

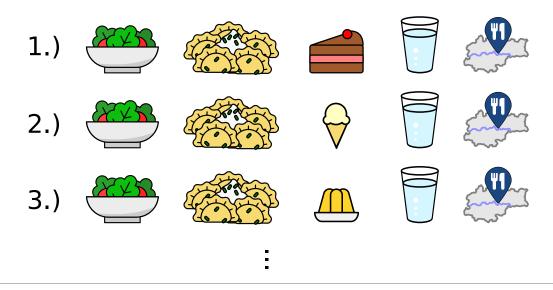
Elisa Böhl, Sarah A. Gaggl, Dominik Rusovac Logic Programming and Argumentation Group, TU Dresden, Germany

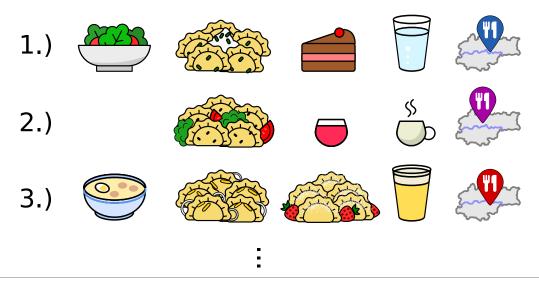
Representative Answer Sets: Collecting Something of Everything

Kraków, Poland, October 4th 2023

Motivation

Motivation


Motivation


Motivation - Enumeration

Motivation - Sampling

Problem description

- Given: ASP logic program.
- Search: Representative set of solutions.
- Question: What is ASP?
- Problem: How to measure representativeness?
- Problem: How to obtain highly representative collections?

Answer Set Programming

- declarative programming paradigm
- suited for configuration problems (among others)
- program Π : set of rules over atoms
- answer set: ⊆-minimal model satisfying all rules, set of atoms

Answer Set Programming

- declarative programming paradigm
- suited for configuration problems (among others)
- program Π : set of rules over atoms
- answer set: ⊆-minimal model satisfying all rules, set of atoms

 1 T. Leinster, 'Entropy and diversity: the axiomatic approach', Cambridge university press, 2021

collection S: set of answer sets

¹T. Leinster, 'Entropy and diversity: the axiomatic approach', Cambridge university press, 2021

Representative Answer Sets: Collecting Something of Everything E. Böhl, S. Gaggl, D. Rusovac Kraków, Poland, October 4th 2023 Slide 7 of 18

collection S: set of answer sets

target atoms T; ex. T = { △, ∞, ∞, ∞, ∞

 1 T. Leinster, 'Entropy and diversity: the axiomatic approach', Cambridge university press, 2021

collection S: set of answer sets

- target atoms T; ex. T = { △, △, △, △, ∞, ∞, ∞
- Soundness: all target atoms covered; $T \subseteq \bigcup S$

¹T. Leinster, 'Entropy and diversity: the axiomatic approach', Cambridge university press, 2021

collection S: set of answer sets

- target atoms T; ex. T = { △, ∞, ⇔, ∞, ∞, ∞
- Soundness: all target atoms covered; $\mathsf{T} \subseteq \bigcup \mathsf{S}$
- Diversity: self information / Shannon entropy ¹:

$$\begin{split} \mathsf{H}[\mathsf{T}|_{\mathsf{S}}] &\coloneqq \sum_{\mathsf{a} \in \mathsf{T}} \mathsf{p}_{\mathsf{S}}(\mathsf{a}) \log_2 \frac{1}{\mathsf{p}_{\mathsf{S}}(\mathsf{a})} \\ \mathsf{D}(\mathsf{T}|_{\mathsf{S}}) &\coloneqq 2^{\mathsf{H}[\mathsf{T}|_{\mathsf{S}}]} \in [\mathsf{0}, |\mathsf{T}|] \end{split}$$

