
Pushing the Sonic Border — Sonic 1.0?

Anni-Yasmin Turhan
Theoretical Computer Science, TU Dresden, Germany

turhan@tcs.inf.tu-dresden.de

Abstract. This paper reports on extensions of the Description Logics non-standard
inference system Sonic. The recent contributions to the system are two-fold. Firstly,
Sonic is extended by two new of non-standard inferences, namely, implementations
of the good common subsumer w.r.t. a background terminology and a heuristics for
computing a minimal rewriting. Secondly, Sonic is available as a plugin for the well-
known ontology editor Protégé [11].

1 Introduction and Motivation

Sonic
1 is an inference component for so-called non-standard inferences for De-

scription Logics (DLs). DLs are a class of formalisms for representing termino-
logical knowledge of a given application domain in a structured and well-defined
way. The basic notions of DLs are concept descriptions and roles, representing
unary predicates and binary relations, respectively. DLs are a decidable frag-
ment of first-order logics. Besides satisfiability, DL systems usually provide their
users with standard inference services like subsumption of concepts.

More recently, non-standard inferences were introduced for DLs. They re-
sulted from the experience with large real-world DL ontologies, where stan-
dard inference algorithms did not suffice for building and maintaining purposes.
Non-standard inferences realize the so-called bottom-up approach [1] —instead
of directly defining a new concept, the knowledge engineer introduces several
intuitively related, typical examples as objects, which are then automatically
generalized into a concept description by the system. This concept description
for the closest generalization is then offered to the knowledge engineer as a can-
didate for the definition of the intended concept. The task of computing such a
concept description can be split into two subtasks: computing the most specific
concepts of the given objects, and then computing the least common subsumer
of these concepts.

Given concept descriptions C1, C2 to Cn in a description logic L, the least
common subsumer (lcs) of all Ci (where 1≤ i≤n) is defined as the least (w.r.t.
subsumption) concept description in L subsuming all Ci. The idea behind the
lcs inference is to extract the commonalities of the input concepts. It has been
argued in [1] that the lcs facilitates one step of the ‘bottom-up”-approach to

? This work was supported by DFG under the grant BA 1122/4-4.
1

Sonic stands for “simple ontology non-standard inference component”.Sonic is available from
http://wwwtcs.inf.tu-dresden.de/~sonic/



the modeling task. For a variety of DLs there have been algorithms devised for
computing the lcs, see [1, 15] for details.

The approximation in L2 of a concept description C from a DL L1 is defined
as the least concept description (w.r.t. subsumption) in a DL L2 that subsumes
C. The idea underlying approximation is to translate a concept description into
a typically less expressive DL with as little loss of information as possible. Ap-
proximation can be used to make non-standard inferences accessible to more
expressive DLs so that at least an approximate solution can be computed. Ap-
proximation has so far been investigated for a few pairs of DLs, see [10, 9]. The
first version of Sonic implemented both of these non-standard inferences, see
[16]. Sonic realizes the lcs for the DL ALEN . This DL provides conjunction,
existential, value and number restrictions and primitive negation (negation of
primitive concept names) as concept constructors. The DL ALCN extends ALEN
by the boolean operators on concepts. Approximation in Sonic can translate
ALCN - to ALEN -concept descriptions.

It has been shown that for this DL the size of the concept descriptions re-
turned by the lcs can grow exponential [15] in the size of the input concept
descriptions. Although these worst case complexities are not likely to appear in
practice, it is desirable in our application to obtain short concepts descriptions
more comprehensible to a human reader. To this end we extend Sonic with an
implementation of minimal rewriting, that compresses the result obtained from
the lcs in a subsequent step. Given a terminology T and a concept description
C (w.r.t. the signature S), then, intuitively, the minimal rewriting is a con-
cept description D (w.r.t. signature S) that is equivalent to C w.r.t. T and is
the concept with the smallest concept size with this property. The computation
problem for finding a minimal rewriting for the DL ALE was investigated in [2].

However, the reasoning services provided by Sonic’s first version are avail-
able for DLs with rather limited expressiveness. This refers as well to the set of
concept constructors as to the fact that only unfoldable terminologies are sup-
ported. Unfoldable terminologies neither allow for cyclic definitions nor multiple
concept definitions per concept name. Many applications nowadays use ontolo-
gies written in expressive DLs and that make use of cyclic definitions or general
concept inclusion axioms. Standard DL reasoners like Racer [12] can handle
this kind of ontologies. In order to bridge this gap, at least to some extent,
reasoning w.r.t. a background terminology has been introduced recently [4, 5].

