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Wesentliche Ergebnisse bisher

Viele Dinge sind nicht berechenbar:
® Die Busy-Beaver-Funktion
® Das Halteproblem
® Das e-Halteproblem

Dazu gibt es mehrere Beweismethoden:
e Kardinalitatsargumente: Anzahl Algorithmen vs. Anzahl Probleme

® Diagonalisierungen: Nimm Berechenbarkeit an und konstruiere damit (als
Subroutine) einen paradoxen Algorithmus

® Reduktionen: Zeige, dass bereits bekannte nicht berechenbare Probleme sich
I6sen lieBen, wenn das Problem berechenbar ware
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Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice bewahrt uns davor, noch hunderte
andere Probleme im Detail zu betrachten:

Satz von Rice (informelle Version): Jede nicht-triviale Frage Uber die von einer TM
ausgefihrte Berechnung ist unentscheidbar.
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Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice bewahrt uns davor, noch hunderte
andere Probleme im Detail zu betrachten:

Satz von Rice (informelle Version): Jede nicht-triviale Frage Uber die von einer TM
ausgefihrte Berechnung ist unentscheidbar.

‘7Satz von Rice (formell): Sei E eine Eigenschaft von Sprachen, die fir manche

Turing-erkennbare Sprachen gilt und fiir manche Turing-erkennbare Sprachen nicht

gilt (=,nicht-triviale Eigenschaft®). Dann ist das folgende Problem unentscheidbar:
® Eingabe: Turingmaschine M

® Ausgabe: Hat L(M) die Eigenschaft E?
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Alles unentscheidbar

Beispiele fiir Fragen, die laut Rice unentscheidbar sind:
e st aba € L(M)?
e Ist L(M) leer?”
e st LLM) endlich?”
e _Ist LLM) regular?”
e ..
Rice ist dagegen nicht anwendbar auf:

e Hat M mindestens zwei Zustande?“
(keine Eigenschaft von L(M))

e _Ist LUM) semi-entscheidbar?“ (trivial)

Der Satz von Rice lasst sich sinngemaf auf alle Turing-mé&chtigen Formalismen
Ubertragen.
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Der Satz von Rice: Beweis (1)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis: Sei E eine Eigenschaft wie im Satz. Wir konstruieren eine
Many-One-Reduktion vom e-Halteproblem auf , E-Haftigkeit".

* Sei 0 ¢ E (0.B.d.A.: wir kdnnten sonst auch Unentscheidbarkeit von E beweisen)

® Sei M, eine TM, die eine Sprache L € E akzeptiert
(muss existieren, da E nicht-trivial ist)
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Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung):
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Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung): Fir eine beliebige TM M sei M* eine TM, die firr eine Eingabe
w das folgende tut:

(1) Simuliere M auf dem leeren Wort €

(2) Falls M halt, simuliere M auf w
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Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung): Fir eine beliebige TM M sei M* eine TM, die firr eine Eingabe
w das folgende tut:

(1) Simuliere M auf dem leeren Wort €

(2) Falls M halt, simuliere M auf w

Damit gilt: falls M auf e halt, dann L(M*) =L € E und
falls M auf € nicht halt, dann LIM*) =0 ¢ E
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Der Satz von Rice: Beweis (2)

Satz von Rice: Sei E eine nicht-triviale Eigenschaft von Turing-erkennbaren Spra-
chen. Dann ist das folgende unentscheidbar:

® Eingabe: Turingmaschine M
® Ausgabe: Hat die Sprache L(M) die Eigenschaft E?

Beweis (Fortsetzung): Fir eine beliebige TM M sei M* eine TM, die firr eine Eingabe
w das folgende tut:

(1) Simuliere M auf dem leeren Wort €

(2) Falls M halt, simuliere M auf w

Damit gilt: falls M auf e halt, dann L(M*) =L € E und
falls M auf € nicht halt, dann LIM*) =0 ¢ E

Eine geeignete Many-One-Reduktion f ist demnach:

Jv) =

enc(M*) falls v = enc(M) fiir eine TM M
falls die Eingabe nicht korrekt kodiert ist m
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Semi-Entscheidbarkeit
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Das Halteproblem, schon wieder

Wir haben gesehen, dass das Halteproblem unentscheidbar ist, aber es ist dennoch
Turing-erkennbar:

\ Satz: Das Halteproblem ist semi-entscheidbar.
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Das Halteproblem, schon wieder

Wir haben gesehen, dass das Halteproblem unentscheidbar ist, aber es ist dennoch
Turing-erkennbar:

Fatz: Das Halteproblem ist semi-entscheidbar.

