves a clause’s potential for unit
resolution. This will later be used to show that our approach allows a modular translation
while still being sound and complete. Since the proof of this lemma below is quite symbolic,
we will first illustrate the property with an example.

Example 4.11. Consider the clause C; = PV Q V =R and the unit clause C; = —~Q. Obviously,
Cy and C;, are resolvable with Res(Cy,Cy) = PV —R. The Horn translation of the resolvent is
[Res(Cq,Ca)] = (P V —R) A (-R V —-P). Applying the Horn translation to C; and C, individu-
ally yields

[Ci] = (PV—=-QV=R) A [C] =-Q
(=-PV QV =R) A
(—=-PV —-QV-R)

We can see that [C;] is resolvable with [C;]; and [C1];. The respective resolvents are easily
verified to be identical to [Res(Cy, C2)]-
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As mentioned above, this preservation of unit-resolvability always holds. The proof can be
visualised as follows: For a clause of length m, the Horn translation creates an m X m-array
of literals. From this array, we remove one row (the conjunct that is not resolvable) and one
column (the literals complementary to the unit clause we resolve with), which results in an
m — 1 x m — 1-array. Removing literal i from the original clause and then creating the Horn
translation from the clause of length m — 1 results in the same array.

Lemma 4.12. Let C =11 V...V Iy, with m > 2 be a non-unit clause and C' be a unit clause. If C and
C’ are resolvable, then [C] and [C'] are resolvable and [Res(C, C")] is subsumed by Res([C], [C']).

Proof. Applying Definition 4.7 to C yields

[Cl= A [EGTv V =)~
1<j<m 1<k<m,
k#j
Now assume w.l.o.g. that [; = =C’. This implies [C'] = (C')* = ([;)~. Since m > 2, there exists
ajwithl <j<mandj # i Furthermore, for all such j, the clause [C]; contains the literal
—(l;)~ and is therefore resolvable with [C'] = (I;) . For each j, this leads to the resolvent

Res([C];, [C']) = ()F v =)

1<k<m
kA, kti
On the other hand, Res(C,C") =1, V... Vi1 VI V...V, = \/ Ijand
1<j<m,
j#

[Res(c.c)]= A |y V =t | = A Res(Icl;, [CT)
1<j<m, 1<k<m 1<j<m,
j#i k#i, k#j j#i
0

In a strictly syntactical sense, the idea of the lemma even holds for arbitrary pairs of non-
unit clauses. However, due to the syntactical replication of negation, there is a catch.

Example 4.13. Consider the clauses C; = PV Q and C; = —-PV Q. They are obvi-
ously resolvable with resolvent Q. Their translations [C;] = (PV —=-Q) A (—-P V Q) and
[Co] = (-PV —-Q) A (—PV Q) are also resolvable. Their resolution results in the clauses
QV —=-Q and —-Q V Q. Not incidentally, these clauses are the Horn translation of Q vV Q and
thus illustrate the general incompleteness of [-] with respect to clausal entailment: the transla-
tion does not perform the (implicit) reduction step from Q V Q to Q — in the resulting signature,
Q and -Q are just like any two atoms. This issue cannot be fixed in a way that is modular with
respect to clauses, since it arises only from the interaction of different clauses.

Observe that Lemma 4.12 also does not hold in general if both clauses are unit:
[Res(P,—P)] = [L] = L, but quite to the contrary the pair of clauses ([P],[—~P]) = (P,-P)
cannot be resolved. However, the unsatisfiability of P A =P which was removed by replacing
—P by -P will still be detected thanks to the second part of the following definition. The first
part specifies how to transform defaults to be able to reverse the translation of Theorem 2.13.
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Definition 4.14. Let 6 = B: x/w be a quantifier-free disjunction-free default over a signature
&. The corresponding definite Horn default of ¢ is

oy & L 20 <:(;><f>_ (1)

Let (W, D) be a quantifier-free default theory such that all formulas in W are in conjunctive
normal form and all defaults in D are disjunction-free. Its corresponding definite Horn default
theory is [(W,D)] & ([W], D]V ¢&) with
[D] = {[o] | 6 € A}
fg { PA-P:=Q ‘
Q

where Q is a fresh null-ary predicate symbol not occurring in E.

[z

pem} (4.2)

Note that for a disjunction-free default 6 above, B is a conjunction of literals. Accordingly,
[B] is a conjunction of atoms and the resulting default [J] is indeed definite Horn.

Example 4.1 (Continued). The defaults of the swipe card domain are translated as follows. For
any ground valuation for fp, t3, 5,

Init(ts) : ~Holds(Jammed, t5) Init(ts) : ~Holds(Jammed, ts)

is t lated t d
—Holds(Jammed, t5) s transiated o -Holds(Jammed, t5) ,an
—Holds(Jammed, t;) : DefF(Jammed, ty, t3) o -Holds(Jammed, t;) : =-DefF(Jammed, t5, t3)
DefF(Jammed, 5, t3) DefF(Jammed, 5, t3)

Now we have at our disposal a translation from default theories in CNF to definite Horn
default theories. For a single clause, the blowup in formula size due to the definite Horn
translation is obviously quadratic: a clause of length m becomes m clauses of length m. For
our action default theories (,A) the general increase in size is given by |[[Z]| < ||Z||* and
I[A]]] < [|A]] + |B|. The defaults do not increase in size, but only in number due to the
integrity constraints for the predicates of the language.

Although the translation from default theories into definite Horn default theories presented
thus far is defined for general disjunction-free default theories, its soundness and complete-
ness cannot be guaranteed. Below, we introduce a class of action domain descriptions and
corresponding action default theories that allow for a modular translation to definite Horn
action default theories that is sound and complete with respect to knowledge about reachable
time points.

Definition 4.15. Let ® be a p-uleD action domain specification and X;,,;; be instance informa-
tion for the domain. The domain © is admissible if all precondition laws in ® are disjunction-
free. The instance information %;,,; is admissible if

e there is a unique ground atom Init(1y) € X, and
o all state formulas in ;¢ are ground literals in .

The swipe card domain from Example 4.1 is admissible. In general, for a given admissible
domain ©, the corresponding action default theory contains the following axioms.
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1. Frame axioms

FrameT(f,s,t) = (Holds(f,s) A Holds(f,t))
FrameF(f,s,t) = (—Holds(f,s) A ~Holds(f,t))

whose conjunctive normal forms are

(=Holds(f,s) V —Holds(f,t) V FrameT(f,s,t)) A
(=FrameT(f,s,t) V Holds(f,s)) A
(—FrameT(f,s,t) V Holds(f,t))

and

(Holds(f,s) V Holds(f,t) V FrameF(f,s,t)) A
(—FrameF(f,s,t) V ~Holds(f,s)) A
(=FrameF(f,s,t) V ~Holds(f,t))

2. for each function A into sort ACTION,
(a) direct effect formulas
DirT(f,A(%),s,t) = (f =F (X)) V...V f=F} (X))
DirF(f, A(X),s,t) = (f =F (¥X)V...Vf=F, (X))

where action A(¥) causes F'(¥) for 1 < i < m are all positive direct ef-
fect laws for A(X¥) in ©; and action A(X) causes —\F].*(J"c') for 1 < j < n are
all negative direct effect laws for A(¥) in ®; the CNF of a direct effect formula
Dir(f,A(X),s,t) = (f =F(X) V...V f=Fu(X)) is

(=Dir(f, A(X),s,t)V f =F(X) V...V f=Fu(X)) A
(=f = F1(¥) vV Dir(f, A(X),s,t)) A

(=f = En(X) v Dir(f, A(X),s, t))

(b) a precondition axiom
Poss(A(X),s,t) = (®als] A Occurs(A(X),s,t))
for possible A(X) iff ®4 € O, where @4 = P1(X)[s] A ... A P (X)[s]; its CNF is

(Poss(A(X),s,t) V=i (X)[s] V...V =y (X)[s] V ~Occurs(A(X),s, t)) A
(mPoss(A(X),s,t) Vip1(X)[s]) A

(.ﬂPoss(A(a‘c’),s, BV (X)[s]) A
(—Poss(A(X),s,t) V Occurs(A(X),s, t))

71



4.1. From Action Domain Specifications to Answer Set Programs Chapter 4. Implementation

(c) an effect axiom

Poss(A(X),s, t) D
(Holds(f,t) = (FrameT(f,s,t) vV DirT(f, A(X),s,t) V DefT(f,s,t))) A
(—Holds(f,t) = (FrameF(f,s,t)V DirF(f, A(X),s,t) V DefF(f,s,t)))

which gives rise to the clauses —Poss(A(X),s, t) V

(=FrameT(f,s,t) V Holds(f,t)) A

(=DirT(f,s,t) V Holds(f,t)) A

(=DefT(f,s,t) V Holds(f,t)) A

(—Holds(f,t) V FrameT(f,s,t) vV DirT(f, A(X),s,t) V DefT(f,s,t)) A
(=FrameF(f,s,t) V —~Holds(f,t)) A

(—|Dsz(f t) V —Holds(f,t)) A

(—DefF(f,s,t) vV —Holds(f,t)) A

(Holds(f t)\/FrameP(f s,t)V DirF(f, A(X),s,t) V DefF(f,s,t))

3. for each function F into sort FLUENT, the default closure axioms

( A (F(X)=F(/) A ﬁHolds(F(y’),s))) D —DefT(F(X),s,t)

normally F(ij) €©®

( /\ (F(X) = F(§) A Holds(F (g’),s))) D —DefF(F(X),s,t)

normally —F(j)€©

with conjunctive normal form

( Vo (FE) AEG) vHost<F<1z>,s>>> V ~DefT(E(%),5,1)

normally F(j) €©

( Vo (FE) AF@)V ﬁHozdsw),s))) V ~DefF(F(%),5,1)

normally —F(ij) €©

When the clauses (1)-(3) and the Reiter defaults are grounded and propositionalised, the
only structural changes are made when equality atoms are replaced by truth or falsity. For in-
stance, for a ground fluent literal ¢, the default closure axiom is simply —[c] V —Def (¢, o, T).
The following theorem uses the structure of the ground clauses to argue that the Horn trans-
lation preserves their meaning with respect to entailment of Holds literals.

Theorem 4.16. Let © be an admissible action domain specification with a consistent domain axiomat-
isation ¥ with admissible instance information, and denote by ¥ & [¥] its corresponding propositional
definite Horn domain axiomatisation. A time point T is reachable in X iff it is reachable in ¥/, further-
more for every time point T and ground fluent literal P, we have ¥ = ¢[t] iff &' = (¢[7]) .

Proof. It follows from Theorem 4.10 that reachability of T in ¥’ implies reachability of T in ¥;
for the same reason, ¥’ = (¢[t])" implies £ = ¢[t]. It remains to prove the converse. Let T
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be a time point and ¢ be a ground fluent literal. If T is not reachable in X, we have ¥ [~ ¢[1]
and the claim is immediate. In the following, let T be reachable and assume X |= i[t]. We use
induction on T.

Y = Init(t): ¥ and ¥’ coincide on the Init atom by construction, so ¥’ = Init(t). World
properties at the initial time point are given by Holds literals stated in the theory, hence
P[] € L. By the definition of the translation, (y[7])* € ¥'.

Y. = Poss(a, 0, T): By construction, Occurs(a, o, T) € X iff Occurs(a,0,7t) € ¥'. The induction
hypothesis and the form of the precondition axioms now imply ¥’ |= Poss(«, 0, T) and
thus 7 is reachable in ¥'. It remains to show X’ |= (¢[t])". We do a case distinction on
why 1 holds at T according to X.

1. £ = Dir(¢,a,0, 7). Then Dir(y,a,0,T) € £ which in turn means Dir(¢,a,0,T) € ¥’
by construction. The effect axiom’s clause —Poss(«, 0, T) V =Dir(¢,a,0,T) V P|T]
yields the claim.

2. X [~ Dir(yp,a,0,7). By the form of the direct effect formulas, this means ¥ |=
—=Dir(¢,a,0,T). Then according to the presumption X |= ¥[t], we have ¥ =
Frame(y,0,T) V Def (9,0, T). Due to the default closure axiom ¢[o] V =Def (¢, 0, T)
and the frame axiom —Frame(y,o,T) V ¢[o] it follows that ¥ = ¢[o]. By the
induction hypothesis £’ | (y[o])*. Additionally, &' = (Frame(—¢,0,7))~ by
the respective frame axiom, ¥’ = (Def(—,0, 7))~ by the default closure axiom
=[o] V =Def (-, o, T) for ¥ and ¥/ |= (Dir(—y,0, 7))~ by the form of the direct
effect formulas and since X is consistent. Unit-resolving these conclusions with the
effect axiom'’s clause [t] V Frame(—y, 0, T) V Dir(—,a, 0, T) V Def (—p, 0, T) yields
Tyl .

Due to the restricted form of the defaults Init(t) : [t]/[t] or ¢[s] : Def (¢, s, t)/Def (¢,s,t),
this correspondence can be generalised to extensions of consistent action default theories.

Theorem 4.17. Let © be an admissible action domain specification with a consistent action default
theory (X, A) with admissible instance information, and let its corresponding definite Horn default
theory be (¥, A).

1. For every extension E for (¥, A) and time point T which is reachable in E, there is an extension E’
for (X!, A") such that T is reachable in E' and for each ground fluent literal 1, we have E |= |7]

iff E" = (pl) ™
2. for every extension E' for (X', A") and time point T which is reachable in E', there is an extension
E for (¥, A) such that T is reachable in E and for each ground fluent literal ¢, we have E |= [T]

iff E' = (pl) "
Proof. 1. Let E be an extension for (X,A). We construct an extension E’ for (¥/,A’) as

follows. Set E & ¥/ and E],; 2 Th(E]) U Consequents(A}) for i > 0, where?

Al s {<5>+<;]>1<“’> ’ 5;}“’ €A (B)T € Eland ~w ¢ E}

We will show by induction that for all i > 0, time points ¢, T where ¢ is reachable in E;,
ground actions & and ground fluent literals v,

3Note that we slightly abuse notation in the proof: in the first part, we use an existing extension E for (X, A) and
its corresponding E; to construct a theory E’ which is later shown to be an extension for (£’,A’); in the second part,
we take an extension E’ for (X', A’) and its E] to define an extension E for (X, A).
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(a) Poss(a,0,T) € E; iff Poss(a,0,T) € Ej,

() It € E: iff (p[c))+ € E,

(c) Def(y,0,7) € E;iff Def (¢, 0, T) € E and
(d) —Def(y,0,7) € E; iff (Def(¢,0, 7))~ € E].

The induction needs a “look-back” of two steps. Thus in the induction base, we treat the
cases i = 0 and i = 1; the induction step then concludes from i and i + 1 to i 4 2.

i = 0: We observe that Eg = ¥ and Ej = %/.

(a) X and hence ¥’/ contain no Poss atoms.

(b) The only Holds literals contained in X are of the form ¢[1| for Init(1) € . By
the definition of the translation, ¥[1] € X iff (y[]) T € ¥'.

(c) There are no Def atoms in X or ¥/'.