Here the idea is to have a fixed background terminology defined in an ex-
pressive DL, e.g., a large terminology written by experts. The user then wants
to extend this terminology and employs a less expressive DL and needs support
through the bottom-up approach when building this user-specific extension of
the background terminology. In our case the DL ALC is used for the background
terminology and ALE is the less expressive user DL. For this setting so far no
feasible lcs algorithm could be devised. Thus the notion of good common sub-



sumers (gcs) was introduced. A gcs is a common subsumer which may, however,
not be the least one. Obviously there exist different algorithms for computing
the gcs, since the result of such an algorithm can be more or less close (w.r.t.
subsumption) to the lcs. In [5] several algorithms to compute a gcs were intro-
duced. One of them computes the gcs based on the subsumption closure and is
called the scs. This algorithm is implemented in Sonic.

In order to assess the usefulness of the inferences and the bottom-up approach
as a whole it is expedient to put them into practice and to offer an implemen-
tation to a wider user group. To this end Sonic provides these inferences as a
plugin for the ontology editor OilEd [6] already in its first version and provides
them now as a plugin for ontology editor Protégé [11] together with the OWL
plugin [14]. However, it should be noted that Sonic is a prototype system under
development and not a fully-fledged end-user tool yet.

2 A Heuristic for Minimal Rewriting in Sonic

Usually, algorithms for non-standard inferences, such as computing the lcs,
start by unfolding the input concept descriptions (i.e., replace defined names
by their definition ). These algorithms produce concept descriptions not con-
taining names defined in the terminology, which are rather large and thus hard
to comprehend. The idea to produce more succinct result concept description is
now to “re-introduce” concept names for (parts of) concept descriptions.

It turned out that the complexity for computing a minimal rewriting for ALE
and unfoldable terminologies is in PSPACE [2], thus a heuristic was devised in
[3] that computes a small, but not necessarily minimal rewriting in deterministic
polynomial time. The algorithm for this heuristic is implemented in Sonic.

The algorithm rewrite(C) has an extension phase and a reduction phase in
every recursive step. In the extension phase all concept names subsuming C w.r.t.
the terminology are conjoined to the concept C. In the subsequent reduction
phase all complex sub-concept descriptions of C that are redundant to the names
added in the extension phase are removed. The algorithm is then applied to the
remaining sub-concept descriptions of C.

Our implementation of the heuristic for a minimal Rewriting is done in Lisp
in a straightforward way. In the reduction phase the more selective condition is
applied first to reduce the number of subsumption tests. We tested our imple-
mentation on a terminology from a chemical process engineering application [8].
For the 510 lcs calls in the test suite it turned out that the concept descriptions
were decreased by one third on the average (and up to a half) by computing
the minimal rewriting for the result returned by the lcs. The run-times were
increased by 3.1 seconds on the average by computing the minimal rewriting,
which is a feasible run-time.



3 SCS in Sonic

The methods for computing the lcs are restricted to rather inexpressive descrip-
tions logics not allowing for disjunction (and thus not allowing for full nega-
tion). In fact, for languages with disjunction, the lcs of a collection of concepts
is just their disjunction, and nothing new can be learned from building it. In
order to provide the bottom-up approach also for more expressive DLs, the ex-
tended bottom-up approach w.r.t. background terminologies was introduced in
[4, 5]. In the latter paper several algorithms for computing the gcs are proposed.
The concept descriptions returned by these gcs algorithms use only the concept
constructors of ALE , but can, however, use concept names that have an ALC
definition in the background terminology.

Sonic implements the scs, i.e., a gcs that is based on the subsumption clo-
sure, see [5]. It uses the concept hierarchy of the background terminology and
user terminology, which is computed by the DL reasoner, to find the commonal-
ities of the (negated) concept names mentioned in the concept descriptions. Our
implementation of the scs is done in Lisp and shares large parts of the code for
the lcs implementation for ALE . However, it uses a different unfolding function
that unfolds only the ALE-part of a concept description (and leaves names with
ALC-definitions in the concept description). It turned out in our experiments
presented in [5] that this variant of the gcs performs well w.r.t. the specificity
of the results compared to other gcs variants. For example using ALC to ALE-
approximation first and then applying the lcs yields a more general concept
description in about 30% of the cases.

4 Sonic plugin for Protégé

Protégé [11] is a well-known ontology editor with a big user community. More-
over, it comes with the OWL plugin [14], which enables user to build OWL
ontologies and to connect to Racer or any other DIG [7] compliant standard
DL reasoner to classify the ontology. OWL is a standard closely related to DLs
and the OWL plugin uses a syntax similar to what is used in DL systems.
This and the use of Racer facilitated the task of building the Sonic plugin
for Protégé, although Sonic can, of course, handle only a small fragment
of OWL. The Sonic plugin provides two new panels for Protégé. One for
computing approximations and the other one for computing commonalities of
concepts. on the latter one the inferences lcs and scs are both offered. The Sonic

user can choose in preferences which of the two inferences is to be applied, if the
commonalities of concept descriptions is computed. Moreover rewriting can be
applied, if an ALE terminology is used.