Beweis: Eine Turingmaschine, die das Halteproblem erkennt, ist leicht skizziert:
® Wenn die Eingabe die Form enc(M)##enc(w) hat
e dann simuliere M auf Eingabe w.
® Wenn M hélt, dann halte und akzeptiere. O

Im Wesentlichen ist die TM fir das Halteproblem also die universelle Turingmaschine.
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Komplementierung

Riickblick: Fiir eine Sprache L bezeichnet L die Komplementsprache:

L={weX|w¢L}
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Komplementierung

Riickblick: Fiir eine Sprache L bezeichnet L die Komplementsprache:

L={weX|w¢L}

Satz: Fiir jede Sprache L gibt es Turing-Reduktionen L <7 L und L < L.

Markus Krétzsch, 19. Januar 2026 Formale Systeme Folie 9 von 30



Komplementierung

Riickblick: Fiir eine Sprache L bezeichnet L die Komplementsprache:

L={weX|w¢lL}

Fatz: Firr jede Sprache L gibt es Turing-Reduktionen L <7 L und L <7 L.

Beweis: Der Algorithmus fiir die Reduktion L <7 L ist sehr einfach:
® Fir Eingabe w,
® entscheide zundchst ob w € L
® und invertiere das Ergebnis anschlieBend.
Die Umkehrung L <7 L funktioniert ebenso. O
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Komplementierung

Riickblick: Fiir eine Sprache L bezeichnet L die Komplementsprache:

L={weX|w¢lL}

Fatz: Firr jede Sprache L gibt es Turing-Reduktionen L <7 L und L <7 L.

Beweis: Der Algorithmus fiir die Reduktion L <7 L ist sehr einfach:
® Fir Eingabe w,
® entscheide zundchst ob w € L
® und invertiere das Ergebnis anschlieBend.

Die Umkehrung L <7 L funktioniert ebenso.

Forollar: L ist genau dann entscheidbar, wenn L entscheidbar ist.
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Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.
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Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Satz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: ,=" Angenommen L ist entscheidbar.
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Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Fatz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: ,=" Angenommen L ist entscheidbar.
® Dannist L per Definition auch semi-entscheidbar.

¢ AuBerdem ist auch L entscheidbar (gerade gezeigt), also ebenfalls
semi-entscheidbar.
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Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Fatz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: ,<“ Wenn L und L semi-entscheibar sind, dann werden sie durch TMs M, und
Mg erkannt.
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Zwei halbe Entscheidbarkeiten = eine ganze

Es gibt einen interessanten Zusammenhang von Komplementierung und
Semi-Entscheidbarkeit:

Fatz: L ist genau dann entscheidbar, wenn L und L semi-entscheibar sind.

Beweis: ,<* Wenn L und L semi-entscheibar sind, dann werden sie durch TMs M und
Mg erkannt.
Algorithmus: Fir Eingabe w, iteriere Gber alle n =1,2,3, ...

® Simuliere My fir n Schritte:
Wenn My akzeptiert, dann halte und akzeptiere

e Simuliere Mg fir n Schritte:
Wenn Mg akzeptiert, dann halte und verwerfe

® Ansonsten fahre mit nachstem n fort.

Dieser Algorithmus ist korrekt und terminiert fir jede Eingabe, da immer entweder M,
oder Mg terminieren muss. o
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Co-Semi-Entscheidbarkeit

Wir kdnnen unsere Einsichten zusammenfassen:

Korrolar: Wenn L unentscheidbar aber semi-entscheidbar ist, dann kann L nicht semi-
entscheidbar (und auch nicht entscheidbar) sein.
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Co-Semi-Entscheidbarkeit

Wir kdnnen unsere Einsichten zusammenfassen:

Korrolar: Wenn L unentscheidbar aber semi-entscheidbar ist, dann kann L nicht semi-
entscheidbar (und auch nicht entscheidbar) sein.

