Really Essential Definitions

Definition (Term algebra, [23])

Let Ω be a signature and ar its type, and let X be a set (we say that the elements of X are variables). We define the set of terms over Ω with variables X, denoted by T_{Ω} (X), as follows:

- $X \subseteq T_{\Omega}(X)$, i.e., any variable is a term, and
- for any $n \in \mathbb{N}$, any $\omega \in \operatorname{ar}^{-1}[n]$, and any $t_1, t_2, \ldots, t_n \in T_{\Omega}(X)$, we have $\omega(t_1, t_2, \ldots, t_n) \in T_{\Omega}(X)$, i.e., we obtain terms by applying operations to terms.

The term algebra over Ω with variables X is the algebra

$$\mathcal{T}_{\Omega}\left(X\right) := \left(T_{\Omega}\left(X\right), (f_{\omega})_{\omega \in \Omega}\right),$$

where

$$f_{\omega}\,:\,T_{\Omega}\left(X\right)^{\mathsf{ar}\left(\omega\right)}\,\rightarrow\,T_{\Omega}\left(X\right):\left(t_{1},t_{2},\ldots,t_{\mathsf{ar}\left(\omega\right)}\right)\,\mapsto\,\omega\left(t_{1},t_{2},\ldots,t_{\mathsf{ar}\left(\omega\right)}\right).$$

Bands Named After Things From a Fictional Universe

band 1	bandutel 1	unverse	goves
Q we constant	Hery and the Follers	Harry Follow antiverse	alternative sock, inde sock, Wood rock
Q mot 01122200	Naghr	Note mythology	black metal
Q ₁₀₀ 0,0000000	Arcalagon	Takker's legendarium	black metal
Q magrassers	Anaphii	Takter's Ingenitation	Mark metal
Q not 0,000000	Cirth Gorgor	Tokker's logendarium	black metal
Quadrations	Geograph	Tokker's tegenderium	black metal
Q _{macgonary}	berged	Tubbers legendarium	Mark meld
Q not 03433479	Fivendel	Tolkien's legenderium	black metal, lish metal
Q ext Q 11915029	Pensinal	The Whoter universe	contemporary felt music, pages metal
Q waQ17389696	Methodos	Takker's tegendarium	death craftal
Q-we0221281	Margath	Tokier's ingenisriers	death metal
Q we 0 100900	Amer. Amerit	Tokker's legenderism	death metal, Wilring metal
Q wa 0666739	Yurisan	Kelenala	Nik rootal
Quagassass	Bontedi	Tokker's Ingenitation	Microsoph
Q not 0.758894	Audity Home	Twin Protes	hard rock.
Q ₁₀₀ 2(210)63729	Mountiide	linc sage	bany ratii
Q we connect	Critic Ungel	Triklan's Ingendatura	beary rodal
Q we 0.7752900	The Mudbloods	Harry Poller aniverse	India rask
Q we casser	Conduit	Tokker's logendarium	melodic death-motal
Q wed the retri	Owen Blory	Marvel Universe	trefalcore
Q excession	The	Dar Yek rudherse	pgs male
Q exp.(79919	bengard	Tokker's lagendarium	power routal
Q N/30678410	Marition	Tokker's legendarium	progressive took, art took, nee-progressive rook
О неситирг	Speck's Board	Dar Yeh rudiorse	progressive nock, progressive model
Q es 01157940	Cogoto	Star Milans expanded to other mode, Star Milan universe	purk rock
Q suscinitive	Billion Yago	Russian-bity takes	rock music
Of any Coscosion	Son Orka	The World universe	such music
Q moi 0221449	Shappel	Tokken's legenderken	took music
Q w/r (2 12060200)	Elbereth Taldes	Tokken's legenderium	speed rivinsi
Q war(21005310	Carach Angree	Yokken's legendarium	symphonic block metali
Q mei 03045500	Directain	Tokken's lageredurium	haddens/heavy metal
Q m/s 040073708	Sonitch Bandis Crow	Creath Bandlocot universe	turntoliters, breekbest
Q war Q67929988	CHIRN	Nania universa	MBD Nove
Q weg 179817	Draco and the Malloys	Harry Foller universe	Million of Holes
Q automotive	Ministry of Marris	Harry Enther soliciones	Mirarisos

Figure 4.3 depicts the full system.