S (1)	<u></u>

¹T. Leinster, 'Entropy and diversity: the axiomatic approach', Cambridge university press, 2021

collection S: set of answer sets

- target atoms T; ex. T = { △, △, △, ➡, ➡, ∞, △
- Soundness: all target atoms covered; $\mathsf{T} \subseteq \bigcup \mathsf{S}$
- Diversity: self information / Shannon entropy ¹:

$$\begin{split} \mathsf{H}[\mathsf{T}|_{\mathsf{S}}] &\coloneqq \sum_{\mathsf{a} \in \mathsf{T}} \mathsf{p}_{\mathsf{S}}(\mathsf{a}) \log_2 \frac{1}{\mathsf{p}_{\mathsf{S}}(\mathsf{a})} \\ \mathsf{D}(\mathsf{T}|_{\mathsf{S}}) &\coloneqq 2^{\mathsf{H}[\mathsf{T}|_{\mathsf{S}}]} \in [\mathsf{0}, |\mathsf{T}|] \end{split}$$

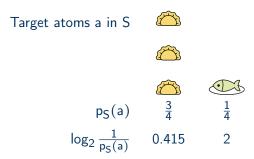
• normalisation into representativeness:

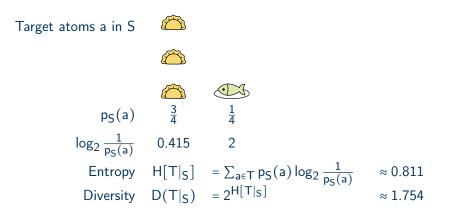
$$\mathsf{R}(\mathsf{T}|_{\mathsf{S}}) \coloneqq \frac{\mathsf{D}(\mathsf{T}|_{\mathsf{S}})}{|\mathsf{T}|} \in [0,1]$$

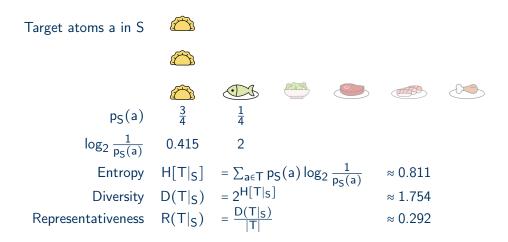
¹T. Leinster, 'Entropy and diversity: the axiomatic approach', Cambridge university press, 2021

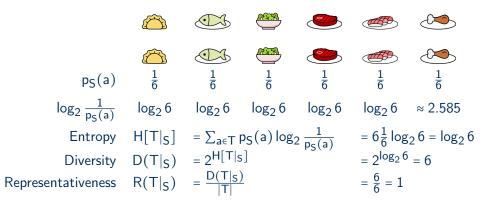
Representative Answer Sets: Collecting Something of Everything E. Böhl, S. Gaggl, D. Rusovac Kraków, Poland, October 4th 2023 Slide 7 of 18

Target atoms a in S









Target atoms a in S

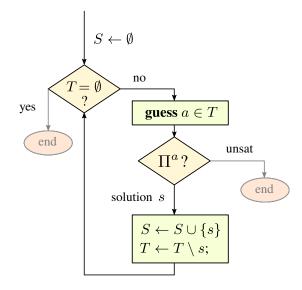
Obtaining representative collections

• Approach: Answer Set Navigation

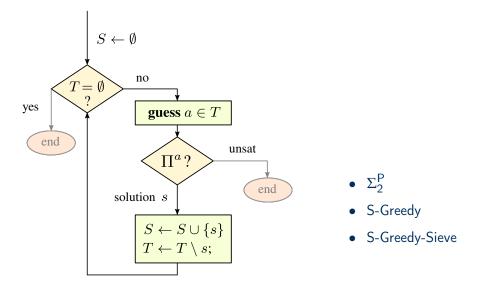
Answer Set Navigation

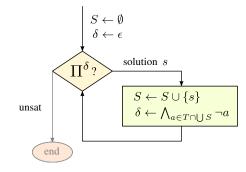
- facet²: atom which appears in at least one but not all answer sets of a program
- activating a facet: propagation of a truth value
- navigation through solution space
- counting facets enables to measure uncertainty
- route: finite sequence of facets, concatenation via ∧