Sonic uses Racer [12] as an underlying DL reasoner for satisfiability and
subsumption tests. Moreover it uses Racer to access the definitions of the
concepts from the terminology. The two DL reasoners are connected via LRacer
[13] a TCP-based client for RACER.



5 Future Work

We have implemented two new inferences to overcome barriers for the usability
of Sonic in practical applications. Moreover we offer Sonic as a plugin for
Protégé users. Future work for Sonic is to optimize the implementation of
ALC-ALE approximation. This can be done already by fairly simple methods, e.g.
by introducing caching of intermediate results. To enhance the expressiveness of
DLs and terminologies for which the computation of commonalities is available,
we would like to investigate the scs for terminologies with cycles and GCIs –
here it mainly depends on the unfolding function to come up with a gcs that
does not lose too much of the information and is thus still useful in practice.

Finally, we would like to thank Ida Siahaan who implemented Sonic’s con-
nection to Protégé and to the OWL plugin.

References

1. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumer in description logics
with existential restrictions. In T. Dean, ed., Proc. of IJCAI-99, p. 96–101, Stockholm, Sweden,
1999. Morgan Kaufmann.

2. F. Baader, R. Küsters, and R. Molitor. Rewriting concepts using terminologies. In A.G. Cohn,
F. Giunchiglia, and B. Selman, eds., Proc. of KR-00, p. 297–308, CA, 2000. Morgan Kaufmann.

3. F. Baader, R. Küsters, and R. Molitor. Rewriting concepts using terminologies – revisited.
LTCS-Report 00-04, LuFG Theoretical Computer Science, RWTH Aachen, Germany, 2000. See
http://lat.inf.tu-dresden.de/research/reports.html.

4. F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer w.r.t. a
background terminology. In J.J. Alferes and J.A. Leite, eds., Proc. of JELIA’04, vol. 3229 of
LNCS, p. 400–412, Lisbon, Portugal, 2004. Springer.

5. F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer w.r.t. a
background terminology. J. of Applied Logics, 2005. To appear.

6. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a Reason-able Ontology Editor for
the Semantic Web. In Proc. of KI’01, vol. 2174 of LNAI, p. 396–408, Vienna, Sep 2001. Springer.

7. S. Bechhofer, R. Möller, and P. Crowther. The DIG description logic interface. In Proc. of DL’03,
Rome, Italy, 2003.

8. R. Bogusch, B. Lohmann, and W. Marquardt:. Computer-aided process modeling with MODKIT.
Computers and Chemical Engineering, p. 963–995, 2001.

9. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximating ALCN -concept descriptions. In I.
Horrocks and S. Tessaris, eds., Proc. of DL’02, nr. 53 of CEUR-WS, 2002.

10. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in description logics. In
D. Fensel, D. McGuinness, and M. Williams, eds., Proc. of KR-02, CA, 2002. Morgan Kaufmann.

11. J. Gennari, M. Musen, R. Fergerson, W. Grosso, M Crubézy, H. Eriksson, N. Noy, and S. Tu.
The evolution of protégé-2000: An environment for knowledge-based system development. Int.
Journal of Human-Computer Studies, 58:89–123, 2003.

12. V. Haarslev and R. Möller. RACER system description. In R. Goré, A. Leitsch, and T. Nipkov,
eds., Proc. of IJCAR ’01, LNCS. Springer, 2001.

13. V. Haarslev, R. Möller, and M. Wessel. RACER User’s Guide and Manual, 2004. Available from:
http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-manual-1-7-19.pdf%.

14. H. Knublauch, M. Musen, and A. Rector. Editing description logic ontologies with the protégé

owl plugin. In V. Haarslev and R. Möller, eds., Proc. of DL’04, nr. 104 in CEUR-WS, 2004.
15. R. Küsters and R. Molitor. Computing Least Common Subsumers in ALEN . In B. Nebel, ed.,

Proc. of IJCAI-01, p. 219–224. Morgan Kaufman, 2001.
16. A.-Y. Turhan and C. Kissig. Sonic — Non-standard inferences go OilEd. In D. Basin and

M. Rusinowitch, eds., Proc. of IJCAR ’04, vol. 3097 of LNCS, p. 321–325. Springer, 2004. Down-
load: http://wwwtcs.inf.tu-dresden.de/~sonic/.