(d) The only —Def literals in X are trivial default closure axioms. By the defin-
ition of the translation, we have —Def(,0,T) € X iff (—=Def(¢,0, 7))t € ¥/
(—Def (y,0,7))" = (Def (,0, 7))~ yields the claim.

i = 1: By definition, Ey = Th(X) U Consequents(Ag) and Ej = Th(X') U Consequents(A().

(a) There are no defaults with Poss consequents, so we have to show X |=
Poss(a, 0, T) iff &' |= Poss(a, o, T) for all reachable o, which follows from The-
orem 4.16.

(b) £ E y[r] iff ¥ = (p[t])T is an immediate consequence of Theorem 4.16.
Now let Init(t) : y[t]/p[r] € A with —p[t] ¢ E. Due to the translation we
have Init(t) € Ey iff Init(t) € E|. Hence, we have y[t] € Consequents(Ag) iff
(p[t])™ € Consequents(A}). In combination, we get the desired [t] € E; iff
(plel)* € B

(c) Let y[o] : Def (¢, o, T)/Def (¢, 0, T) € A with —Def(i,0,T) ¢ E. By case 1b for
i =0, we have y[c] € Eyiff (¢[c])" € Ej. Hence, Def (¢, 0, T) € Consequents(Ag)
iff Def (, 0, T) € Consequents(A). In combination with case 1c for i = 0, we get
Def (y,0,7) € Eq iff Def (,0,7) € Ef.

(d) For trivial default closure axioms, the correspondence follows from 1d for i = 0.
For default closure axioms ¢[o]| V —Def (¢, o, T), we can use 1b for i = 0 on y[c]
and by unit resolution get Ey = —Def(y, 0, 1) iff E| = (Def(y,0,7))". The
claim follows since there are no —Def literals in Ay.

iNi+1=i+42: Wehave E; 5, = Th(E;;1) U Consequents(A;,1).

(a) Since there are no defaults with Poss consequents, we have to show E; ;1 =
Poss(a,c,7) iff Ej | |= Poss(a,0,7). ¥ and X’ agree on Occurs atoms, hence
Occurs(a,0,7) € Ejyq iff Occurs(a,o,7) € E; ;. By the induction hypothesis

for 1b, y[o] € Eiq iff (p[o])* € E[, ;. By the precondition axioms of the form
Poss(a, 0, T) V —1[o] V ...V =Py [o]| V ~Occurs(a, 0, T) being the only clauses
with a positive occurrence of Poss(a, o, T), we get the desired correspondence.

(b) A (c) Let Init(79) : ¢[10]/¢[10] € A with —p[1p] ¢ E. Now by construction, Init(1y) €

Eiyq iff Init(tg) € Ej,;, hence we have that ¢[1g] € Consequents(Aiiq) iff
(¥[w])* € Consequents(Aj, ;). Since statements in X and defaults are the only
ways to conclude about the initial time point, we also have ¢[1)] € Th(E; 1) iff

(¢lw])* € Th(E],,) by the induction hypothesis. In combination, (1] € Ej4,
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iff (y[1])* € E/,, showing 1b for the initial time point. Now let ¢ be a non-

initial time point that is reachable in E;. Let ¢[o]| : Def (y,0,7T)/Def (,0,7) € A

with —Def (¢, o, T) ¢ E. By the induction hypothesis of 1b for i, we have y[c] €

E; iff (y[o])™ € EI. Hence, Def(y,0,T) € Consequents(A;) iff Def(,0,7) €

Consequents(A}). In combination with the induction hypothesis of 1c for i, we

get Def (,0,7) € Eiyq iff Def(¢,0,7) € E{ 4, which shows 1c for i +- 1. Now

by the induction hypothesis of 1la for i + 1, we have Poss(x,0,T) € E;yq iff

Poss(a,0,7) € Ej ;. We next show ¢[t] € Th(Eiq) iff (p[t])* € Th(E ).

plt] € Einq iff (p[7])* € E] 4 is clear from the induction hypothesis for 1b, so

we prove ¢[t] € Th(Ei11) \ Eiy1 iff (@[t])* € Th(E] ) \ E},, by a case distinc-
tion on the cause for 1[t]. We note that such a case occurs whenever T becomes
newly reachable in E; 1, that is, Poss(«,0,T) € Th(E;;1) \ Ei41-

i. ¢ is a direct effect of . Then the result follows from the induction hypo-
thesis of 1a for i + 1, the correspondence of Dir literals and the effect axiom’s
conjunct —Poss(a, o, T) V —Dir(¢,a,0,T) V P[T].

ii. ¢ is a default effect of . We have Def(y,0,7) € E;yq iff Def(¢,0,7) €
E!., by 1c for i + 1 above. Now the effect axiom’s conjunct —Poss(«, o, T) V
—Def (1,0, T) V P[t] yields the claim.

iii. ¢ persists from ¢ to 7, that is, it holds at ¢ and there is no contrary
direct or default effect. Then the literals Poss(«,0,T), —Frame(—,0,T),
—Dir(—,a, 0, T) and —Def (1,0, T) (on all of which there is a correspond-
ence) can be unit-resolved with the effect axiom’s clause —Poss(a, o, T) V
Y[t] V Frame(—y,0,7) V Dir(=¢,a,0,7) V Def (=, 0, T) in both E; 1 and
E;,, to yield the claim.

Since Consequents(A;1) and Consequents(Aj,;) contain only Def atoms and
Holds literals (or Holds and -Holds atoms, respectively) in the initial time point,
we get ¥[1] € Eip, iff (p[7])* € Ef,, showing 1b for i + 2.

(d) Can be shown as fori = 1.

To prove that E' & J;5 E/ is an extension for (X', A’), it remains to show that for all
defaults B: w/w € A, we have —w ¢ E iff (w)~ ¢ E’. Now (w)~ = (—w)™, so the result
is straightforward for defaults of the form Init(7) : ¢[7]/¢[7]. For the remaining de-
faults of the form ¢[o] : Def (, 0, T)/Def (1,0, T), the correspondence —Def (¢, 0, T) € E;
iff (Def (,0, 7))~ € E! for all i > 0 follows from 1d. The correspondence on reachability
of time points follows from the correspondence on the initial time point and the corres-
pondence on Poss(w, 0, T) atoms for reachable ¢. Finally, since E is an extension, we have
E = Th(E) and thus E |= ¢[1] iff ¢[1] € E as well as E |= Poss(a, o, T) iff Poss(a, 0, T) € E.
The same argument applies to E’ and concludes the proof of 1.

2. We only sketch the proof since it is very similar to the one for 1. Let E’ be an extension
for (X, A’). We construct an extension E for (X, A) as follows. Set Eg & ¥ and E;; &
Th(E;) U Consequents(A;) for i > 0, where

A; {M‘MGA,ﬁEEiand<w>€E’}
w w

As above, it can be shown by induction that for all i > 0, time points ¢, T that are
reachable in E/, ground actions a and ground fluent literals ¢,

(a) Poss(a,0,T) € E!iff Poss(a,0,T) € E;,
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(b) (yp[r])* € Ef iff p[7] € E;,
(c) Def(y,0,7) € E iff Def (1,0, 7) € E; and
(d) (Def(y,0, 7))~ € E}iff ~Def (¢, 0, T) € E; and

Finally, ~w ¢ E iff (W)~ ¢ E’ can be proved as before to show that E &£ Ui>o Ei is an
extension for (X, A).
O

For an inconsistent %, the extensions of (£,A) and (¥/, A") differ: while the original default
theory has a single inconsistent extension, its translation has no extension due to the integrity
constraints (4.2). This restriction to consistent action default theories is not a proper limitation
here since it can be effectively checked in the implementation. In any case, an inconsistent
domain axiomatisation must be considered erroneous and makes determining consequences
unnecessary.

With the transformation of default theories into definite Horn default theories, the bulk of
translation work is done and the remaining tasks are mostly straightforward.

41.4 ...to Propositional Answer Set Programs

With Marek and Truszcziniski’s translation from Theorem 2.13 in mind, it is immediate how
to turn a propositional definite Horn default theory into an answer set program. We however
give a formal definition for the sake of completeness.

Definition 4.18. Let (W, D) be a propositional definite Horn default theory. Its corresponding
propositional normal logic program is

ASP(W,D) & {Qg <+ Q1, ..., Qu | QV-Q1 V...V -Qu € W} U

:Rq,...,7 R
{Q0<—Q1,...,Qm,notR1,...,notRn QA AQ’”Q LARRY ”GD}
0

This concludes the translation from action domain specifications into normal logic pro-
grams. The fundamental result of this chapter now states the correctness of the translation
with respect to conclusions about reachable time points.

Theorem 4.19. Let © be an admissible action domain specification and (L;. UX, A) be its quantifier-
free CNF action default theory with admissible instance information and translated logic program
A = ASP([(Prop([Z]) , Prop(A))]).

1. For each extension E for (X,A), there is an answer set Mg such that for each time point T
reachable in E and fluent literal ¢ we have Y|[t] € E iff (Y[t])" € ME;

2. for each answer set M for A, there is an extension Epy such that for each time point T reachable
in A and fluent literal 1 we have (P[t])T € M iff Y[1] € Ep.

Proof. This follows from Theorem 4.4 (correctness of grounding w.r.t. domain closure), The-
orem 4.17 (correspondence for propositional and definite Horn default theories) and The-
orem 2.13 (correspondence for definite Horn default theories and normal logic programs
[Marek and Truszczynski, 1989]).
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The overall blowup in size from (X, A) to A = ASP([(Prop(|X]),Prop(A))]) is moderate. It
mainly depends on the size of the domains for sorts TIME, FLUENT and ACTION, the number of
variables in the default theory, the size ||Z|| 4 ||A|| of the default theory. Thus for the overall
translation we get

IAL < (IZ] + 1A - |Prose U Devvent U Dacrion| > V7S EA)]

The size of the default theory is linear in the size of the domain specification (in particular the
number of variables); the size of the sort domains is however exponential in the size of the
domain specification.

For many straightforward generalisations of p-uleD, there exist examples for which the
modular translation does not work.

Disjunctions in state default prerequisites. Consider the prerequisite-free state default ; =
normally G and the simple state default 6, = normally G if ®' where ®' is an arbitrarily
complex tautology. Their Reiter defaults for the initial time point are logically equivalent, but
to preserve this, the definite Horn translation of ® would still have to be a tautology, which
cannot be guaranteed in general.

Conditional effects. With the two direct effect laws action A causes G if F and
action A causes G if —F, it is easy to see from the resulting effect axiom that G is an un-
conditional effect which always occurs. Alas, without knowledge of F’s truth value at the
starting time point, the Horn translation of the effect axiom cannot derive the effect G.

Global effects. The specification of global effects via additional variables leads to the oc-
currence of existential quantifiers in the resulting action default theories. Our translation is
however only defined for quantifier-free default theories. Being restricted to finite domains,
we could of course express global effects via local effects, but this would not necessarily be
elaboration tolerant.

Disjunctive  effects. For the (unconditional) disjunctive direct effect laws
action A causes F or G and action A causes —F or G, it is easy to see that G is a de-
terministic effect of the action. Again, the translation of the effect axiom is too weak to
preserve this.

Disjunction-free state defaults and observations about multiple time points. For
d-uleD domains where narratives may contain observations about multiple time points, the
counterexample is slightly contrived. In essence, we use (1) an observed change which can
only be due to a default effect and (2) the interaction of default closure axioms of different
state defaults with the same prerequisite.

Example 4.20. Let the signature consist of a single constant A of sort AcTION and the FLUENTs
Fo,F1,F2,G1, G2. The domain is given by

action A causes Fy normally —Fp
normally Gq if Fq normally Gy if —F
normally Gy if Fp AFy normally Gy if Fp AFy

Finally, the narrative states the occurrence of A and an observed change of fluents G; and Gy.

Occurs(A,0,1) —Holds(G,0) Holds(Gy,1)
—Holds(G,,0) Holds(G;,1)
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Let (X, A) be the resulting action default theory. Since G; and G, change from 0 to 1, we get
X |= —FrameT(G;,0,1) A =FrameF(G;,0,1). Fluent Fy is the only effect of A, thus we also have
X = —DirT(G;,0,1). By the effect axiom, the only reason for G; and G, to change is therefore
being a default effect: X |= DefT(G1,0,1) A DefT'(Gy,0,1). Using the default closure axiom
for G, we can infer that one of the prerequisites must hold: X |= F1[1] V (F2[1] A Fo[1]). The
same works for G, and its default closure axiom, whence we get ¥ |= —F1[1] V (F2[1] A Fp[1]).
Combining these two consequences yields X |= F[1] A Fg[1]. While Fy is a positive effect of
A, the only possible cause for F;[1] is persistence, whence we have X |= F,[0] and the last
state default is inapplicable at both time points. Using X |= F,[0] A =G1[0] A =G,[0] and the
default closure axioms again, we can derive £ = —F([0], which explains why the second
and fourth state defaults were inapplicable at 0. This shows that there exists an extension
E = Th(X) where the defaults concluding G;[1] and G,[1] have been applied and all others are
inapplicable.

However, the ASP translation of (X, A) does not admit an answer set. Roughly, the vital
conclusion ¥ |= Holds(F,,1) cannot be drawn in ASP(X, A) due to the reasons explained in Ex-
ample 4.13. In consequence, the supernormal default concluding -Holds(F;,0) and thus also the
one concluding DefF(F;,0,1) are applicable. This together with the observations -Holds(Gy,0)
and -Holds(G,0) then allows (by the default closure axioms) to infer both Holds(F;,0) and
-Holds(F1,0). The integrity constraints then prevent any extension.

4.2 From Action Domain Specifications to Open Answer Set
Programs

The translation from the previous section presents a sound and complete mapping from
admissible action domain specifications to normal logic programs that can in principle be
straightforwardly implemented. However, grounding the default theory before turning it into
a definite Horn default theory has at least two disadvantages. First, we produce structurally
equivalent ground formulas and afterwards turn them into definite Horn clauses. This en-
tails repeating basically the same transformation step a number of times. Moreover, general
information about the domain and information about a specific domain instance cannot neces-
sarily be compiled in isolation: for linear time structures, the ground time points used in the
narrative determine the grounding of the rest of the default theory. Finally, during grounding
it is unknown which parts of the axiomatisation we need and thus all of it has to be grounded.
Deferring the grounding step to a later time point, for some queries we might get away with
not having to ground the whole default theory.

These reflections have led us to optimise the translation by moving the grounding step to
the end of the workflow. This is possible since current answer set solvers allow to specify
normal logic programs with variables. In a preprocessing step, the grounder of an ASP system
then replaces rules with variables by their ground instances (provided the rules are safe).
We will demonstrate below how this capability can be used to defer the grounding work to
the ASP solver. Due to the modularity of our translation, this also means that the general
characterisation of the domain and information about a specific instance can now be compiled
independently.

But first of all, we show that this optimisation is possible without affecting the correctness
of the translation. The key result here says that the functions creating the definite Horn trans-
lation and well-sorted grounding commute. For our optimisation this means that the much
faster transform-ground method produces the same results as the previous, provably correct
ground-transform method.
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Lemma 4.21. Let = be a relational signature where all sort domains are given by sets © and let
C(x1,...,xn) be a clause with free variables x1 : s1,...,Xy : Sy.