Beispiel: Sei Py das Komplement des Halteproblems Pygai. Dann ist Puait <7 Phar
und Puai <7 Ppait, aber Pygy ist nicht semi-entscheidbar.

Anmerkung: Wir hatten Pya; <7 Par in Vorlesung 22 leicht anders definiert, da wir falsch kodierte
Eingaben abgelehnt hatten. Die Aussage gilt aber auch fir die erste Definition.
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Many-One-Reduktionen

Beobachtung: Mit Turing-Reduktionen kénnen wir Entscheidbarkeit oder
Unentscheidbarkeit zeigen, aber nicht Semi-Entscheidbarkeit.

Bei Many-One-Reduktionen ist das anders:
Fatz: Wenn P <,, Q und Q semi-entscheidbar ist, dann ist auch P semi-entscheidbar. \
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Many-One-Reduktionen

Beobachtung: Mit Turing-Reduktionen kénnen wir Entscheidbarkeit oder
Unentscheidbarkeit zeigen, aber nicht Semi-Entscheidbarkeit.

Bei Many-One-Reduktionen ist das anders:
Fatz: Wenn P <,, Q und Q semi-entscheidbar ist, dann ist auch P semi-entscheidbar. \

Beweis: Die Reduktion liefert einen Semi-Entscheidungsalgorithmus. Die Korrektheit
folgt direkt aus den Definitionen. |

Anmerkung 1: Wir haben diese Aussage in der letzten Vorlesung mit ,entscheidbar*
anstelle von ,semi-entscheidbar” gezeigt. Die Idee ist genau die gleiche.

Anmerkung 2: Die Aussage gilt analog wenn man ,co-semi-entscheidbar® anstelle von
.semi-entscheidbar” verwendet. Dies folgt schon deshalb, weil eine
Many-One-Reduktion P <,, Q gleichzeitig auch eine Many-One-Reduktion P <,, Q ist.
Anmerkung 3: Damit schlieBen wir einen Beweis aus der letzten Vorlesung ab: Es gibt
keine Many-One-Reduktion Pyai; < PHat.-

Markus Krotzsch, 19. Januar 2026 Formale Systeme Folie 13 von 30



Das Postsche Korrespondenzproblem
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Ein neues Problem

Bisher hatten alle unsere unentscheidbaren Probleme direkt mit Turingmaschinen bzw.
Programmen zu tun.

~> Gibt es auch unentscheidbare Probleme ohne direkten Bezug zu Berechnung?
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Ein neues Problem

Bisher hatten alle unsere unentscheidbaren Probleme direkt mit Turingmaschinen bzw.
Programmen zu tun.

~> Gibt es auch unentscheidbare Probleme ohne direkten Bezug zu Berechnung?

Ja, z.B. das Postsche Korrespondenzproblem. Das PCP gleicht einem Dominospiel, in
dem Dominos mit Wértern beschriftet sind.

AA

A

Ziel ist es, beliebig viele Dominos jeden Typs so in Reihe zu legen, dass oberes und
unteres Wort gleich werden

o AB B
Beispiel:
A BBAB
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Ein neues Problem

Bisher hatten alle unsere unentscheidbaren Probleme direkt mit Turingmaschinen bzw.
Programmen zu tun.

~> Gibt es auch unentscheidbare Probleme ohne direkten Bezug zu Berechnung?

Ja, z.B. das Postsche Korrespondenzproblem. Das PCP gleicht einem Dominospiel, in
dem Dominos mit Wértern beschriftet sind.

AA

A

Ziel ist es, beliebig viele Dominos jeden Typs so in Reihe zu legen, dass oberes und
unteres Wort gleich werden, z.B.