Figure 4.3 depicts the full system. We start with one spike in the acc neuron, two spikes in the k_1 neuron, and four spikes in the kill neuron.

Figure 4.3 depicts the full system. We start with one spike in the acc neuron, two spikes in the k_1 neuron, and four spikes in the kill neuron. Initially, the first component is active, and k_1 is the only neuron where a rule can be applied.

Figure 4.3 depicts the full system. We start with one spike in the acc neuron, two spikes in the k_1 neuron, and four spikes in the kill neuron. Initially, the first component is active, and k_1 is the only neuron where a rule can be applied. One of the two rules is chosen non-deterministically, and either one or two spikes are emitted.

Figure 4.3 depicts the full system. We start with one spike in the acc neuron, two spikes in the k_1 neuron, and four spikes in the kill neuron. Initially, the first component is active, and k_1 is the only neuron where a rule can be applied. One of the two rules is chosen non-deterministically, and either one or two spikes are emitted. Then, only kill has an applicable rule.

Figure 4.3 depicts the full system. We start with one spike in the acc neuron, two spikes in the k_1 neuron, and four spikes in the kill neuron. Initially, the first component is active, and k_1 is the only neuron where a rule can be applied. One of the two rules is chosen non-deterministically, and either one or two spikes are emitted. Then, only kill has an applicable rule. For now, assume k_1 indeed sends out two spikes.

Figure 4.3 depicts the full system. We start with one spike in the acc neuron, two spikes in the k_1 neuron, and four spikes in the kill neuron. Initially, the first component is active, and k_1 is the only neuron where a rule can be applied. One of the two rules is chosen non-deterministically, and either one or two spikes are emitted. Then, only kill has an applicable rule. For now, assume k_1 indeed sends out two spikes. These two spikes are then deleted in kill, and no more rules in the first component are applicable.

Figure 4.3 depicts the full system. We start with one spike in the acc neuron, two spikes in the k_1 neuron, and four spikes in the kill neuron. Initially, the first component is active, and k_1 is the only neuron where a rule can be applied. One of the two rules is chosen non-deterministically, and either one or two spikes are emitted. Then, only kill has an applicable rule. For now, assume k_1 indeed sends out two spikes. These two spikes are then deleted in kill, and no more rules in the first component are applicable. Thus, control transfers to the second component.

Figure 4.3 depicts the full system. We start with one spike in the acc neuron, two spikes in the k_1 neuron, and four spikes in the kill neuron. Initially, the first component is active, and k_1 is the only neuron where a rule can be applied. One of the two rules is chosen non-deterministically, and either one or two spikes are emitted. Then, only kill has an applicable rule. For now, assume k_1 indeed sends out two spikes. These two spikes are then deleted in kill, and no more rules in the first component are applicable. Thus, control transfers to the second component. The neuron acc sends its contents (only a single spike for now) to $d_1,\,d_2,\,$ and the environment, and then k_2 sends two spikes back into $k_1.$

$$\sum_{i=0}^{n} 2^i = 2^n - 1$$

spikes to the environment.

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

spikes to the environment. acc will now send out a final spike, bringing the total to 2^n (note that $2^0=1$, so this also works for n=0).

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

spikes to the environment. acc will now send out a final spike, bringing the total to 2^n (note that $2^0=1$, so this also works for n=0). None of the rules in d_1 and d_2 are applicable (in fact, no rule in the system at all is applicable), so the computation stops.