[IC(x1, ..., x0)]] = [IC(x1,..., x0)]]

Proof. By induction on the number of free variables. For the base case, C(o01,...,0,) is ground
and hence [|C(o1,...,01)]] = [C(01,...,04)] = [[C(01,-..,04)]] is immediate. For the induc-
tion step let

H[C(oll e 0i-1,0, Xi41,- - /xn)]]J - [HC(Olr e 021,00, Xi41,- - /xﬂ)Jﬂ (IH)

and consider the clause C(o1,...,0;_1,X;,Xi11,--.,X,) with one additional free variable.

[LC(o1, ..., 0i—1,%i, Xix1,---, Xn)]]

= /\ |C(01,.-.,0i 1,04, Xi11,.-.,%n)] (Definition 4.2)
0;€9;
= /\ [IC(o1,---,0i-1,01,Xis1,---,%n)]] (Definition 4.7)
0;,€D;
= /\ H[C(Ul,...,0[,1,0j,x1‘+1,...,xn)]u (IH)
0;€9;
= [[C(o1,...,0i_1,%i, Xix1,---, Xn)]] (Definition 4.2)

O

It is readily observed that this result can be generalised to conjunctions of clauses, sets
thereof and thus to the world knowledge part of quantifier-free default theories in CNF.

Theorem 4.22. For any quantifier-free default theory (W, D) over a relational signature where all
formulas ® € W are in conjunctive normal form, we have (|[W]],D) = ([[W]], D).

We now define how to turn a quantifier-free definite Horn default theory into an answer
set program with variables. Most of this is straightforward from Theorem 2.13, the main
additional task is to ensure that variables are grounded according to their sorts and that all
created rules are safe. To this end, a new unary predicate Sort is introduced for each sort s
with the understanding that atom Sorts(t) means that term t is of sort s.

Definition 4.23. Let E = (6,3, §, X) be a signature and for each sort s € & let Sort, be a fresh
unary predicate symbol. Let C(X) = Py(X) V =P (X¥) V...V =Py (X) be a definite Horn clause
with free variables ¥ = x1 : 61,..., %, : 6,. The corresponding logic program rule of clause C(X) is

ASP(C)(¥) & Py(X) < Pi(X), ..., Pu(X), Sorts, (x1), ..., Sorts, (xy)

Let 5(X) = Q1(X) A ... AQum(X) : =R(X)/Qo(¥X) be a definite Horn default with free variables
X =x1:81,...,%, : 55. The corresponding logic program rule of default §(X) is

ASP(0)(X) & Qo(X) — Q1(X), ..., Qu(X), Sorts, (x1), ..., Sorts,(x,), not R(X)

Clauses C from above where the positive atom is an equality or inequality atom are dis-
carded: in the answer set program with built-in unique-names assumption, there is no need
to infer term (in-)equalities since they are fixed. It is easy to see that all the resulting rules
are safe, since every variable of the Horn clause occurs positively in a sort predicate atom in
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the body of the corresponding logic program rule.* The mapping given above is a proper
generalisation of the one in Definition 4.18 since they agree on propositional signatures.

The final ingredient of our translated programs now gives a meaning to these Sort predic-
ates, that is, specifies the actual sort domains. Recall that the user specifies an action domain
using a signature that may contain function symbols of positive arity. Yet in our translation,
we have only ever assumed the existence of finite domains for each sort of our language
and moreover the absence of any positive-arity function symbols. The following definition
provides the resolution: for a certain natural number 7 (also given by the user), all terms of
the signature of the specification up to maximum depth n are viewed as constant symbols that
form the signature the translation works with. That way, it is much easier for the user to write
elaboration-tolerant action domain specifications, while the theory works as before.

Definition 4.24. Let E = (&,B,§, X) be a signature and n be a natural number. For a sort
s € 6, the Herbrand domain of depth n is denoted by ©!' and inductively defined by

D0 & [C|C:s5€F)

i+l s @éU{F(ol,...,om)‘F:gl><u-xsm—)ses,ojegéjforlgjgm}

Example 4.1 (Continued). In the swipe card domain, we have ©}..,on = {Swipe, Push} for all
n € Ny. The Herbrand domains for sort TIME are

D2 = {So}, and fori >0
Dl = Dine U { Do(Swipe, 7), Do(Push, @) | o € Dy }

In the implementation, the creation of these domains is dynamically done by the solver.
For this purpose, Definition 4.24 has been rewritten in ASP. The rules below use the numerical
comparison predicate < : INyg x INg and the function + : INg X Ny — INj in their standard
meanings, which are provided by all established answer set solvers [Eiter et al., 1997; Gebser
et al., 2011]. For each sort s, we utilise a binary version of the predicate Sorts to state the
depth i of a term t along with the sort s as in Sorts(i, t). Observe that below, 1 is a meta-level
variable that represents a fixed natural number, but 7, x, x1, ..., x;; are object-level variables of
the defined program.

Definition 4.25. Let E = (&,B,§, X) be a signature and n be a natural number. For a sort
s € 6, the domain rules for depth n are given by the set A} &

{Sorts(x) < Sorts(i,x)} U

{Sort5(0,C) |C:s € §} U

{Sorts(i+1,x) < i <mn, Sorts(i,x)} U

{Sorts(i+1,F(x1,...,Xm)) < i <mn, Sorts, (i,x1), ..., Sorts, (i, Xy) | F:81 X - X 8y = 5 € F}

For the entirety of sorts, the domain rules for depth n are Alg & Uges As-

This way of creating the sort domains easily allows us to reason about situations with
a finite horizon. In fact, this is how it is actually done in the implementation — simply by
declaring Sp : TIME and Do : ACTION X TIME — TIME as the only function symbols into sort
TIME and specifying a maximal term depth 7. In this case, the value of n limits the program’s
lookahead into the situation tree. The lookahead can be dynamically increased by simply
adjusting the meta-level variable 7.

*In the actual implementation, we add only Sort atoms for variables which are not already safe.
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Example 4.1 (Continued). For the sorts of Ogyjpecard, the domain rules for depth n = 3 are

Sortrme(X) <— Sortrge (i, )
Sortrme(0, Sp)
Sortre(i+1,Do(xq,x72)) < i < 3, Sortacrion (i, X1), Sortroge (i, x)
SortACTION(x) — SortACTION(i/ x)
Sortacrion (0, Swipe)
Sortacrion (0, Push)
Sortgruent (%) < Sortpruent (i, X)
Sorteryent (0, HasCard)
Sorteuent (0, Locked)
Sortgruent (0, Open)
Sorteryent (0, Jammed)

The rules in Afy contain no negation as failure, which makes it straightforward to prove
that they really create the Herbrand domains ©7 of depth #.

Proposition 4.26. Let & = (&,B,§, X) be a signature, s € S be a sort, t : s be a ground term and n
be a natural number. Then t € DI iff AL |=p Sorts(t).

Proof. We begin by observing that due to the first and third rules, we have
AL =g Sorts(t) iff AL =g Sorts(n,t) *

Furthermore, A”*1 and A” contain the same rules with head Sorts (1, t) and none of these rules
depends on any atom defined in AZ*1\ A”, hence

Al l=p Sorts(n,t) iff  ATT =g Sorts(n,t) **)

The rest of the proof is by induction on 7. For the base case, we have

te o)
ifft=CforsomeC:s€gF (Definition 4.24)
iff Sorts(0,C) € A2 (Definition 4.25)
iff A =g Sorts(0,C) (Sorts(0,C) is a fact)
iff AY =1 Sorts(C) *)
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For the induction step, we have

tec ot
iff t =F(o01,...,04) forsome F: 61 X « -+ X 6y — 5 € F with

0j € @;}, for1<j<m (Definition 4.24)
iff t=F(o01,...,04) forsome F: 81 X « -+ X 6y — 5 € F with

A [=p Sorts(oj) for 1 <j<m (IH)
iff t =F(o0q,...,04) forsome F: 51 X -+ X 6, — 5 € F with

Ag Fp Sorts(n,0;) for 1 <j<m *)
iff t =F(o01,...,04) forsome F: 61 X - -+ X 6y = 5 € F with

A =g Sort(n,07) for 1 < j <m (**)
iff AT =y Sorts(n41,1) (Definition 4.25, last rule)
iff AT = Sorts(t) *)

O

So from a given action domain specified by ADS © and instance X;,5;, we first create a
quantifier-free action default theory (XU X, A). This is next translated into an answer set
program with variables ASP(W,D) & {ASP(C) | C € W} U{ASP(d) | 6 € D}. To this pro-
gram, we add logic program rules A{g for the sorts & of ©@’s signature. Most importantly, at
this step we can utilise the modularity of the translation and transform the general domain
information and instance information separately:

(ASP(Z U s, A) U U Ag) = | ASP(X,A) U U AL | U(ASP(Zjst) U Ale)
s€S se€S\{TmME}

The ASP solver then grounds the domain and thereby produces the well-sorted grounding
with a built-in unique-names assumption. Notably, it may ground very efficiently without
even reaching the analytically predicted size of the ground program.

4.3 The Implemented System draculasp

The name draculasp stands for “default reasoning about actions and change using logic and
answer set programming.” It alludes to the system’s usage for non-monotonic reasoning about
action domains, the semantics of the supported input fragments of D being defined in terms
of logic (more specifically default logic) and the actual reasoning being done via answer set
programming.

The draculasp system is written in ECL'PS® Prolog® and prototypically implements the
translation detailed in Section 4.2. It takes as input an action domain specification and instance
information for that domain and transforms it into an answer set program with variables. This
ASP can then be queried by invoking an external ASP solver. The system and some example
domains can be downloaded at http://informatik.uni-leipzig.de/ strass/draculasp/.

Action domain information is stored in text files with a special syntax. The figure below
shows the representation of the swipe card domain.

Shttp://eclipseclp.org
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sort action: swipe, push.
sort fluent: hasCard, locked, open, jammed.

precondition swipe: hasCard.
precondition push: and(not(locked), not(jammed)).

effects swipe: mnot(locked).
effects push: open.

normally not(jammed) .

Figure 4.2: Action domain specification file swipecard.ads for Ogyipecard from Example 4.1. The
first two statements define the domain signature. (Subsorts are not used in this domain, but draculasp
also understands statements of the form “s1 extends sy” expressing the subsort relationship s; T s5.)
Next, action preconditions, action effects and state defaults are specified, where action effects are grouped
by actions.

Information about a specific domain configuration is specified in an action domain instance
file. Each such file refers to a general domain description. In the following figure we can see a
particular branching-time instance of the swipe card domain.

instance of "swipecard.ads".
time structure: situatiomns.
term depth: 3.

initially hasCard.

Figure 4.3: Action domain instance file swipecardl.adi for Osyjpecara- The first line refers to the
domain of which the file defines an instance. The next lines declare time structure and term depth, and
the last line characterises the initial situation.

All instance files share the reference to the domain, and declaration of time structure and
term depth. Depending on the time structure, they additionally state an initial situation or a
narrative.

To provide the reader with some intuition on the look-and-feel of the program, we show
an example run of draculasp’s user interface. After starting the program we get to see the
recognised commands and can list the domains available for loading;:

$ draculasp

Welcome!
Available commands:
help -- print this screen
quit -- quit
exit -- quit
show -- print the current domain in text format
write -- write the current answer set program to a file
report -- create and display a pdf report
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instance of "swipecard.ads".
time structure: 1linear time 0..3.
term depth: 2.
narrative:
holds (hasCard, 0),

occurs(swipe, 0, 1),
occurs(push, 1, 2).

Figure 4.4: Action domain instance file swipecard2.adi for Osyipecara Using linear time. The second
line expresses that the TIME domain is the set {0, ...,3}, the third line defines the term depth. The block
at the end specifies a narrative in which the initial time point is as in swipecardl.adi and the door is
unlocked from 0 to 1 before being pushed from 1 to 2.

domains -- list domains that are available for loading
scep -- compute sceptical consequences
test -- run regression tests
load <domain> -- load an action domain instance
ask <query> -- ask a query to the answer set program
}:-> domains
Available domains:
airport.ads
bomb. ads
potato.ads
shopping.ads
swipecard.ads
yale.ads
Available instances:
yalel.adi
swipecardl.adi
swipecard2.adi
potato.adi
0.01s CPU

We can now choose an available domain instance and load it (and its domain). This applies
the transformation of the previous section.

}:-> load swipecardl.adi
Successfully compiled.
0.05s CPU

With the transformed answer set program at our disposal, we can now do reasoning — for
example, compute all sceptical consequences of the compiled program. Not all consequences
are shown here: for the benefit of the user, draculasp only prints out holds, -holds and poss
atoms. In addition, we removed some trivial conclusions from this presentation.

swipecardl.adi}:-> scep
holds (hasCard, sO).
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-holds (jammed, sO).
poss(swipe, s0, does(swipe, s0)).
holds(hasCard, does(swipe, s0)).
-holds(locked, does(swipe, s0)).
-holds(jammed, does(swipe, s0)).
poss(push, does(swipe, s0), does(push, does(swipe, s0))).
holds(open, does(push, does(swipe, s0))).
holds (hasCard, does(push, does(swipe, s0))).
-holds(jammed, does(push, does(swipe, s0))).
-holds(locked, does(push, does(swipe, s0))).
0.0s CPU

So, for example, according to the program above, the door is initially not jammed by default.
This persists through swiping the card, thereby enabling the agent to push the door open.
Note that there is no information whether the door was initially open. Reasoning is of course
restricted to the term depth specified in the instance file. For the informed user that wishes
to inspect the intermediate quantifier-free action default theory from which the answer set
program is created, draculasp offers to create a pdf file with the default theory in a human-
readable format.®

swipecardl.adi}:-> report

This is pdfTeX, Version 3.1415926-1.40.10 (TeX Live 2009/Debian)
entering extended mode

Calling viewer, xpdf swipecardl.adi.pdf & ...

0.01s CPU

Finally, we can also instruct draculasp to write out the produced answer set program.

swipecardl.adi}:-> write
Writing swipecardl.adi.asp ...
0.0s CPU

The command test is used for development purposes. It collects all domain and instance files
in draculasp’s working directory and tries to compile them to answer set programs. It then
calls the associated ASP solver on the logic programs and reports the results of all these tests
back to the user.

In addition to the command line-based interactive mode, draculasp’s functionalities can be
imported by another Prolog program, for example to use draculasp as a knowledge represent-
ation engine for a reasoning agent. In a specific domain, such an agent could use a domain
instance file to represent its knowledge about the current situation and employ draculasp to
make predictions about what normally holds in the future. Upon action execution, the agent
can progress its world knowledge and add observations to create the updated domain in-
stance information. Notably, the agent can employ different time structures for different tasks
without technical difficulties.

Despite all of its features, draculasp is still in a prototypical stage and should be seen as a
proof-of-concept implementation rather than an off-the-shelf product. There is much potential
for future work for using draculasp in connection with a full-fledged agent programming lan-
guage such as agent logic programs [Drescher et al., 2009]. Considering the fleeting nature of
time-dependent knowledge about dynamic domains, we would also like to use the incremental
solving capabilities [Gebser et al., 2008] of the Potassco suite [Gebser et al., 2011].