AB B

A | |BBAB
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o AB B
Beispiel:
A BBAB

AB
A

AA
A




Emil Leon Post

i

11.2.1897 — 21.4.1954

Tragisches Genie
Wegbereiter der Logik
Stiller Vordenker von Gédel und Turing
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Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PCP) besteht in der folgenden Frage.

Gegeben: eine endliche Folge von Wortpaaren
X1 Xk
Y1 Yk

Frage: Gibt es eine Folge von Zahlen iy, ..., i, so dass gilt

Uber einem Alphabet ~*.

Xiy o Xip = Viy m Vigs

wobei £ >0 istund j; € {1,...,k} furalle j=1,...,£?

Markus Krétzsch, 19. Januar 2026 Formale Systeme Folie 17 von 30



Beispiele
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Beispiele

o Ll 2

Dieses PCP hat eine Lésung mit 10 Schritten (Bonusaufgabe).
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Beispiele

o] b

BB
BA

Dieses PCP hat eine Lésung mit 10 Schritten (Bonusaufgabe).
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Beispiele

o] b o

Dieses PCP hat eine Lésung mit 10 Schritten (Bonusaufgabe).

ol ) L

Dieses PCP hat ebenfalls eine Lésung, aber keine mit weniger als 160 Schritten!
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Beispiele

o] b o

Dieses PCP hat eine Lésung mit 10 Schritten (Bonusaufgabe).

ol ) L

Dieses PCP hat ebenfalls eine Lésung, aber keine mit weniger als 160 Schritten!
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Beispiele

i

Dieses PCP hat eine Lésung mit 10 Schritten (Bonusaufgabe).

ol ) L

Dieses PCP hat ebenfalls eine Lésung, aber keine mit weniger als 160 Schritten!

N

Dieses PCP hat keine Lésung (Bonusaufgabe: Warum?).

ABA
A
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Unentscheidbarkeit

\ Satz: Das PCP ist unentscheidbar.
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Unentscheidbarkeit

Fatz: Das PCP ist unentscheidbar.

Das zu zeigen ist nicht ganz so einfach, da das PCP auf den ersten Blick nichts mit den
uns bisher bekannten unentscheidbaren Problemen zu tun hat.

Wir gehen in zwei Schritten vor:
(1) Wir reduzieren das Halteproblem auf ein modifiziertes PCP
(2) Wir reduzieren das modifizierte PCP auf PCP
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Unentscheidbarkeit

Fatz: Das PCP ist unentscheidbar.

Das zu zeigen ist nicht ganz so einfach, da das PCP auf den ersten Blick nichts mit den
uns bisher bekannten unentscheidbaren Problemen zu tun hat.

Wir gehen in zwei Schritten vor:
(1) Wir reduzieren das Halteproblem auf ein modifiziertes PCP
(2) Wir reduzieren das modifizierte PCP auf PCP

Eine Instanz des Modifizierten PCP (MPCP) ist eine Instanz des PCP (d.h. eine Men-
ge von Wortpaaren), fir die ein bestimmtes Startpaar angegeben ist. Die Lésung des
MPCP ist eine Lésung des PCP, welche mit dem Startpaar beginnt.
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Turingmaschinen simulieren in MPCP (1)

Wir wollen das Halteproblem von DTMs auf das MPCP reduzieren.

Wir entwickeln dazu eine Many-One-Reduktion, die eine Instanz des Halteproblems in
eine Instanz des MPCP verwandelt.
~» Kodiere TM-Berechnungen als Sequenz von Wortpaaren
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Turingmaschinen simulieren in MPCP (1)

Wir wollen das Halteproblem von DTMs auf das MPCP reduzieren.

Wir entwickeln dazu eine Many-One-Reduktion, die eine Instanz des Halteproblems in
eine Instanz des MPCP verwandelt.
~» Kodiere TM-Berechnungen als Sequenz von Wortpaaren

Ansatz fiur die Reduktion:
® Das Wort, welches zur Lésung des MPCP entsteht, kodiert den Lauf einer TM

— Halt die TM, dann ist der Lauf endlich und es gibt eine Lésung
— Halt die TM nicht, dann wird es keine Lésung geben

® Eine TM-Konfiguration kénnen wir wie immer als Wort der Form v g w darstellen

* Wir kodieren einen Lauf als Folge von Konfigurationen, getrennt mit # (kein
Alphabetszeichen oder Zustand der TM)
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Turingmaschinen simulieren in MPCP (2)

Wie kann man sicherstellen, dass die MPCP-L&sung eine korrekte Folge von
TM-Konfigurationen kodiert?
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Turingmaschinen simulieren in MPCP (2)

Wie kann man sicherstellen, dass die MPCP-L&sung eine korrekte Folge von
TM-Konfigurationen kodiert?