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

spikes to the environment. acc will now send out a final spike, bringing the total to 2^n (note that $2^0=1$, so this also works for n=0). None of the rules in d_1 and d_2 are applicable (in fact, no rule in the system at all is applicable), so the computation stops. Clearly, the language generated by Π working according to the terminating protocol in the maximally-parallel mode and taking the total number of spikes sent to the environment is

$$C_{\text{tot}} \mathcal{N}_{t}^{\text{maxpar}} (\Pi) = \{2^{n} \mid n \in \mathbb{N}\} = P.$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

spikes to the environment. acc will now send out a final spike, bringing the total to 2^n (note that $2^0=1$, so this also works for n=0). None of the rules in d_1 and d_2 are applicable (in fact, no rule in the system at all is applicable), so the computation stops. Clearly, the language generated by Π working according to the terminating protocol in the maximally-parallel mode and taking the total number of spikes sent to the environment is

$$C_{\text{tot}} \mathcal{N}_{t}^{\text{maxpar}} (\Pi) = \{2^{n} \mid n \in \mathbb{N}\} = P.$$

As the only source of non-determinism in the system is the selection of the rule to be fired from among the applicable rules, it is exactly this mechanism we need to exploit to allow the system to decide which number to generate, the idea being that, depending on the rule chosen, the computation is either stopped or continues.

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

spikes to the environment. acc will now send out a final spike, bringing the total to 2^n (note that $2^0=1$, so this also works for n=0). None of the rules in d_1 and d_2 are applicable (in fact, no rule in the system at all is applicable), so the computation stops. Clearly, the language generated by Π working according to the terminating protocol in the maximally-parallel mode and taking the total number of spikes sent to the environment is

$$C_{\text{tot}} \mathcal{N}_{t}^{\text{maxpar}} (\Pi) = \{2^{n} \mid n \in \mathbb{N}\} = P.$$

As the only source of non-determinism in the system is the selection of the rule to be fired from among the applicable rules, it is exactly this mechanism we need to exploit to allow the system to decide which number to generate, the idea being that, depending on the rule chosen, the computation is either stopped or continues.

We depict such a module in Figure 4.2. Initially, the k_1 neuron contains two spikes and the kill neuron starts with four spikes, whereas k_2 remains empty.

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

spikes to the environment. acc will now send out a final spike, bringing the total to 2^n (note that $2^0=1$, so this also works for n=0). None of the rules in d_1 and d_2 are applicable (in fact, no rule in the system at all is applicable), so the computation stops. Clearly, the language generated by Π working according to the terminating protocol in the maximally-parallel mode and taking the total number of spikes sent to the environment is

$$C_{\text{tot}} \mathcal{N}_{t}^{\text{maxpar}} (\Pi) = \{2^{n} \mid n \in \mathbb{N}\} = P.$$

As the only source of non-determinism in the system is the selection of the rule to be fired from among the applicable rules, it is exactly this mechanism we need to exploit to allow the system to decide which number to generate, the idea being that, depending on the rule chosen, the computation is either stopped or continues.

We depict such a module in Figure 4.2. Initially, the k_1 neuron contains two spikes and the kill neuron starts with four spikes, whereas k_2 remains empty. If k_1 emits two spikes, these two are then forgotten in kill.

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

spikes to the environment. acc will now send out a final spike, bringing the total to 2^n (note that $2^0=1$, so this also works for n=0). None of the rules in d_1 and d_2 are applicable (in fact, no rule in the system at all is applicable), so the computation stops. Clearly, the language generated by Π working according to the terminating protocol in the maximally-parallel mode and taking the total number of spikes sent to the environment is

$$C_{\text{tot}} \mathcal{N}_{t}^{\text{maxpar}} (\Pi) = \{2^{n} \mid n \in \mathbb{N}\} = P.$$

As the only source of non-determinism in the system is the selection of the rule to be fired from among the applicable rules, it is exactly this mechanism we need to exploit to allow the system to decide which number to generate, the idea being that, depending on the rule chosen, the computation is either stopped or continues.

We depict such a module in Figure 4.2. Initially, the k_1 neuron contains two spikes and the kill neuron starts with four spikes, whereas k_2 remains empty. If k_1 emits two spikes, these two are then forgotten in kill. Control transfers to the second component, k_2 emits the two spikes, control transfers back to the first component, and the module has returned to its initial configuration.