®In fact, the formulas in Example 4.1 on page 62 have been created by draculasp from the files shown here.
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4.4 Related Work

Propositional Default Reasoning

Using the theoretical relationship between default logic and answer set programming to imple-
ment one via the other is not new. [Junker and Konolige, 1990] provided a translation from pro-
positional default theories into normal logic programs’ which has recently been rediscovered
by [Chen et al., 2010]. Also based on the theoretical result of [Marek and Truszczynski, 1989],
the idea of this approach is to replace compound formulas ® by new atoms Py. Then, for a
propositional default theory (W, D), a default B : x1,...,x,/w € D becomes the normal logic
program rule P, <+ Pg, not P-y,, ..., not P~y,. A formula ® € W is turned into a fact Pp.
To guarantee correctness, all relevant semantical entailment relationships {®y,..., Py} =¥
between formulas occurring in the default theory are recorded via rules Py < Pg,, ..., Po,.
This translation is of course not modular — after adding new information about the domain,
the whole theory has to be recompiled. In particular, the theory has to be recompiled for each
query that is asked, since queries are modelled by defaults. What is even more significant,
their approach only works for propositional default theories. This necessitates a first-ground-
then-transform approach, which we dismissed earlier on.

As we can see below, modularity remains absent even under the heavy restriction that we
add only atoms to a disjunction-free, normal default theory.

Example 4.27. Consider the propositional default theory (@, D), where D = {AAB:C/C}.
Chen et al.’s translation produces the logic program di2asp(D) = {C <« Pypp, not P_c}. For
the default theory (W,®) with W = {A, B}, we get dl2asp(W) = {A, B}. Now although the
default theory (W, D) sceptically entails C, we do not find C in any answer set of dl2asp(D) U
dl2asp(W). This is because the union of separate translations dl2asp(D) U dl2asp(W) differs
from the translation of (W, D) by the rule Py 5 < A, B.

Action Theory Implementations with Defaults

The causal calculator (CCaLc) [McCain and Texas Action Group, 1997] was developed by Nor-
man McCain as part of his PhD thesis and since then maintained by the Texas Action Group
at the University of Austin. It implements the action language C+ [Giunchiglia et al., 2004].
Like draculasp, the causal calculator offers the specification of action domains and answers
queries about these domains by translation into a logical language. Indeed, the functionality
of CCALC was an inspiration for draculasp. Similarly, the system d1v" implements the action
language /C [Eiter et al., 2000] on top of the d1v answer set solver [Eiter et al., 1997]. However,
the default semantics of C+ and K have an underlying intuition that greatly differs from the
one of D (see also Section 6.1.2). D considers default statements as saying that something nor-
mally holds, but may be exceptionally untrue, where this exception persists. C+ and K regard
default statements as causes on a par with all others. Fluents that have a default truth value
may become true (or false) by default without an obvious immediate cause. This view allows
them to use defaults to model causes that are not known, not observable or too cumbersome
to axiomatise.

[Martin and Thielscher, 2001] present an implemented system that extends the agent pro-
gramming language FLux [Thielscher, 2005a] to deal with the qualification problem. The sys-
tem constructs extensions of the prioritised default theories of [Thielscher, 2001], where exactly

7In fact, they translated default theories and theories of autoepistemic logic into truth maintenance systems, which
can however equivalently be seen as normal logic programs under the stable model semantics [Reinfrank et al., 1989].
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one abnormality is considered as explanation for action failure at each time point in the search.
While it constitutes an implementation of an action theory combined with default reasoning,
the system is restricted to the special case of supernormal defaults about non-appearance of
exogenously caused abnormalities.

ASP-Based Reasoning about Actions

One of the motivations for introducing action languages was the possibility of translating
them into logic programs under the stable model semantics. Such a translation was presented
for A [Gelfond and Lifschitz, 1993] and also implemented [Lifschitz et al., 1993]. In recent
years, numerous other systems have emerged that follow this initial idea and use answer set
programming to reason about actions and change. We only give an overview here, since most
of these systems do not employ nonmonotonic negation for default reasoning, but for other
purposes.

[Kim et al., 2009] embed the circumscriptive Event Calculus into the general language
of stable models and further into answer set programs. The nonmonotonic features of the
stable model semantics are used to compute circumscription of Initiates, Terminates, Releases
and Happens. Default reasoning about dynamic domains is not mentioned in the paper.

[Lee and Palla, 2010] reformulate the Situation Calculus in terms of the first-order stable
model semantics and then into answer set programming. For a finite and fully known domain,
they turn Lin’s Causal Action Theories [Lin, 1995] and Reiter’s Basic Action Theories [Reiter,
2001] into answer set programs. In the first translation, they use the stable model semantics
to compute the circumscription of Lin’s Caused predicate (among others). For Basic Action
Theories, nonmonotonic negation is employed to solve the frame problem. Both approaches
are not intended to make default assumptions about action domains.

[Gebser et al., 2010] offer the Coala system that translates various C-like action languages
into ASP. Although quite comprehensive in that it offers different types of encodings, the
straightforward usage of incremental solving, and LTL-like queries, default reasoning beyond
C’s offerings is not part of its capabilities.

[Casolary and Lee, 2011] provide a translation from the input language of the causal cal-
culator into answer set programs. In this respect, they extend the Coala system by allowing the
full C+ language. While not offering the full functionality of CCALc, it improves upon effi-
ciency of computation by orders of magnitude. Since the system implements the C+ approach
to default reasoning about actions, the criticism of Section 6.1.2 applies.
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Chapter 5

Ramification and Loop Formulas

The ramification problem of reasoning about actions has received considerable attention since
its discovery in [Ginsberg and Smith, 1987]. Yet, the state of the art of research into this problem
is not entirely satisfactory: many different approaches have been developed for individual
action formalisms, some of which rely on non-classical logics and non-standard semantics.
This makes it hard to assess individual approaches by other means than through example
scenarios.

In this chapter, we provide a solution to the ramification problem that attempts to remedy
this situation. Our approach integrates findings of different approaches to ramification from
the last ten to fifteen years. For the first time, we present a solution that:

1. is independent of a particular time structure,

2. is formulated in classical first-order logic,

3. treats cycles — a notoriously difficult aspect — properly, and

4. is assessed against a state-transition semantics via a formal correctness proof.

This is achieved as follows: We first generalise the notion of causal relationships of
[Thielscher, 1997] to enable us to specify ramifications that are triggered by activation of a
formula rather than just an atomic effect. We characterise the intended models of these indir-
ect effect laws by a state-transition semantics. Afterwards, we show how to compile indirect
effect laws into effect axioms that then solve the ramification and frame problems. For this
compilation, special care needs to be taken to deal with positive cyclic fluent dependencies,
that is, self-supporting effects: using techniques from logic programming, we identify positive
loops among indirect effects and build their corresponding loop formulas [Lin and Zhao, 2004]
into the effect axiom. We finally prove the resulting effect axioms sound and complete with
respect to the semantics defined earlier.

* * *

The rest of this chapter is organised as follows. In the next section, we introduce indirect
effect laws and their semantics. In Section 5.2, we provide an axiomatic combined solution to
the frame and ramification problems. We start out with how we axiomatise persistence and
direct effects, then how we include indirect effects and finally and most importantly how we
deal with circular dependencies among effects. After proving the correctness of our axiomatic
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solution, we show how to express arbitrary trigger formulas in our formalism. We conclude
with demonstrating how indirect effect laws can be used to model conditional and disjunctive
effects.

5.1 Specifying Indirect Effects

Much like the frame problem, the ramification problem of reasoning about actions has aspects
that relate to specification and representation of as well as reasoning about effects. Where
the frame problem is concerned with world properties that do not change, the ramification
problem is about world properties that change indirectly — that is, not as a direct result of
applying the action but rather as a result of a change induced by the action. The main task
here is to efficiently deal with domino effects, where a single change can initiate arbitrarily
complex chains of indirect effects. Specifying these effects should be possible in a modular,
elaboration tolerant fashion. For example, it should be sufficient to state indirect effect relations
only for immediate neighbours in the effect chain and have the theory figure out what actually
happens. After all (direct and indirect) effects have been computed, the persistence assumption
can be employed to complete the knowledge about the resulting time point with those world
properties that have not been affected by direct or indirect effects.

Example 5.1 (Bowl Position). Consider the following simple domain that involves a table and

a bowl of soup. If the soup is on the table and just one side of the table 7

and the bowl falls off. If however both sides of the table are lifted at

the same time, there will be no spill and the bowl stays on the table. If

the soup is not on the table, there will be no spill whatsoever. With the

equipment introduced in Chapter 3, we can model this domain Qg in cleD as follows. The
FLUENT sort consists of the functions OnTable (the soup is on the table) LeftUp, RightUp (the
left, resp. right side of the table is lifted), Spill (the soup is spilled); available acTION functions
are LiftLeft, LiftRight for lifting either side of the table and LiftBoth for lifting both sides simul-
taneously. The effects of the last action are clearly specified by action LiftBoth causes LeftUp
and action LiftBoth causes RightUp.

is lifted while the other stays on the ground, the soup will be spilled ‘ ‘

To formalise indirect effects, we begin with how we capture the truth values of all domain-
relevant fluents at a specific time point via so-called states. A state represents a snapshot of
the properties of the world at a certain point in time.

Definition 5.2. Consider a fixed domain signature E. A stafe is a maximal consistent set of
ground fluent literals. The satisfaction relation |= between a state S and ground fluent atoms ¢
and fluent formulas @, P, is recursively defined by

SETand S = L

Sk giffges

S | @y iff S £ B

SE®P ANDyiffbothS =Py and S = D,
SEPVDyiffoneof S =Py or S =D,

S = (Vx)®q iff S |= &1 {x +— t} for all terms t over &
S | (3x)Pq iff S = &1 {x > t} for some term t over E
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Whether a fluent formula is satisfied by a given state will later be used to figure out if a
conditional action effect occurs. To compute the changes to a state caused by action effects,
we use the concept of state update known from the Fluent Calculus. For the purpose of
this definition, direct effect laws with variables are viewed as representatives of their ground
instances.

Definition 5.3. Consider a fixed domain signature. For a state S and set L of fluent literals,
define the update of Swith Las S+ L % (S\ L) UL. Let ® be a cleD action domain specification
and « be a ground term of sort action. The resulting state of a in S is

S+ {y | action a causes P if ® € ©,S = O} (5.1)

So for a given state S and an action A applied in S, the resulting state is simply the state that
contains all positive and negative effects whose conditions were satisfied in S and all literals
that are not affected by the action. Note that S + L is a state if and only if L is consistent.

Example 5.1 (Continued). Applying the action LiftBoth to the above depicted initial state
S = {OnTable, —LeftUp, —RightUp, =Spill}, state update determines the resulting state S +
{LeftUp, RightUp} = {OnTable, LeftUp, RightUp, =Spill}.

For the remaining actions LiftLeft and LiftRight, we could be tempted to specify their effects
by, say,

action LiftLeft causes LeftUp
action LiftLeft causes Spill if OnTable A —RightUp
action LiftLeft causes =OnTable if OnTable A —RightUp

for LiftLeft and symmetrically for LiftRight. But there are several issues with this specification:

Firstly, it makes unstated assumptions. The second and third law implicitly assume that
the right side of the table not being up persists through lifting the left. But this cannot be
guaranteed. There may at the same time occur an effect which causes the left side to be up as
well, leading the representation above to falsely predict a spill. What we want to express is that
there is a spill if the two sides of the table are at different levels in the resulting state! This also
relates to elaboration tolerance: if the specification is later changed, these laws might become
incorrect and would have to be revisited. This is in contrast to the property of elaboration
tolerance that we desire for our formalism, meaning that we incorporate new domain inform-
ation by adding new laws. Secondly, the specification above is not a faithful representation of
causality. Although the left side of the table being up can be seen as a direct effect of lifting
it, this hardly holds for the bowl falling off the table and subsequently producing a spill on
the floor. And now assume the chain of events possibly initiated by lifting the table does not
stop there. What if a paper airplane happens to lie below the table and the spilled soup wets
it, thereby impairing the plane’s ability to fly? Surely, we cannot take into account all such
absurd contingencies when specifying the supposed direct effects of lifting the table. It is par-
ticularly mentionable here that the cause of the paper airplane becoming wet is irrelevant to its
subsequent not-flying, yet the effect would have to be duplicated for the effect specifications
of LiftLeft and LiftRight.

From these reflections we can see that formulating all possible changes using direct effect
laws leads to cumbersome and at last unmanageably large action specifications, if it is not
outright impossible. To deal with this representational aspect of the ramification problem, we
introduce here a modular specification of indirect action effects. We employ expressions that
specify certain conditions under which a change of truth value of one fluent causes a change of
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truth value of another fluent. These conditions do not hinge on execution of a specific action,
but solely depend on change of a world property instead.

Definition 5.4. Let x, ¢ be fluent literals and ®;, @, be fluent formulas. An indirect effect law is
of the form

effect x causes ¢ if &g before P, (5.2)

where yx is the trigger, 1 is the effect, ®; is the initial and @, the terminal context. An indirect
effect law is open if it contains variables, otherwise it is closed.

The intended reading of such an indirect effect law is “whenever ®; holds in the starting
state, ®, holds in the resulting state and x has turned from false to true during action execu-
tion, then 1 should be an indirect effect.” If both contexts are T, we omit them and simply
write effect x causes ¢. Introducing these indirect effect laws into the D family, we have
arrived at the language clerD with no state defaults, and conditional, local, deterministic and
indirect action effects (ramifications).

Example 5.1 (Continued). In the soup-on-the-table domain, the effects propagate as follows.
For causing a spill and causing the bowl to fall off the table, we have, respectively:

effect LeftUp causes Spill 1f OnTable before —RightUp (
effect RightUp causes Spill if OnTable before —LeftUp (5.4)
(
(

effect LeftUp causes =OnTable if T before —RightUp
effect RightUp causes —=OnTable if T before —LeftUp

For the actions of lifting just one side of the table, it now suffices to specify their immediate,
direct effects action LiftLeft causes LeftUp and action LiftRight causes RightUp, which com-
pletes the description of the domain Og;.

Although it might at first glance seem to be an overkill to have two contexts, the express-
iveness gained through the distinction is crucial here and in general: the context of the bowl
being on the table must be checked in the starting state, since it might become false during
action execution (when the bowl falls off the table); the context of the other side of the table
not being up must be checked in the resulting state, since it could become true during action
execution (when both sides are lifted simultaneously). It is important to note that we do not
care exactly how the change in the trigger or the terminal context was established.

In an early attempt to overcome the restriction to direct effects from STRIPS-like sys-
tems, [Wilkins, 1988] already proposed to use statements like (5.2), that he called domain rules.
However, their semantics was only defined operationally by his implemented system.! In the
reasoning about actions community, on the other hand, researchers started out with simpler
causation statements [Lin, 1995; Thielscher, 1995, McCain and Turner, 1995] that however had
a clear-cut meaning. Here, we in a sense reunite these two lines of research by providing a
declarative semantics for Wilkins” domain rules.

Using the notions of states and state update as above, we now formally define the meaning
of indirect effect laws. For the following definition, we take open direct and indirect effect
laws to represent the respective sets of their ground instances.