Kernidee:

Das Lésungswort soll wie folgt beginnen: #co#c #c3#. . ., wobei ¢; Konfigurationen
kodieren

Beim PCP entsteht das Lésungswort doppelt, oben und unten

Wir beginnen mit

€

}, d.h. das obere (leere) Wort liegt eine Konfiguration zurlick
#CO

Wir definieren die Wortpaare so, dass man oben eine Kopie der unteren
Konfiguration nur dann erzeugen kann, wenn man gleichzeitig unten die
Nachfolgerkonfiguration anfugt

Falls die TM hélt, dann sorgen wir dafur, dass das obere Wort die fehlende
Konfiguration aufholen kann
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Turingmaschinen simulieren in MPCP (3)
Uberfilhrungsregeln kodieren die Ubergénge der DTM:

qa—

falls 6(g, a) = (p,b, R)
bp|
cqa— "
falls 6(¢,a) = {p,b, Ly und c € I" beliebig
pch|
qa—
falls 6(¢,a) = (p,b,N)
pbj

In diesen Regeln steckt die Kernidee des Beweises. Es sind die wesentlichen Regeln,
mit denen man Zustandssymbol g € Q im oberen Wort replizieren kann.
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Turingmaschinen simulieren in MPCP (4)

Es gibt zwei Randfélle:

Am linken Rand soll unsere TM einfach ,ansto3en” (einseitig unendliches Band):

#qa
#pb

falls 6(¢g,a) = {p,b, L)

Am rechten Rand kann die TM das Band beliebig erweitern:

75
flr jeden Zustand g € O
q#

Anmerkung: Diese Umformung ist kein echter Rechenschritt, aber erspart uns die
Auflistung von Sonderfallen fiir jede denkbare Transition am rechten Rand.

Markus Krétzsch, 19. Januar 2026 Formale Systeme Folie 23 von 30



Turingmaschinen simulieren in MPCP (5)

Kopierregeln erlauben uns, den Rest der TM-Konfiguration (die Teile, die nicht nah am
Lese-/Schreibkopf liegen) vom unteren zum oberen Wort zu kopieren:

H fir jedes Symbol x € ' U {#}
X

Anmerkung: Damit kann man keine Zustande kopieren.
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Turingmaschinen simulieren in MPCP (5)

Kopierregeln erlauben uns, den Rest der TM-Konfiguration (die Teile, die nicht nah am
Lese-/Schreibkopf liegen) vom unteren zum oberen Wort zu kopieren:

H fir jedes Symbol x € ' U {#}
X

Anmerkung: Damit kann man keine Zustande kopieren.

Die Startregel schlieBlich setzt die Berechnung in Gang:

wobei go der Startzustand und w € X* das Eingabewort ist

[#qow
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Turingmaschinen simulieren in MPCP (6)

Zwischenstand: Angefangen von der Startregel zwingen uns die Regeln,
Konfigurationen zu kopieren und dabei entweder einen Berechnungsschritt
auszufiihren, oder mehr Speicher am rechten Rand zu allozieren.
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Turingmaschinen simulieren in MPCP (6)

Zwischenstand: Angefangen von der Startregel zwingen uns die Regeln,
Konfigurationen zu kopieren und dabei entweder einen Berechnungsschritt
auszufiihren, oder mehr Speicher am rechten Rand zu allozieren.