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

spikes to the environment. acc will now send out a final spike, bringing the total to 2^n (note that $2^0=1$, so this also works for n=0). None of the rules in d_1 and d_2 are applicable (in fact, no rule in the system at all is applicable), so the computation stops. Clearly, the language generated by Π working according to the terminating protocol in the maximally-parallel mode and taking the total number of spikes sent to the environment is

$$C_{\text{tot}} \mathcal{N}_{+}^{\text{maxpar}} (\Pi) = \{2^n \mid n \in \mathbb{N}\} = P.$$

As the only source of non-determinism in the system is the selection of the rule to be fired from among the applicable rules, it is exactly this mechanism we need to exploit to allow the system to decide which number to generate, the idea being that, depending on the rule chosen, the computation is either stopped or continues.

We depict such a module in Figure 4.2. Initially, the k_1 neuron contains two spikes and the kill neuron starts with four spikes, whereas k_2 remains empty. If k_1 emits two spikes, these two are then forgotten in kill. Control transfers to the second component, k_2 emits the two spikes, control transfers back to the first component, and the module has returned to its initial configuration. If k_1 emits only a single spike, however, kill emits five spikes, and computation then stops as none of the neurons contains an applicable rule anymore.

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

spikes to the environment. acc will now send out a final spike, bringing the total to 2^n (note that $2^0=1$, so this also works for n=0). None of the rules in d_1 and d_2 are applicable (in fact, no rule in the system at all is applicable), so the computation stops. Clearly, the language generated by Π working according to the terminating protocol in the maximally-parallel mode and taking the total number of spikes sent to the environment is

$$C_{\text{tot}} \mathcal{N}_t^{\text{maxpar}} (\Pi) = \{2^n \mid n \in \mathbb{N}\} = P.$$

As the only source of non-determinism in the system is the selection of the rule to be fired from among the applicable rules, it is exactly this mechanism we need to exploit to allow the system to decide which number to generate, the idea being that, depending on the rule chosen, the computation is either stopped or continues.

We depict such a module in Figure 4.2. Initially, the k_1 neuron contains two spikes and the kill neuron starts with four spikes, whereas k_2 remains empty. If k_1 emits two spikes, these two are then forgotten in kill. Control transfers to the second component, k_2 emits the two spikes, control transfers back to the first component, and the module has returned to its initial configuration. If k_1 emits only a single spike, however, kill emits five spikes, and computation then stops as none of the neurons contains an applicable rule anymore.

4.4. Comparing the two approaches

2038-01-19T03:14:077

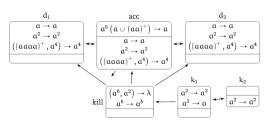


Figure 4.3.: The complete system Π

Expansion rules

Use	Expansion
Ts Ts&&	T1,, Tn T1&&,, Tn&&
•	x <t1, y="">::z,, x<tn, y="">::z</tn,></t1,>
	x <t1&, u1="">,, x<tn&, un=""> func(5, v1),, func(5, vn)</tn&,></t1&,>

• (Please note: ellipses on the right are in a different font)

Abstract

- It was a simple choice, really, on an IBM 370 in the 70's, between APL, Fortran, Lisp 1.5, PL/1, COBOL, and Simula'67. Nothing could come close to Simula's combination of strong typing, garbage collection, and proper string processing. Separate compilation (prefix classes) and coroutines were nice bonuses. And then there were these ... "objects" but, well, nothing is perfect. Hot topics in those days were the freshly invented denotational semantics (which Simula didn't have), formal type systems (which objects didn't have), and abstract data types (which seemed to have confusingly little to do with classes). Still, Simula was the obvious choice to get something done comfortably because, after all, it was an improved Algol. It even supported the functional programming feature of call-by-name. So, it became my first favorite language, for every reason other than it being object-oriented.
- The story I am going to tell is the very, very slow realization that Simula was the embodiment of a radically different philosophy of programming, and the gradual and difficult efforts to reconcile that philosophy with the formal methods that were being developed for procedural and functional programming. Along the way, domain theory helped rather unexpectedly, at least for a while. Type theory had to be recast for the task at hand. Landin's lambda-reductionism had to be partially abandoned. Always, there seemed to be a deep fundamental mismatch between objects and procedures, well described by Reynolds, that made any unification impossibly complicated. But in the end, both object-oriented and procedural programming have benefited from the clash of cultures. And the story is far from over yet, as witnessed by the still blooming area of program verification for both procedural and object-oriented languages.