To his credit: he did provide Situation Calculus formulas to illustrate the intended meaning of domain rules. Alas
in the case of conflicts between effects, he proposed the preference-handling mechanism “take the effect that has been
derived earlier.”
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Definition 5.5. Let © be a clerD action domain specification, « be a ground action and let S, T
be states. Define

So & {¢ | action a causes P if ® € ©,S |= O}

and fori >0

i1 & STU{y | effect x causes i if P before P, € O,
SE®IA-X S EXTE ®}?

e}
o def 43
SR 5
i=0

T is called a successor state of S for a iff T = S + Sg,.

So in order to verify that a given state T is indeed a successor state, we must be able to
reconstruct it in a well-founded way. First, we figure out all the direct action effects in Sj.
We then repeatedly apply indirect effect laws to construct a set S%, of literals that contains the
direct and indirect atomic effects of the action. It only remains to check whether updating the
starting state S with these effects does lead to T.

Example 5.1 (Continued). Applying the action LiftLeft to the above depicted initial state
S = {OnTable, —LeftUp, —RightUp, =Spill}, we can by means of Definition 5.5 verify
that the state where the soup has spilled and the bowl fell off the table, T =
{—OnTable, LeftUp, ~RightUp, Spill}, is a successor state of S for LiftLeft:

The direct effects are S'(;ift'-eft = {LeftUp}, which makes (w.r.t. S) the indirect effect laws (5.3)
and (5.5) applicable. We get Skiftbeft — gliftleft (j fSpil| ~OnTable}. No more indirect effect
laws are triggered through these effects, therefore Siftbeft — gliftleft — gliftleft "1 a54y we
verify that § 4 SLiftteft — T fOnTable, —LeftUp, =RightUp, —Spill} + {LeftUp, Spill, ~OnTable} =
{—OnTable, LeftUp, ~RightUp, Spill}.

5.2 An Axiomatic Solution to the Ramification Problem

We now present the general, first-order effect axiom that will be used to solve the ramific-
ation problem. It uses the same axiomatisation technique as the effect axiom from the pre-
vious chapter, with the only difference that DirT and DirF are not used as predicates but as
macros for the right-hand sides of the direct effect formulas. To the basic causes, persist-
ence and direct effects, we add a third cause, indirect effects. The idea is to express them as
implications and take care that inferences in the contrapositive, non-causal direction are not
possible. The macros IndT(f,s,t) and IndF(f,s,t) express that fluent f is an indirect (posit-
ive or negative, respectively) effect of an action occurring from s to t. For an indirect effect
law r = effect x causes i if ®; before P,, the indirect effect iy materialises whenever the
relationship has been triggered, that is, whenever the initial context ®; holds at the starting
time point s, the terminal context ®; holds at the resulting time point ¢ and the trigger x has
changed from untrue to true from s to t. As for direct effect laws, by the sign of an indirect
effect law we refer to the sign of its effect, sign(r) & sign(y). To access the effect literal of an
indirect effect law r, we use Effect(r) % ¢ and do so similarly for the trigger: Trigger(r) & x.

2Notice the occurrence of T in the definition of the S¢.
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Definition 5.6. Let r(ij) = effect x causes i if ®; before P, be an indirect effect law with
free variables among i/, and let s, : TIME be variables.

Triggered, ) (s,t) & P1[s] A Pa[t] A =x[s] A x[t] (5.7)

Let © be a clerD domain and f be a variable of sort FLUENT.

IndT(f,s,t) & \V (39)(f = Effect(r(§)) A Triggered, (s, 1)) (5.8)
r(y)€0, sign(r)=+
IndF(f,s,t) & \ (3Y)(f = Effect(r(i)) A Triggered, (s, t)) (5.9)

r(y)€0, sign(r)=—

According to these macros, a fluent f is an indirect effect from s to ¢ if there is a correspond-
ing indirect effect law with effect f that triggered from s to t. The macros are straightforwardly
integrated into the effect axiom as follows.

Definition 5.7. Let A be a function into sort ACTION. The effect axiom Y 4 with conditional effects,
the frame assumption and ramifications is of the form (3.16), where

CausedT(f, A(X),s, t) & FrameT(f,s,t)V DirT(f, A(X),s, t) V IndT(f,s,t) (5.10)
CausedF(f, A(X),s,t) < FrameF(f,s,t)V DirF(f, A(X),s,t) V IndF(f,s,t) (5.11)

While the approach presented so far works well for simple ramification domains and easily
copes with instantaneous effect propagation, it still harbours a serious flaw: it cannot handle
cyclic fluent dependencies.

Example 5.8 (Gear Wheels [Van Belleghem et al., 1998]). Two interlocked gear wheels can
be separately turned and stopped. Let the fluents Wy, W, express that the first (respectively
second) wheel is turning. The actions to initiate and stop turning are Turn; and Stop; with
effects action Turn; causes W; and action Stop; causes —-W; for i = 1,2. A trivial action,
Wait, has no direct effects. The causal relation between the wheels is: whenever the first wheel
is turned (resp. stopped), it causes the second one to turn (resp. stop), and vice versa:

effect Wy causes W, effect =W causes =W, “
effect W, causes Wy effect "W, causes =W,

Let us compile the (positive half of the) effect axiom for Wait. There are no direct effects, so
Definitions 5.6 and 5.7 yield CausedT(f, Wait, s, t) = FrameT(f,s,t) V IndT(f,s,t) and

IndT(f,s,t) = (f = Wp A =Holds(W3,s) A Holds(Wy,t)) V
(f = Wy A =Holds(Wa, s) A Holds(Wo, t))

Consider the structure 9 with TiMe™ = {o,7}, ¢ <™ 1, Poss™ = {(Wait,o,7)} and
Holds™ = {(W1,1),(W,,7)}. Together with the variable evaluation {s — ot~ T}, M is a
model for effect axiom (3.16) for Wait where both wheels initially stand still and magically
start turning — one being the cause for the other and vice versa. This is undesired as Wait is
intended to have no effect at all.
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5.2.1 Loops and Loop Formulas

Much as in the case of Clark’s completion of normal logic programs, our compilation of indir-
ect effect laws into effect axioms allows too many models for fluents (that is, reified predicates)
that cyclically depend on each other. We propose a solution to this problem in the spirit of
loop formulas [Lin and Zhao, 2004] for normal logic programs. In order for the approach to
stay practical, we however have to restrict the syntax of the indirect effect laws in ®:

1. For mere technical reasons we require that for any r; #rm €©®, we have
Var(ry) N Var(ry) = @.

2. For each indirect effect law effect ) causes ¢ if P before P, € @, we stipulate
Var(x) C Var(p), that is, there may not be local variables in triggers.

3. We do not use function symbols with arity greater zero as arguments of sort FLUENT.

The latter two constraints guarantee the existence of a finite, complete set of loops [Chen et al.,
2006]. This set can be identified by a simple algorithm operating on open indirect effect laws,
which makes our definition of effect axioms entirely constructive and easily automatable.

Throughout the following definitions, we will make explicit use of substitutions, unifiers
and most general unifiers (mgus). Their domains and ranges are understood to be built from
the domain signature used for specifying the indirect effect laws. For unification, negation is
treated as a unary function. The definition of loops here follows the one of [Chen et al., 2006]
given in Chapter 2.

Definition 5.9. Let ® be a clerD action domain specification over a domain signature E. The in-
fluence graph Geg of © is the (possibly infinite) directed graph Gg % (V,E), where V is the set of
all fluent literals over X and for all effect x causes ¢ if ®; before P, € ® and substitutions
6, there is an edge (x6,0) € E. A finite, nonempty set L of literals constitutes a loop iff for all
1, v € L, there is a directed, non-zero length path from y to v in the subgraph of Gg induced by
L. An indirect effect law r = effect x causes i if ®; before &, € O leads into the loop L iff
(1) there exists a u € L and a substitution 6, = mgu (¢, u) and (2) for all substitutions 6’ with
(30")8" = 6, 0" we have x0' ¢ L6’. Then ©; & {rf, | r € © and r leads into the loop L}.

For example, the indirect effect laws of the gear wheel domain give rise to two loops,
L] = {Wl,Wz} and Lz = {_‘er —\W2}.

From the work of [Chen et al., 2006], we know that although there may be infinitely many
loops in general, there is always a finite set Loops(©) that captures all of them.

Theorem 5.10. Let © be a clerD domain that satisfies the restrictions above. There exists a finite set
Loops(®) such that every loop L of ® is subsumed by some L' € Loops(©).

Proof. We define a logic program Ag such that there is a one-to-one correspondence between

the loops of ® and the loops of Ag. For each function symbol F : s X - -- X s, — FLUENT,
introduce two new predicates Pr : 51 X -+ X 5, and P.p : 1 X - - - X 5,5, and define

Ao {P<¢>+(f'2) < P+ (x1) | effect x(x1) causes (¥2) if ®; before @, € @}

Correspondence of the loops follows straightforwardly from the definition of loops in
Chapter 2 and Definition 59. By Lemma 2.12, there is a finite, complete set of loops for
Ag. Due to the correspondence, it is also complete for ©. O
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Having defined the loops of a given domain and being sure they can be captured finitely,
we can now proceed to define the corresponding loop formulas. The idea of loop formulas is to
eliminate the models that arise due to “spontaneous” activation of loops for which no external
support exists. In the case of logic programs, the external support that counts as “legal” cause
for loop activation is a program rule leading into the loop. In our case, the direct effects of an
action have to be taken into account as potential reasons for loop activation, too. A loop can
also be activated by another loop — but then the union of the two is again a loop, so this case
is implicitly catered for. This general form of direct and indirect loop activation is illustrated
in Figure 5.1.

Figure 5.1: General form of loop activation. The leftmost node g represents a direct action effect. The
cycle on the right depicts a subset-maximal loop L = {y1,..., un} of length n where Y, = yy. For
m = 0, we have the case of direct activation. Otherwise, for any natural m, there is a chain of m effects,
and the loop is activated by the indirect effect law r, leading into the loop L. Whenever r,, is itself part
of aloop L', then LU L' is again a loop and L is not subset-maximal.

When translating a logic program into a logical theory, the loop formulas are added to the
predicate completion of the program.® In case of general effect axioms with their standard first-
order semantics, loop formulas are “built into” the axioms, by enforcing the frame assumption
for all fluent literals that could possibly change their truth value due to spontaneous loop
activation. To achieve this for a given literal y, we specify non-activation of all loops that could
change y as a sufficient cause for persistence of y’s truth value.

We use the notation L(j/) to explicitly refer to the free variables i mentioned in the loop
L. Macro DirActivated; ;) (A(¥X),s,t) denotes whether a loop L() has been activated by ac-
tion A(X) from s to t. To find out if a loop has been activated by an indirect effect, macro
IndActivated; (s, t) checks whether the corresponding instance of an indirect effect law lead-
ing into the loop has been triggered from s to t.

Definition 5.11. Let © be a clerD action domain specification, Loops(®) be a finite and com-
plete set of loops of ©, L(ij) € Loops(®), A be a function into sort ACTION and s, f be variables

3Meanwhile, there have been more general proposals where the loop formulas are added to the program as is,
without forming the completion [Ferraris et al., 2006].
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of sort TIME.

DirActivatedy iy (A(X),s,t) & \/  DirT(F(y), A(X),s,t)V \/  DirF(F(§), A(X),s,t)
F(y)eL(y) ~F(7)eL(y)

IndActivated (s, t) & V (@) (Triggeredr(z)(s,t) A\ Effect(r(Z)) = y(ﬁ))
r(Z)e®; H(F)ELF)

Activatedy ) (A(X),s,t) & DirActivated; i) (A(X),s, t) V IndActivated ) (s, 1) (5.14)

Let f : FLUENT be a variable.
LoopFrameT(f, A(X),s,t) & Holds(f,s) A

V' @)(f = F@) A ~Activated, ) (A(%),5,1))  (5:15)
L(i)€Loops(®),
~F()EL(7)

LoopFrameF(f, A(X),s,t) & —Holds(f,s) A

\/ (EIy’)(f:F(g’)AﬁActivatedL(g)(A(J’c’),s,t)) (5.16)
L(i)€Loops(®),
F(7)EL()

Macros (5.15) and (5.16) formalise the intuition that the truth value of a fluent should persist
whenever there is some loop L(i/) that could change the truth value, but which has not been
activated from s to t. If there indeed exists such a loop, then all of the loops containing the
literal are activated whenever one of them is activated (cf. Figure 5.1). However, if for a fluent
literal i there is no loop containing —, then LoopFrame(ip, A(X),s,t) = [s] A L is equivalent
to false. This is justified since ¢ may never spontaneously change, so the precaution provided
by the loop formulas is unnecessary.

If the specified causal relationships do not give rise to any loops, both (5.15) and its negative
version are equivalent to L. The new causes are now added to the effect axiom as usual.

Definition 5.12. Let A be a function into sort ACTION. The effect axiom Y 4 with conditional effects,
the frame assumption and ramifications is of the form (3.16), where

CausedT(f, A(X),s, t) & FrameT(f,s,t)V DirT(f, A(X),s,t)
V IndT(f,s,t)V LoopFrameT(f, A(X),s,t) (5.17)
Example 5.8 (Continued). The Wait action has no direct effects and for neither of the loops
Ly, L, exists an indirect effect law leading into the loop, hence Activatedy, (Wait,s,t) = L and

Activatedy,(Wait,s,t) = L. The new causes added to the effect axiom say that through Wait,
the truth value of the loop literals must persist:

LoopFrameT (f, Wait, s, t) = Holds(f,s) A (f = W1 V f = W)
LoopFrameF(f, Wait, s, t) = —Holds(f,s) A (f = W1 V f = W)

For the undesired interpretation J seen earlier we now have J |= LoopFrameF (W1, Wait, o, T)
but J [~ —~Holds(W1, T): J is no model for the effect axiom any more, just as desired.
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This concludes the compilation of direct and indirect effect laws into first-order effect ax-
ioms. It remains to give the immediate definition of a domain axiomatisation for a domain
with indirect effect laws.

Definition 5.13. Let ® be a clerD action domain specification. Its corresponding domain
axiomatisation is . = QUITUY U X,,,, where () defines the time structure, for each function
into sort ACTION, I1 contains a precondition axiom (3.4) or (3.6) depending on the time structure
and Y contains an effect axiom according to Definition 5.12, and X;,, contains the unique-
names axioms for sorts FLUENT and ACTION.

5.2.2 From Trigger Formulas to Trigger Literals

Up to here, we considered only triggers that are literals. The question arises whether this is
a proper limitation, especially in light of the indirect effect rules initiating X causes ¢ if ¢
of [Van Belleghem et al., 1998], where ¢ is a fluent literal and X and & can be general propos-
itional fluent formulas.

It turns out that even more general indirect effect rules where X and & are first-
order quantifier-free (implicitly universally quantified) formulas can be transformed into
indirect effect laws by the procedure below. It takes as input an indirect effect rule
initiating X causes ¢ if .

1. Transform X into its disjunctive normal form (DNF) X = X; V...V X;;. This might
involve a (worst-case) exponential blowup, which is however also inherently present
in [Van Belleghem et al., 1998], where all possible “activating sets” have to be considered.
As an example, we look at the indirect effect rule

initiating LeftUp # RightUp causes Spill if OnTable

Transforming the trigger formula LeftUp # RightUp into disjunctive normal form yields
(LeftUp A =RightUp) V (—LeftUp A RightUp).

