Exercise 3.1. Which of the following literals describe the same value? Explain your answer.

1. "2"^^xsd:integer vs. "2.0"^^xsd:decimal
2. "2"^^xsd:decimal vs. "2"^^xsd:float
3. "2018-11-06T15:40:00+01:00"^^xsd:dateTime vs. "2018-11-06T14:40:00Z"^^xsd:dateTime
4. "2018-11-06T15:40:00+01:00"^^xsd:dateTime vs. "2018-11-06T14:40:00"^^xsd:dateTime

A detailed description of each of the various XML Schema datatypes is given in the online specification: see https://www.w3.org/TR/xmlschema11-2/.

Exercise 3.2. Recall that blank nodes act as placeholders for arbitrary resources in RDF: they assert that there is something without saying what it is. Such an assertion might logically follow from other, stronger assertions, so that some triples in a graph might be redundant. For example, the second triple in the following dataset can be omitted without loss of information:

\[
\text{eg:s } \text{eg:p } \text{eg:o}.
\]
\[
\text{_:1 } \text{eg:p } \text{_:2}.
\]

More generally, an instance of an RDF graph \(G \) is a graph \(\sigma(G) \) obtained by applying a function \(\sigma \) that maps blank nodes to arbitrary RDF terms. A graph is lean if it does not have any instance \(\sigma(G) \subset G \) that is strictly contained in \(G \). In the example, \(\sigma = \{ \text{_:1} \mapsto <s>, \text{_:2} \mapsto <o> \} \) shows that this graph is not lean.

Determine if the following graphs are lean:

(a) \[
\text{eg:s } \text{eg:p } \text{eg:o}.
\]
\[
\text{_:1 } \text{eg:p } \text{_:1}.
\]

(b) \[
\text{eg:s } \text{eg:p } \text{eg:o}.
\]
\[
\text{_:1 } \text{eg:p } \text{_:2}.
\]

(c) \[
\text{eg:s } \text{eg:p } \text{eg:o}.
\]
\[
\text{_:1 } \text{eg:p } \text{eg:o}.
\]

(d) \[
\text{eg:s } \text{eg:p } \text{eg:o}.
\]
\[
\text{_:1 } \text{eg:p } \text{eg:s}.
\]

* Exercise 3.3. Show that it is NP-complete to decide if an RDF graph is not lean.

Hint: Make a bijection between non-lean RDF graphs and \(k \)-colourable graphs.

Exercise 3.4. The bibliographic database DBLP\(^1\) offers individual data records as RDF in N-Triples format. This data can be downloaded from the URL obtained by appending .nt to the URI. Use this interface to find all publications that have https://dblp.org/pers/s/Studer:Rudi as their only author.

- Download some RDF files in your browser to find out how this information is encoded.

\(^1\)https://dblp.org
• Write a program that crawls a small part of the data to answer the query.

Note: If your program sends too many requests in a short time, the server will deny the request and return a **HTTP 429** status code instead. This response contains a `Retry-After` header specifying the number of seconds your program needs to wait before making another request.

Update: The behavior of DBLP server has changed! It is not returning 429 error anymore, but canceling connections. Dirty trick: use `time.sleep(2)` before or after executing any request.

Hint: `requests`\(^2\) provides a high-level API for making HTTP requests in Python, but you may need to install it, e.g., using `pip`.\(^3\) A built-in alternative that provides a lower-level interface is `urllib.request`.\(^4\)

\(^2\)http://docs.python-requests.org/en/master/
\(^3\)https://pypi.org/project/pip/
\(^4\)https://docs.python.org/3/library/urllib.request.html