Es fehlt noch ein Abschluss:
(wir verwenden ein weiteres zusétzliches Symbol @)

qa—

falls (g, a) undefiniertund a € ' (d.h. a # #)
[ J
EL J Oa—
und firalleael
° ® |
o] o
der endgultige Abschluss
#
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Turingmaschinen simulieren in MPCP (7)

Fatz: Es gibt eine Many-One-Reduktion vom Halteproblem auf das modifizierte PCP. \

Beweis: Wir haben die Reduktion gerade angegeben, wobei das Wortpaar mit der
Startkonfiguration das Startpaar des MPCP ist.

Korrektheit (Skizze):

® Wenn es einen haltenden Lauf gibt, dann kann man eine Lésung des MPCP
finden: geman Konstruktion
® Wenn es eine Lésung fir das MPCP gibt, dann halt die TM:
— Wir kdnnen die Ubergénge als Berechnungsschritte interpretieren, d.h. es
entsteht ein Lauf
— Das obere Wort ist anfangs kirzer und wird in keiner Regel langer als das
untere, solange nicht eine haltende Konfiguration erreicht wurde
— Also kann das MPCP nur dann eine L&sung haben, wenn die TM halt. O

Markus Krotzsch, 19. Januar 2026 Formale Systeme Folie 26 von 30



Von PCP zu MPCP (1)

Es fehlt noch eine Reduktion von MPCP auf PCP.

Fatz: Es gibt eine Many-One-Reduktion vom modifizierten PCP auf PCP.

Beweis: Wir verwenden zwei zusatzliche Symbole # und m. Fir ein Wortw = a; ---a,
definieren wir:

#Wi 2#611#"'#61(# Wy =Cl1#"'#ag# #WZ#Cll#"'#a[

Die gesuchte Reduktion bildet jetzt ein MPCP

M

M Yk

ab auf das PCP
I#xl#} [Xl#‘ lxk# u
#)1 #)1 #yk| [#m
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Von PCP zu MPCP (2)

Beweis (Fortsetzung): Wir erhalten also das folgende PCP

#X14 X1# Xic#
#Y1 #Y1 #Vk

Es ist nicht schwer zu zeigen, dass dies genau dann eine Lésung hat, wenn das
urspriingliche MPCP eine hat:

#m
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Von PCP zu MPCP (2)

Beweis (Fortsetzung): Wir erhalten also das folgende PCP

#X14 X1# Xic#
#Y1 #Y1 #Vk

Es ist nicht schwer zu zeigen, dass dies genau dann eine Lésung hat, wenn das
urspriingliche MPCP eine hat:

#m

e <&"“Wenn das MPCP eine Lésung hat, dann erhalten wir leicht eine
entsprechende Ldsung fur das PCP, wobei jedes Symbol zusatzlich von #
umgeben ist und das Wort auf m endet
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Von PCP zu MPCP (2)

Beweis (Fortsetzung): Wir erhalten also das folgende PCP

#X14 X1# Xic#
#Y1 #Y1 #Vk

Es ist nicht schwer zu zeigen, dass dies genau dann eine Lésung hat, wenn das
urspriingliche MPCP eine hat:

#m

e <&"“Wenn das MPCP eine Lésung hat, dann erhalten wir leicht eine
entsprechende Ldsung fur das PCP, wobei jedes Symbol zusatzlich von #
umgeben ist und das Wort auf m endet

e ="“Wenn das PCP eine Lésung hat, dann muss es mit dem ersten Wortpaar
beginnen, da nur dieses Wortpaar gleiche Anfangssymbole hat. Durch Weglassen
aller # und m entsteht wieder eine Lésung des MPCP. O
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Zusammenfassung und Ausblick

Alle interessanten Fragen Uber Turingmaschinen sind unentscheidbar

Semi-Entscheidbarkeit wird durch Many-One-Reduktionen erhalten, nicht aber durch
Turing-Reduktionen

Das Postsche Korrespondenzproblem ist ein unentscheidbares Problem, das nicht
(direkt) mit TMs zu tun hat — es ist hilfreich bei vielen Reduktionen

Was erwartet uns als nachstes?
® Turingmaschinen als Modell fir Typ 0 und Typ 1
® Unberechenbare Probleme formaler Sprachen
® AbschlieBende Bemerkungen und Zusammenfassung
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