2. Create the intermediate indirect effect rules initiating X; causes ¢ if ® for1 <i < m.
Note that all trigger formulas are conjunctions of literals. In the example, this step
produces

initiating LeftUp A —RightUp causes Spill if OnTable
initiating —LeftUp A RightUp causes Spill if OnTable

3. For each initiating xj A... A Xn causes @ if ®, create for i =1,...,n the indirect ef-
fect laws

effect x; causes ¢ if P before /\ Xj
=1,

For the example, we get the indirect effect laws (5.3) and (5.4) we already know and the
two new rules

effect —RightUp causes Spill if OnTable before LeftUp
effect —LeftUp causes Spill if OnTable before RightUp

for the case when both sides are up and only one is let down.
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The intuition behind the procedure is straightforward. Assume the trigger formula X is ac-
tivated from s to t, that is =X[s] and X[t]. Then —X;[s] for all 1 < i < m and X;[t] for some
1 <j < m. In particular —=X;[s] A X;[t]. Since X; = xj1 A ... A Xju is a conjunction of literals, this
in turn means that there is at least one xj; for 1 < k < n with —x[s] A xx[t]. The procedure
now simply creates indirect effect laws for all possible .

5.3 Correctness of the Solution

To show that the axioms just presented indeed capture the state-transition semantics given
earlier, we first define how the two semantics link together. Below, we define how two time
points of a first-order interpretation that are connected by an action application give rise to
two states. This definition will be the basis of the correspondence result of this section.

Definition 5.14. Let & be a domain signature and J = (90,%0) be an interpretation for Z. Let
o and T be ground terms of sort TIME, « be a ground term of sort ACTION and assume w.lL.o.g.
that (a™, 0™, ™) € Poss™. Define two states S and T as follows: for a ground fluent literal
P, set p € Sif and only if J = ¢[c], and ¢ € T if and only if J |= ¢[7].

Throughout the proof, we identify &, ¢ and T with their interpretations under 9. We then
write Y, [0, T] to refer to effect axiom (3.16) for a where the TIME variables s and t have been
replaced by ¢ and 7, respectively. An important first observation concerning the proof is that
by the definition of S and T we have for all fluent formulas @ that S |= ® iff J |= ®[o]| and
T = @ iff J = ®[7]. An immediate consequence thereof is this:

Lemma 5.15. For a ground action « and direct effect law action a causes ¢ if ®, we have ¢ € S
iff 3 |= Dir(y,a, 0, 7).
For the rest of the results, assume a fixed domain © over the signature Z. The next lemma

is easy to prove via induction. It says that whenever J is a model for a’s effect axiom, the
action effects S§, have materialised in the resulting state T.

Lemma 5.16. J |= Y, [o, T] implies S& C T.
Proof. We use induction to show S C T for alli > 0.

i=0. Let u € S§. By Lemma 5.15, J |= Dir(y,«,0,7). Together with J = Y,[o, 7], we have
J |= u[t]. The definition of J yields u € T.

i—i+1 Let p € S\ S} According to Definition 5.5, there is an indirect effect law
r = effect ) causes p if ®; before ®, € ® such that S = ®; A -y, S¢ = x and
T = ®,. Applying the induction hypothesis to x € S¥ yields x € T and thus, by
definition of J, we have J |= x[t], J |= Triggered, (¢, 7) and J |= Ind(y,0, 7). By the
presumption J |= Y, [0, 7] we get J = u[t] and thus p € T by definition of J. O

Now any fluent literal of which the effect axiom says it is an indirect effect can be found in
the set of action effects.

Lemma 5.17. Let J |= Yq [0, T]. For any ground fluent literal u, 3 |= Ind(p, o, T) implies y € S%,.

Proof. Let J = Y,[o, 7] and J = Ind(p, 0, 7). Then there is an instance of an indirect effect law
effect x causes y if P before ®, € O such that J = ®Pq[c] A —x[o] and T = D;[7] A X][T].
From J |= x[t] by J |= Yu[o, 7] we get J |= Caused(x,«,0,7) A —~Caused(—x,«,o,T). Since
additionally J |= —x[c] yields J |= —Frame(x, o, T) and J |= —LoopFrame(x,«,0,T), we must
have one of J |= Dir(x,a,0,7) or J |=Ind(x,a,0,T).
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e J = Dir(x,a,0, 7). Then Lemma 5.15 shows x € S§ and Definition 5.5 yields u € S5,.

e J = Ind(x,a,0,7). By J = ~CausedT(—x,a,0,T), we get I |= —LoopFrame(—x,«,0,T),
whose macro-expansion means J = —(—x[o] A VLGLOOPS(@))XGL —Activatedy («,0,T)). To-

gether with J = —x[c], this yields T = A LELoops(©) 1 Activatedy («, 0, T), that is, all loops
containing x have been activated.

1. x is not contained in any loop. Due to the syntactic restriction of FLUENTS ar-
guments, there is a finite sequence rq,...,7,; of indirect effect laws such that
J = Dir(Trigger(r1),a,0,T), Effect(r;) = Trigger(riy1) for 1 < i < m —1 and
Effect(rm) = x. By Definition 5.5, we get x € S& and thus pu € S%..

2. Let L be a maximal, ground loop containing x such that J |= Activated; («, o, 7). We
make a case distinction on the macro expansion of Activated; (x, o, T).

(a) J = DirActivatedy (a,0,T). Then for some y' € L we have J = Dir(y/,a,0,7)
and therefore y’ € S§. By the definition of a loop, there is a sequence ry,...,7,
of indirect effect laws such that ' = Trigger(r) and Effect(r;) = Trigger(rii1)
for 1 <i <mn—1. Now L = {Effect(r;) | 1 <i<n} and Definition 5.5 yield
L C S5, whence x € 5§, and u € Sg,.

(b) J |= IndActivated; (x,0, 7). Then there is an indirect effect law r € ©, leading
into the loop with J |= Triggered, (o, T). Since L is maximal, r is itself not part of
another loop. We now have J |= Ind(Trigger(r), o, T) where Trigger(r) is not part
of a loop. Consequently, Effect(r) € S, and L C S%, can be argued for as above
(item 1). O

With the two lemmata, it becomes straightforward to prove soundness of the axiomatisa-
tion. This is actually the “hard” direction of the overall proof, since inability to deal with cyclic
dependencies results in unsound prediction of effects.

Theorem 5.18 (Soundness). J |= Y, [0, T] implies T = S + S%,.
Proof. Let J = Y, [0, T].
“2”: Letp € S+ 5% = (S\ S%) USL,.
1. ¢ € S& = U2 SY. Lemma 5.16 makes ¢ € T immediate.

2. p€S\S%, ie. ¢ € Sand —¢ ¢ S%. Then J |= ¢[v] and T = —~Frame(—,0,T) A
—LoopFrame(—1,0,T). By Lemma 5.15 and the presumption —¢ ¢ S%, also J =
=Dir(—y,a,0,T). By Lemma 517, —¢p ¢ S% implies J (= Ind(—¢,0, 7). Hence
J = ~Caused(—y, «, 0, T), from which we can conclude J |= ¢[7] and thus ¢ € T.

“C”: Let ¢ € T. The definition of J tells us 7 | y[t|; T | Yu[o, 1] tells us
J |= Caused(¢, «, 0, T) A ~Caused(—,«,0,T). Macro-expansion of Caused yields that
J = Dir(y,a,0,7) or I |=Ind(y, 0, T) or J |= Frame(y,0,T) or J |= LoopFrame(y, a, 0, T).
1. 3 = Dir(¢,a, 0, 7). Lemma 5.15 immediately yields ¢ € S§ C S + Sg,.
2. 3= Ind(y,0, 7). Using Lemma 5.17, ¢ € S% C S + S%, is immediate.
3. J |= Frame(y,0,7T) or 3 = LoopFrame(y,a,0,T). Then J = ¢p[c] and ¢ € S. Now

¢ € T by T being a state implies —¢ ¢ T, which by Lemma 5.16 yields —¢ ¢ Sg,.
Hence ¢ ¢ S% and ¢ € S + S%.. O
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For the converse direction, the first lemma says that whenever T is a successor state of S
for &, then the effect axiom correctly establishes all indirect effects.

Lemma 5.19. T = S+ S% and J |= Ind(u, 0, T) imply J |= u[t].

Proof. Let T = S+ S5, and J |= Ind(p, 0, T). Then there exists a ground instance of an indirect
effect law r = effect x causes y if &1 before @, such that J = &[] A O[T A —x[0] A x[T].
By definition of 3, S = &1 A—xyand T = P, A x. Since x ¢ S, x € Tand T = S + 5%, there
must be an i > 0 such that x € Sf. By Definition 5.5, u € §¢ ; C S§, C T; thus J = ult]. O

Indeed, whenever a fluent literal is found to hold at the resulting time point and it was part
of the update, then the effect axiom says it was an effect of the action.

Lemma 5.20. Let T = S+ S% and J |= y[t]. Then pu € S% implies 3 |= Dir(p, o, 0,7) VInd(u, o, 7).

Proof. Let p € Sg, and consider the smallest i such that u € Sf.

1. i =0, thatis, u € Sj. Lemma 5.15 immediately yields J |= Dir(u,a,0, 7).

2.1 > 0. By Definition 5.5, there is an indirect effect law r =
effect x causes pu if Py before ®, such that S = &3 A-yx, SF; F x and
T = ®;. Now S ; C T implies T |= x, hence J |= ®;[0] A @2[1] A —~x[c] A x[t]. That
means we have J |= Triggered, (0, T) and hence J = Ind(y, 0, 7). O

The completeness result below now says that whenever T is a successor state of S for «, the
corresponding interpretation J is a model for the respective instance of the effect axiom.

Theorem 5.21 (Completeness). T = S + S& implies I = Y [0, T].

Proof. Let T = S+ S&%. We show J = Y,[o, T] by showing J |= y[t] iff J |= Caused(¢, a, o, T).

“if”: Let J = Caused(y, «, 0, T). We make a case distinction according to the macro-expansion
of Caused(y,a,0,T).

1. J = Dir(¢,a,0, 7). Lemma 5.15 yields ¢ € S§ C S+ S%,. The presumption S + S&, =
T now shows J |= i[t].

. J = Ind(y,0, 7). By Lemma 5.19, we have J = ¢[t].

J |= Frame(, 0, 7). Then J = ¢[t] is immediate.

. J [= LoopFrame(y,a,0, 7). This entails J |= ¢[o] and thus ¢ € S. Furthermore,
J E Vieroops(o),, vel —Activatedy (a,0, T), that is, none of the loops involving —¢

B~ W N

has been activated, whereby we can conclude -y ¢ S5,. Now ¢ € T = S+ S§,
yields the desired J = y[7].

“only if”: Let J |= ¢[1]. We have to show J |= Caused(,a,0, 7). The definition of J yields
P € T. By the presumption, we know ¢ € S+ S& = (S\ S%) U S%.

1. p € S&. By Lemma 5.20, J |= Caused(y, a, 0, T).

2.1 € (S\S%), thatis, p € Sand —¢p ¢ S%. From ¢ € S and ¢ € T we directly get
J |= Frame(, 0, 7) and thus J |= Caused(y, a, o, T). O
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5.4 Concluding Remarks

We presented a solution to the ramification problem that unifies and generalises existing ap-
proaches in that it (1) is independent of a particular time structure, (2) is based on first-order
effect axioms and (3) deals with cyclic causal dependencies among fluents. Moreover, we
have formally proved our axiomatisation correct for the presented state transition semantics.
We also briefly indicated how to express ramifications that are triggered by formulas in our
framework. To conclude the presentation, we show how indirect effects and defaults can be
combined, and discuss related work on ramification.

5.4.1 Combining Ramifications and Defaults

It is clear that the approach for default reasoning about actions presented in Chapter 3 and
the approach for reasoning about indirect effects of actions of this chapter can be combined
into a single formalism that gives a meaning to n-clerD domains. Since the two are based
on the same axiomatisation technique given by effect axiom (3.16), mild modifications to the
respective isolated formalisms suffice to integrate them. For one, macros IndT, IndF become
predicates; to retain their meaning, we use the indirect effect formulas

ndT(f,s, t) = \V} (37)(f = Effect(r(§)) A Triggered, (s, t))
r(i)€0,sign(r)=+

IndF(f,s, t) = \ (37)(f = Effect(r(§)) A Triggered, (s, t))
r(i)€0O,sign(r)=—

analogously to direct effect formulas (3.14) and (3.15). Secondly, we adjust the definition of
Reiter defaults (3.28) to let the safety condition check for possibly conflicting indirect effects:

Definition 5.22. Let § = normally ¢ if ® be a state default and s, f : TIME be variables.
Safes(s,t) & (Va)(Poss(a,s,t) D (=Dir(—,a,s,t) N ~Ind(—ip,s,t))

How to construct an action default theory for an n-clerD domain is then immediate. We
do not give the definition here but employ an example to illustrate the concept.

Example 5.23 (Ramification and Casualty). To ®y,, from Example 3.6 we add a fluent Walking
indicating whether the turkey is walking and an indirect effect law saying that a turkey caused
not to be alive is also caused not to be walking any more.

©!,, = {possible Shoot iff Loaded A —Broken,
action Shoot causes —Alive,

action Load causes Loaded,

normally —Broken,
effect —Alive causes =Walking}

We choose situations as underlying time structure and specify the initial situation by
Yy = {Holds(Alive, Sp) }, leading to the domain axiomatisation X. Reiter defaults A are con-
structed in view of Definition 5.22 above. The only non-trivial direct effect formulas are

DirT(f,Load,s,t) = f = Loaded and DirF(f,Shoot,s,t) = f = Alive
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The one meaningful indirect effect formula is derived from the only indirect effect law:
IndF(f,s,t) = (f = Walking A Holds(Alive,s) A ~Holds(Alive, t))

It says that the indirect effect of not-walking occurs exactly when Fred’s life is terminated. In
addition to the usual conclusions known from Example 3.6, we can now additionally infer that
the turkey stops walking after being shot at:

(X,A) R —Holds(Walking, Do([Load, Shoot], Sp)

5.4.2 Related Work on Ramification

Early treatments of ramifications [Ginsberg and Smith, 1987; Winslett, 1988] all assumed the
behaviour of the world to be specified by state constraints — static laws that must hold in all
states of the world — and relied on the principle of minimal change. [Brewka and Hertzberg,
1993] addressed the shortcomings of these approaches and provided an alternative formal-
isation which incorporated an explicit notion of causation. [Lin, 1995], [McCain and Turner,
1995] and [Thielscher, 1995] independently made the important observation that mere state
constraints are insufficient for a proper treatment of ramifications, and likewise introduced ex-
plicit representations of causality to deal with indirect effects. [Thielscher, 1997] then showed
how information on causal influence among fluents can be used to create a set of causal rela-
tionships from a set of domain constraints and provided a solution to the ramification problem,
albeit restricted to a specific formalism. [Van Belleghem et al., 1998] provide a way of modelling
indirect effects that is independent of a specific calculus; they however use a three-valued se-
mantics. It is not immediately clear how the approach is to be embedded into general-purpose
formalisms and how classical logical reasoning methods can be used in that approach. [Sha-
nahan, 1999] shows how to handle a particular class of ramifications in the Event Calculus,
limited however in that it admittedly cannot treat self-justifying cycles. In an approach ba-
sically similar to ours, [Pinto, 1999] compiles ramification constraints into effect axioms by
preprocessing, yet it does not integrate causality. Causality is present in [Mcllraith, 2000]
(even if only implicitly in the syntax), but the approach resorts to a minimal-model policy
and is not able to deal with cyclic fluent dependencies, since it requires stratification of the
ramification constraints. More recently, [Herzig and Varzinczak, 2007] dealt with indirect ef-
fects through static laws in a special formalism based on modal logic. [Forth and Miller, 2007]
proposed a treatment of indirect effects in the Event Calculus which is based on prioritised
circumscription and bound to linear time and a narrative-based semantics.