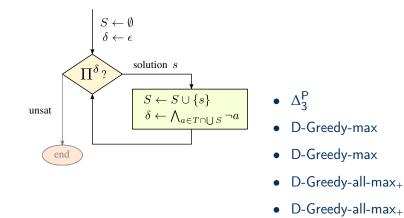
²J. Fichte, S. Gaggl, D. Rusovac, 'Rushing and strolling among answer sets-navigation made easy', AAAI 2022


Obtaining representative collections

- Approach: Answer Set Navigation
- Algorithms: Greedy for soundness (S) and diversity (D)


Algorithm: S-Greedy


Algorithm: S-Greedy

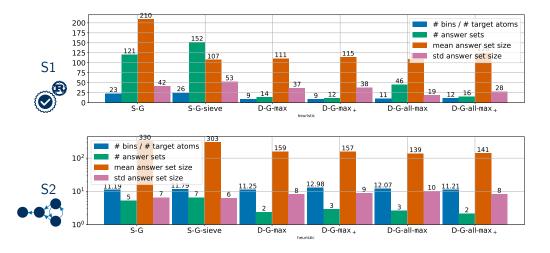

Algorithm: D-Greedy

Algorithm: D-Greedy

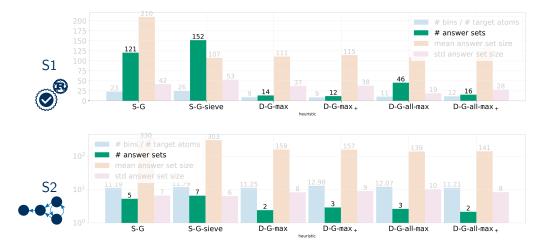
Experiments

- smoke testing (S1)
- 8 base instances, 2000 program/target atom pairings
- real world application, open source Rust projects
- claim centric argumentation frameworks (S2)³
- 195 base instances, 1950 program/target atom pairings
- generated for this contribution
- 300s timelimit, PC specs: single core AMD EPYC 7513, 2.6 GHz, 16 GB RAM

³W. Dvorák and S. Woltran; 'Complexity of abstract argumentation under a claim-centric view', Artif. Intell., 2020


Evaluation

		heuristic	mean R	mean time [s]
	S1	S-Greedy	0.713	< 0.01
		S-Greedy-sieve	0.826	< 0.01
		D-Greedy-max	0.772	0.21
		$D\operatorname{-}Greedy\operatorname{-}max_+$	0.804	0.21
		D-Greedy-all-max	0.555	0.55
		$D\text{-}Greedy\text{-}all\text{-}max_+$	0.760	0.61
	S2	S-Greedy	0.967	1.88
		S-Greedy-sieve	0.958	1.58
		D-Greedy-max	0.972	11.00
) 3.	32	$D\operatorname{-}Greedy\operatorname{-}max_+$	0.969	11.07
		D-Greedy-all-max	0.976	46.31
		$D\operatorname{-}Greedy\operatorname{-}all\operatorname{-}max_+$	0.979	54.23


Evaluation

Evaluation

Conclusion and Future Work

Conclusion

- entropy as reasonable diversity measure in ASP context
- answer set navigation as approach to produce representative collections
- six algorithms with varying complexity, evaluated on two newly introduced benchmarks

Conclusion and Future Work

Conclusion

- entropy as reasonable diversity measure in ASP context
- answer set navigation as approach to produce representative collections
- six algorithms with varying complexity, evaluated on two newly introduced benchmarks

Future Work

- broaden investigation on entropy as diversity measure
- further elaboration of methods to improve diversity outcomes
- translation into visual representation

Conclusion and Future Work

Conclusion

- entropy as reasonable diversity measure in ASP context
- answer set navigation as approach to produce representative collections
- six algorithms with varying complexity, evaluated on two newly introduced benchmarks

Future Work

- broaden investigation on entropy as diversity measure
- further elaboration of methods to improve diversity outcomes
- translation into visual representation