Most recently, Lin’s causal action theories [Lin, 1995] have been extended to the case of cyc-
lic dependencies among fluents [Lin and Soutchanski, 2011]. The approach is based on a ver-
sion of the Situation Calculus where action domains are characterised by precondition axioms
and direct effect statements much like our (deterministic) direct effect laws. Indirect effects
are specified by causal rules, formulas ®[t] D Caused(i, s, t) meaning that literal ¢ is caused to
be true whenever state formula ®[t] is true. Lin and Soutchanski give a minimisation-based
approach to compile such domain specifications into successor state axioms which works even
if there are cyclic fluent dependencies among the causal rules. However, the approach is lim-
ited in that its specification of indirect effects does not provide references to the starting time
point of the action (at least not without some additional hacking). It would therefore be un-
able to straightforwardly treat Example 5.1 about the bowl of soup falling off the table, for
the soup spills only when it was on the table before unevenly lifting one side. Causal rules
®(t) D Caused(, s, t) where ®(t) is quantifier-free can be viewed as indirect effect rules [De-
necker et al,, 1998] initiating ® causes ¢ if T, which allows to apply the procedure of
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Section 5.2.2 to produce an equivalent set of indirect effect laws (5.2). In accordance with [Lin
and Soutchanski, 2011], we conjecture that the approaches then yield the same results for this
common fragment but leave the formal proof for future work.

In [Baumann et al., 2010], we provided a treatment of ramifications using Default
Logic and the Unifying Action Calculus. Since it is close to the approach presen-
ted in this thesis, we review it here in some more detail. There, indirect effect laws
effect ) causes ¢ if ®; before ®; are translated into justification-free Reiter defaults*

D1 [s] A Poft] A —xls] A xlt] :
Indirect(, s, 1)

(5.18)

This solution is very elegant in that there are no syntactic restrictions on indirect effect laws,
the laws can be modularly translated, and the groundedness of default extensions easily guar-
antees a proper treatment of causality for indirect effects. On the other hand, the transla-
tion of [Baumann et al., 2010] produces a default theory, where the translation in this thesis
produces a classical first-order theory. Despite being computationally more complex in the
propositional case, the default logic approach is not always strong enough for incompletely
specified domains:

Example 5.24 (The Walking Dead). Staying in domain ®y,,, we revisit the indirect effect law
r = effect —Alive causes —Walking from Example 5.23 and turn r into the two laws

r1 = effect —Alive causes ~Walking if Walking before T
ro = effect —Alive causes ~Walking if ~Walking before T

that say that getting killed causes the turkey not to be walking any more if it was walking
before (r1), and that the same happens if it was not walking (rp). In the approach of this
chapter, for all pairs of states S, T with S = Alive and T = —Alive, we have that r is applicable
and exactly one of r; or rp is applicable. Thus, even if there is uncertainty about Walking on
theory level, the indirect effect ~Walking occurs. Translating these laws into the Reiter defaults

__ Holds(Alive,s) A ~Holds(Alive, t) :
T IndirectF(Walking, s, t)
__ Holds(Alive,s) A —Holds(Alive, t) A Holds(Walking, s) :
B IndirectF(Walking, s, t)
_ Holds(Alive,s) A ~Holds(Alive, t) A ~Holds(Walking, s) :
N IndirectF(Walking, s, t)

0

2

reveals the difference between the approaches. While loop formulas treat {r} and {ry,72}
equivalently, the ramification defaults behave in a different way when the truth of Walking at s
is unknown: ¢, always yields the indirect effect ~Holds(Walking, t) whenever Alive changes to
true from s to t; the defaults J; and J, do not yield the indirect effect since they depend on the
underlying theory additionally entailing either Holds(Walking, s) or —=Holds(Walking, s).

In [Baumann et al., 2010], we also showed that the default logic-based approach to the
ramification problem can be straightforwardly combined with n-uleD action default theories.
Alas, since normal and justification-free defaults are mixed, extension existence cannot be
guaranteed for that approach. Our combined approach of Section 5.4.1, on the other hand,
utilises only normal defaults, the default theories defined there thus always have an extension.

4Actually, [Baumann et al., 2010] have no distinction between initial and final context. It is however trivial to add
this.
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Conclusion

We have presented a comprehensive framework for default reasoning about actions. Starting
with very simple domains, we have increased the range of domains we can model to those in-
cluding non-deterministic effects. Putting the approach into practice turned out to be possible;
we presented an implementation of action default theories and proved its correctness for a cer-
tain class of domains. We finally presented a novel solution to the ramification problem that
can deal with cyclic fluent dependencies. It is also easily integrated into the default reasoning
framework seen earlier.

* * *

In the remainder, we discuss related work on combinations of action theories with defaults
about states. We will see that all existing alternative approaches tie themselves to a particular
time structure. Most of them use non-standard logics or propositional languages with non-
standard semantics. In contrast, the approach that we have developed is independent of a
specific notion of time and uses the standard semantics of first-order logic and default logic.
This also implies groundedness of the conclusions that can be drawn from action default
theories, a property that the majority of alternative approaches does not possess.

Finally, we explore some areas that offer potential for future work.

6.1 Related Work on Default Reasoning about Actions

There are four further major approaches for default reasoning about actions. We will address
each of them separately in some more detail.

6.1.1 Defaults in the Discrete Event Calculus

[Mueller, 2006] offers simple default reasoning about time in the Event Calculus. In gen-
eral, the Event Calculus already makes the default assumptions that unexpected events do
not occur, and that events have no unexpected effects. In Mueller’s axiomatisation, these
assumptions are implemented via circumscription of Happens and Initiates/Terminates. He
uses a similar technique for general temporal default reasoning as follows. The user fixes a
set of abnormality predicates like Ab;j(x,t) that expresses whether an object x is abnormal
in a certain way at time t. These abnormality predicates are freely used in the axiomatisa-
tion, as in (Holds(Apple(x),t) A =Aby(x,t)) D Holds(Red(x),t) saying that apples are red un-
less they are abnormal. So-called cancellation axioms like Holds(GrannySmith(x),t) D Aby(x, t)
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and Holds(Rotten(x),t) D Aby(x,t) are employed by the user to state sufficient reasons for
abnormality. The cancellation axioms are then circumscribed in the abnormality predic-
ates, effecting the assumption that for any given abnormal object, one of the sufficient
conditions must necessarily hold. For the above, this circumscription would produce
Aby(x,t) = (Holds(GrannySmith(x), t) VV Holds(Rotten(x), t)).

However, circumscription is not suited to do the kind of default reasoning we are inter-
ested in. For one, consider the two statements (N) “if ®, then normally ” and (S) “normally,
if ® then 1" [Kraus et al., 1990]. Although they look alike, the distinction lies on the scope of
normality. In (N), truth of ® must be asserted before invoking normality; in (S), normality is
invoked right at the start to assume that ® implies ¢ (and its contrapositive). In default logic,
these statements are formalised by a normal (N) default ® : ¢/ and a supernormal (S) default
T:D D ¢/P D 1. These defaults employ the correct scope of normality. Using circumscrip-
tion, (N) would be formalised as (® A —Ab) D ¢, while (S) is written as ~Ab D (® D ). It
is immediately clear that the two are logically equivalent. Circumscription’s predicate Ab re-
ifies abnormality and may talk about objects, but allows no distinction between the different
normality scopes of (N) and (S).

Secondly, circumscription allows unjustified conclusions. To see this, look at the
two state defaults normally Wet if Rain and normally Rain if Wet saying that rain and
wet grass usually go hand in hand. With the axiomatisation technique of [Mueller,
2006], they become (Holds(Rain,t) A —Aby(t)) D Holds(Wet,t) for the first state default and
(Holds(Wet, t) A =Aby(t)) D Holds(Rain, t) for the second one. At a perfectly normal time point
T with —~Ab; (T) A =Aby(T), the two defaults are equivalent to Holds(Rain, T) = Holds(Wet, T).
Consequently, the axiomatisation allows models where both rain and wet grass materialise at
T out of thin air, one “causing” the other. Again, default logic is much better suited to model
these state defaults due to the groundedness of extensions.

6.1.2 Action Language C+

The action language C+ [Giunchiglia et al., 2004] offers a form of default reasoning in propos-
itional domains. However, as we shall see, the language uses the same mechanism for defaults
and persistence and makes some counterintuitive predictions concerning defaults. We first
recapitulate the most important definitions of C+, alas without its distinction between simple
and statically determined fluents since this is of no importance to our point.

C+ distinguishes between different kinds of formulas: (1) fluent formulas F, that speak
about time points like our fluent formulas, (2) action formulas A, that speak about occurrence
of actions, (3) formulas H, that speak about both. To specify domains, C+ provides three
kinds of laws: (1) static laws caused F; if F,, (2) action dynamic laws caused A if H, (3) fluent
dynamic laws caused F; if F, after H. The latter are used to express direct action effects via
the macro A causes F & caused F if T after A. The language C+ does not have a built-in
frame assumption. The tendency of a fluent literal to persist has to be specified by a special
macro inertial F ¥ caused F if F after F. Static default values of fluents are also specified
via a macro: default F; if F, & caused F; if F; A B.

The semantics of C+ is defined via a translation to nonmonotonic causal logic [Giunchiglia
et al., 2004]. This logic uses causal rules F <= G for propositional formulas F, G to express that
“there is a cause for F to be true whenever G is true.” Roughly, an interpretation is then a
model for a set of implications if all that is true in the interpretation is also “caused” by some
implication in the theory.

When turning C+ action descriptions into nonmonotonic causal theories, a finite sequence
0,...,n of time points is incorporated into the signature by replacing each atom P by “time
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stamped” versions i: P for 0 < i < n. This generalises to formulas H via structural induction.
A static law or action dynamic law caused H; if Hy then becomes the nonmonotonic causal
logic formulas i:H; < i:Hp for 0 < i < n, a fluent dynamic law caused F; if F, after H
becomes i+ 1:F; < i+ 1:HLAi:Hfor0<i<n-—1.

Example 6.1 (Learning to Fly). Imagine a simple domain where an inertial fluent Flies is true
by default if another inertial fluent Bird is true, and there is an action Wait without effects. The
C+ expressions for this domain and their macro expansions are

inertial Flies = caused Flies if Flies after Flies
inertial —Flies = caused —Flies if —Flies after —Flies
inertial Bird = caused Bird if Bird after Bird
inertial —Bird = caused —Bird if —Bird after —Bird
default Flies if Bird = caused Flies if Flies A Bird

Assuming just two time points 0 and 1, this is translated into the nonmonotonic causal theory

Triies = {1:Flies <= 0:Flies A 1:Flies,
—1:Flies <= —0:Flies A —1:Flies,

1:Bird <= 0:Bird A 1:Bird,
—1:Bird <= —0:Bird A —1:Bird,

0:Flies <= 0:Flies A 0:Bird,

1:Flies <= 1:Flies A 1:Bird }

Now consider an abnormal initial time point 0 where Bird is true and Flies is false:
To = {0:Bird <= T, —=0:Flies <= T }

What happens after we apply an action without effects? Intuition suggests that no effects
change nothing, hence —Flies should hold at time point 1 after a dummy action like Wait.

Let us inspect the models of the nonmonotonic causal theory Trjjes U Tp U {0:Wait <= T }.
Its first model is characterised by the literals

0:Wait, 0:Bird, 1:Bird, =0:Flies, —1:Flies

and corresponds to our intuitive interpretation of the domain. The last literal can be justified
by the second rule in Tgj;s saying that persisting false is a cause for falsity.

However, C+ clashes with intuition and admits an additional model where the abnormal
bird magically learns to fly (by default) during Wait:

0:Wait, 0:Bird, 1:Bird, =0:Flies, 1:Flies

Here, the last literal can be justified by the last rule of Tfj;es invoking truth by default as a
cause for Flies” truth.

The unintended model occurs because C+ fails to recognise that the default is violated
and the initial time point 0 is thus abnormal. It subsequently ignores this default violation and
applies the default at the next time point.
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But even if we restrict default reasoning to a single time point, the intuitions behind the
C+ expression d = default Flies if Bird and the a-D state default normally Flies if Bird differ:
while the latter translates to a Reiter default like

5D — 0:Bird : 0:Flies
0:Flies
the former corresponds [Giunchiglia et al., 2004, Section 7.1] to the Reiter default

: 0:Flies A 0:Bird
0:Flies

which may even conclude that something flies without any evidence that it is a bird:
Translating expression d into a nonmonotonic causal theory for the time point 0 yields
T; = {0:Flies <= 0:Flies A 0:Bird}. This theory has no model, thus according to [Giunchiglia
et al., 2004, Proposition 10] the default theory (@, {(55*}) has no complete extension.! How-
ever, the default theory does have an extension, the set Th({0:Flies}). Here 0: Flies has been
concluded out of the blue.

Finally, C+ is restricted to a propositional language with a built-in linear time structure.
It allows for cyclic conclusions in the same way that circumscription-based default reason-
ing does: The statements default Rain if Wet and default Wet if Rain expand to the formulas
0:Rain < 0:Rain A 0:Wet and 0:Wet <= 0:Wet A 0:Rain. Obviously, {0:Rain,0:Wet} is a model
for the two formulas where rain and wet grass appear without being caused.

C+ _
0; =

6.1.3 Modal Situation Calculus with Only-knowing

[Lakemeyer and Levesque, 2009] combined action theories with defaults in a modal language
called £S5. For reasoning about actions, £Sp reformulates a fragment of the Situation Calcu-
lus in a second-order modal dialect with substitutional quantification. The fragment captures
Reiter’s basic action theories [Reiter, 2001] with regression-based reasoning and reasoning
about knowledge. Although situations provide the underlying time structure, they are not
present in their classical version as terms of the language. Instead, £Sp uses time modalities —
O for any situation reachable from the current one, and [a] for the situation resulting from ex-
ecuting action a in the current situation. For nonmonotonic reasoning, their approach employs
the logic of only-knowing [Levesque, 1990] which is integrated with these situation-based ac-
tion theories into a single semantical framework.

ESp allows to specify the effects of actions via Reiter-style successor state axioms, as in

(Va, x)O([a]Broken(x) = ((a = Drop(x) A Fragile(x)) V (Broken(x) A a # Repair(x))))

According to this formula, in any situation, an object x is broken after action a if a was the
action of dropping it and x is fragile, or if x was already broken before and a was not the
action of repairing it.

To express what is known, only-known, and additionally known and only-known by de-
fault, £Sp offers the respective modalities K, O, B, Q. For example, the default that objects
made of glass are fragile unless known otherwise is written as

(Vx)((BGlass(x) A =B—Fragile(x)) D Fragile(x)) (6.1)

An £Sp basic action theory X and a conjunction A of Moore defaults as the above are
now combined into a formula OX A LJQA saying that X is all the agent knows and it applies

1A complete extension is such that for each formula it entails the formula or its negation.
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defaults from A at all situations. Using such a basic action theory with defaults, an agent can
reason about the state of the world. After action execution, it progresses its knowledge base
about the current time point in the sense of [Lin and Reiter, 1997]. During this progression,
it is vital that the agent can distinguish between default assumptions and hard facts. (For
otherwise the agent might elevate an assumption to a hard fact, and subsequently sensing a
default violation would lead to an inconsistency.) The progression semantics of [Lakemeyer
and Levesque, 2009] solves this issue by forgetting the past and reapplying the defaults after
action execution. This however causes them to effectively discard all default assumptions and
conclusions, the connections between which make up the essence of the expansions.

Example 6.2 (Expansion Hopping). We focus our attention on whether a given vase is fragile
and the belief dynamics of fragility. To the default about glass objects being fragile above, we
add the prerequisite-free default that objects in general are to be considered not fragile:

(Vx)(—BFragile(x) D —Fragile(x)) (6.2)

Denote the conjunction of defaults (6.1) and (6.2) by A. In an initial situation £y = Glass(Vase)
where all the agent knows is that the vase is made of glass, both defaults are applicable and
the autoepistemic theory given by Xy A A has two stable expansions. In £S5y this means that
both OXy A QA A —Fragile(Vase) and OXy A QA A Fragile(Vase) are satisfiable.

Now we add an (irrelevant) action Move that inverts a fluent InKitchen. (We assume there
are only two rooms and for simplicity leave out precondition axiom and sensing result of the
action.) The status of this new fluent is determined by the successor state axiom

EMove = (Va, x)0([a]InKitchen = ((a = Move A —InKitchen) V (InKitchen A a # Move)))

Contrary to intuition, £Sp considers it possible that changing rooms has an effect on the vase
being fragile or not, which is witnessed by the satisfiability of

O(Zy A Zpmove) A TQA A Fragile(Vase) A [Move] —~Fragile(Vase)

Roughly, the status of Fragile(Vase) is forgotten during Move as explained above. This makes
both defaults applicable in the progressed situation (the known fact Glass(Vase) persists) and
again leads to two possible beliefs about fragility regardless of beliefs at earlier time points.

In our approach, defaults are applied to multiple time points simultaneously, moreover our
default conclusions are subject to persistence. Combined with violation-checking, this leads to
extensions where such spontaneous, uncaused changes do not occur. The straightforward D
axiomatisation of the domain above would allow the sceptical conclusion

Holds(Fragile(x), s) = Holds(Fragile(x), Do(Move, s))

A further and much more grave issue with default reasoning based on autoepistemic lo-
gic [Moore, 1985] is that it allows unfounded beliefs due to the cyclic definition of stable
expansions. Our action default theories are based on default logic, where such problems are
not to be found. Finally, £Sp is a non-standard logic (second-order modal logic with sub-
stitutional quantification) with tailor-made semantics. In contrast, our approach relies on the
standard semantics of sorted first-order logic and default logic.

6.1.4 Argumentation-based Approaches to Knowledge Qualification

[Kakas et al., 2008] presented a framework that aimed at combining different forms of non-
monotonic reasoning in Al: default reasoning in static domains and defeasible persistence in
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temporal domains. They motivated their approach by a series of examples and then intro-
duced a tailor-made semantics whose action-part is based on the action language M & [Kakas
et al., 2005]. Default reasoning is treated as a black box, which makes it difficult to pin down
specific properties of the framework with regard to interaction of defaults, action effects and
persistence.

Their preliminary work was then extended by [Michael and Kakas, 2009], which integrates
temporal and default reasoning via argumentation frameworks [Dung, 1995]. They define
attacks and admissibility “in a manner that closely follows corresponding definitions in the
literature.” The formalism works for propositional domains and provides a progression-like
semantics for a single state transition. To specify semantics for multiple state transitions, the
authors require a minimal invocation of exogenous causes at each time step. Still, they do not
fix a specific semantics for their state defaults:

[...] we take a black-box approach to the syntax and semantics of default static the-
ories, and assume simply that we have access to their models, without concerning
ourselves with how these models are derived.

In particular, they assume the existence of a revision function rev(-,-) that revises a theory
T with a set L of literals such that the revised theory rev(T, L) entails all literals in L. It is
clear that such revision functions do exist, for example by setting rev(T,L) & L to satisfy
the entailment condition. However, one usually expects additional useful properties from a
nonmonotonic semantics, such as no unnecessary removal of information. While intended to
preserve flexibility, ignoring specificities of the underlying nonmonotonic logic only postpones
semantical issues which are likely to occur. As we have seen in the previous sections about C+
and £S5p, many subtleties arising in default reasoning about actions hinge on semantical and
technical details of the combined languages. Not fixing one of these languages also means not
addressing these problems.

The same line of research was further extended by [Michael and Kakas, 2011]. A linear
time structure was now built into the syntax of the underlying language. As before, each
piece of knowledge is encoded as an argument in favour of some conclusion. As a novelty,
they made the underlying preferences between these arguments explicit. Where [Michael and
Kakas, 2009] had fixed preferences built into the semantics, [Michael and Kakas, 2011] now
modelled these preferences as arguments which could in turn be defeated by other arguments.
While this is in general very flexible in terms of expressivity, the task of specifying these pref-
erences and therefore specifying the semantics of the whole domain is deferred to the user. In
general, the framework provides not much guidance in domain specification: there is no clear
language for specification, the authors only sketch a pseudo-syntax on an example. Specific
axiom schemas are only provided for frame axioms and the no-action axiom. Most import-
antly, there is no well-studied default semantics behind the framework. Indeed, [Michael
and Kakas, 2011] make no ontological distinction between defaults and laws, for example the
argument “{Bird(x) D CanFly(x)} at T” stands for a state default while its syntactical variant
“{CanFly(x) D Alive(x)} at T” represents a state constraint. To achieve their respective desired
semantics, the user has to specify preferences between these and other arguments. Finally, the
approach is restricted to propositional logic and linear time.

6.1.5 Further Approaches

[Thielscher, 2001] used an extension of the Fluent Calculus with supernormal defaults to solve
the qualification problem. The goal there is however not to make default assumptions about
general fluents, but rather special predicates that refer to action (dis-)qualification.
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[Denecker and Ternovska, 2007] enriched the Situation Calculus [Reiter, 2001] with in-
ductive definitions. While they provide a nonmonotonic extension of an action calculus, the
intended usage is to solve the ramification problem rather than to do the kind of defeasible
reasoning we treat in this work.

The action language K [Eiter et al., 2004] provides simple default statements, but allows
the same counterexample as C+.

6.2 Directions for Future Work

Although there are multiple starting points to continue this work, we specifically want to
mention two fields. The first one concerns a well-known problem in reasoning about actions,
for which our framework will be able to give a novel solution. The second area we want to
point out will allow for more flexible and expressive ways to specify how the world normally
behaves.

6.2.1 State Defaults and the Qualification Problem

A robot that operates in a complex environment can never predict with absolute certainty the
actions it may successfully execute. Any exceptional circumstance, however unlikely, might
render an action impossible. This fundamental problem of cognitive robotics has been termed
the qualification problem [McCarthy, 1977]. In order to solve this problem, an agent must be able
to (1) assume away by default abnormal action qualifications and (2) deal with unexpected
action failures. In the literature there is sometimes a distinction between strong qualification —
an action being inapplicable contrary to prediction — and weak qualification — an action failing
to produce one or more of its predicted effects [Gelfond et al., 1991; Thielscher, 1996; Thielscher,
2001]. Elsewhere [Kakas et al., 2011], the authors distinguish endogenous qualifications — that
can be explained within the theory — from exogenous qualifications, whose explanation lies
outside of the scope of the theory.? We illustrate the general problem with a modified version
of an example from [Thielscher, 1996].

Example 6.3 (Tail Pipe Potato). This domain is about starting a car whose tail pipe may or
may not have been clogged with a potato. Putting the potato in the tail pipe is possible if the
potato is not too heavy. The tail pipe is clogged after putting the potato in it. Starting the car
is possible if we have the ignition key and the battery is full. The car runs after starting it if
the tail pipe was not clogged and the engine was not broken. In cleD this is written as

Ocyr = {possible PutPotato iff —Heavy,
action PutPotato causes Clogged,
possible Start iff Key A Battery,
action Start causes Runs if —Clogged A —Broken}

Our formalism for default reasoning about actions provides all the necessary ingredients
for a solution to the qualification problem: for endogenous qualifications, we can specify
state defaults that assume absence of abnormal action disqualifications and effect laws about
known causes for disqualifications. For exogenous qualification, we introduce new fluents
expressing miraculous disqualification of actions and action effects. Strong qualification can
be modelled by Disqualified : ACTION — FLUENT saying that an action is disqualified for some

2 [Thielscher, 1996] calls exogenous qualifications “miraculous.”
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reason. We then assume —Disqualified(A (X)) by default for each action A. Weak qualification
can be modelled by introducing a function symbol Ab : FLUENT — FLUENT saying that a specific
effect is disqualified for some reason. We then add —Ab(¢) to the prerequisite of action effect
¢ and assume —Ab(¢) by default.

Example 6.3 (Continued). Incorporating a solution to the qualification problem with a dis-
tinction between endogenous/exogenous weak and strong qualifications, we add the fluents
Disqualified and Ab as sketched above. We also say that normally, the potato is not heavy, the
battery is not empty, the tail pipe is not clogged and the engine is not broken.

O, = {possible PutPotato iff —Heavy A —Disqualified(PutPotato),
action PutPotato causes Clogged if —Ab(Clogged),

possible Start iff Key A Battery A —Disqualified(Start),

action Start causes Runs if —Clogged A =Broken A =Ab(Runs),
normally —Heavy,

normally Battery,

normally —Clogged,
normally —Broken,

normally —Disqualified (PutPotato),
normally —Disqualified(Start),
normally —Ab(Clogged),

normally —Ab(Runs)}

This way of modelling action qualifications satisfies [Kakas et al., 2011]’s requirement that

[...] if a fluent has a default truth value, this should manifest itself everywhere in
the reasoning process, and not just when the fluent appears as a precondition in an
effect or executability law.

Furthermore, our treatment of linear time domains easily enables the important distinction
between attempted and accomplished action executions. [Kakas et al., 2011]:

A full solution to the exogenous qualification problem necessitates a view of oc-
currence statements as identifying only attempts to execute actions (even though
we may choose to build into a formalism a default principle that such attempts
can be assumed to result in actual action executions unless there is evidence to the
contrary).

With our linear time action precondition axioms
Poss(A(X),s, t) = (Pa[s] A Holds(Happens(A(X),s,t),s) As < t)

the fluent Happens(A(X),s, t) only refers to an attempted execution, while ®4[s] must be ad-
ditionally inferred to ensure accomplishment. In particular, if some definite effect has been
observed not to have materialised at ¢ although there was an attempted action execution, the
effect and precondition axioms allow to derive a violation of the action’s precondition ®4 at s.
Previous solutions to the qualification problem all had to extend existing formalisms [Mc-
Carthy, 1986; Lin and Reiter, 1994; Thielscher, 1996; Kvarnstrom and Doherty, 2000; Thielscher,
2001]. Our action default theories are strong enough to deal with the qualification problem
right away. It will be the topic of future research to work out the details of the approach to
qualification sketched in this section and investigate its relations to existing solutions.
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6.2.2 Preferred Default Logic

The informed reader will have noticed that the approach to qualification of the previous sec-
tion treats miraculous disqualifications just like any other state default. Intuitively, however,
we consider a “miraculous,” unexplainable action failure much less likely than a “regular”
abnormal situation. To model this qualitative distinction between state defaults, we will need
preferred default logic [Brewka, 1994; Brewka and Eiter, 1999; Delgrande and Schaub, 2000].

But prioritised defaults are not only needed for action qualification, they are quite useful
in general. Consider the defaults dp;,; = Bird(x) : Flies(x)/Flies(x) that birds usually fly and
Openguin = Penguin(x) : —Flies(x)/—Flies(x) that penguins usually do not fly. Given that pen-
guins are birds, the second default is more specific and should be preferred over the first one
in cases where both are applicable. In preferred default logics, this priority is expressed by
a relationship 6peguin < Opjrd- The exact meaning of such a preference is then determined by
the underlying semantics. Descriptive preferences [Brewka and Eiter, 1999] disallow extensions
where both defaults are applicable, but only the less preferred one has been applied. Prescript-
ive preferences [Delgrande and Schaub, 2000] constrain the order in which the defaults may
be applied, where a default cannot be applied unless all preferred defaults have been either
applied or found to be inapplicable. It is an important future research topic to identify a no-
tion of preferences that is suitable for default reasoning about actions, and to incorporate these
preferences into action default theories.

6.2.3 Further Future Work

Some reasoning about actions formalisms make a distinction between primitive and defined flu-
ents (e.g. C+ offers this). The idea is that primitive fluents would in principle suffice to describe
the domain, but the additional defined fluents are allowed to ease specification. Roughly, the
truth values of defined fluents at any time point are completely determined by the truth val-
ues of the defining (primitive) fluents (hence the name). This distinction is also connected
to the important problem of the modularity of action theories. To date, modularity is form-
ally defined only for classical, monotonic UAC domain axiomatisations [Thielscher, 2011]. A
generalisation of this notion for nonmonotonic action formalisms would be very valuable,
since modularity lays the foundation of an expressive, yet efficient implementation. As men-
tioned in Section 4.3, our current implementation draculasp has much potential for additional
research. Apart from examining possible gains from well-defined notions of modularity of
action default theories, we want to investigate draculasp’s usage in combination with agent
logic programs [Drescher et al., 2009] and novel enhancements thereof [Brewka et al., 2012].
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sort, 11

stable model, 20

state, 90

state constraints, 5

state default, 25

state formula ®[5] in 5, 16

state update, 91

strongly sceptically reachable in (X%, A), 31
strongly sceptically reachable in (%, A[c]), 31
structure, 14

substitution, 15

successor state axioms, 5

successor state of S for «, 93
supernormal default, 18

term, 12
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term depth, 12

terminal context of an indirect effect law, 92
theory, 14

time points, 1

trigger of an indirect effect law, 92
triggered indirect effect law, 93

UAC domain axiomatisation, 16
UAC effect axiom, 16

UAC precondition axiom, 16
unconditional direct effect law for A(X), 25
unifiable terms, 15

unifier of two terms, 15
unique-names axiom for Fy, ..., F,;, 15
unique-names axioms for sort s, 15
unit clause, 13

unsorted signature, 12

update of S with L, 91

valid, 14
variable assignment, 14
variables of a term, 12

weakly sceptically reachable in (£, A), 31
weakly sceptically reachable in (X, A[c]), 31
well-sorted grounding, 64
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