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The Description Logic (DL) research of the last 20 years was mainly concerned with increasing the expressive power of the
employed description language without losing the ability of implementing highly-optimized reasoning systems that behave well
in practice, inspite of the ever increasing worst-case complexity of the underlying inference problems. OWL DL, the standard
ontology language for the Semantic Web, is based on such an expressive DL for which reasoning is highly intractable. Its
sublanguage OWL Lite was intended to provide a tractable version of OWL, but turned out to be only of a slightly lower
worst-case complexity than OWL DL. This and other reasons have led to the development of two new families of light-weight
DLs, EL and DL-Lite, which recently have been proposed as profiles of OWL 2, the new version of the OWL standard. In this
paper, we give an introduction to these new logics, explaining the rationales behind their design.

1 Introduction

Description Logics [8] are a well-investigated family of logic-
based knowledge representation formalisms, which can be used
to represent the conceptual knowledge of an application domain
in a structured and formally well-understood way. They are em-
ployed in various application domains, such as natural language
processing, configuration, and databases, but their most notable
success so far is the adoption of the DL-based language OWL1

as a standard ontology language for the Semantic Web [33, 11].
In DLs, concepts are formally described by concept descrip-

tions, i.e., expressions that are built from concept names (unary
predicates) and role names (binary predicates) using concept
constructors. The expressivity of a particular DL is determined
by which concept constructors are available in it. From a se-
mantic point of view, concept names and concept descriptions
represent sets of individuals, whereas roles represent binary rela-
tions between individuals. For example, using the concept name
Woman, and the role name child, the concept of women having
a daughter can be represented by the concept description

Woman u ∃child.Woman,

and the concept of women having only daughters by

Woman u ∀child.Woman.

In its simplest form, a DL terminology (usually called TBox)
can be used to introduce abbreviations for complex concept de-
scriptions. For example, the concept definitions

Woman ≡ Human u Female
Mother ≡ Woman u ∃child.>

define the concept of a woman as a human that is female, and
the concept of a mother as a woman that has a child, where >
stands for the top concept (which is interpreted as the universe
of all individuals in the application domain). So-called general
concept inclusions (GCIs) can be used to state additional con-
straints on the interpretation of concepts and roles. In our ex-
ample, it makes sense to state domain and range restrictions for

1http://www.w3.org/TR/owl-features/

the role child. The GCIs

∃child.Human v Human
Human v ∀child.Human

respectively say that only human beings can have human chil-
dren, and that the child of a human being must be human.

In the assertional part (ABox) of a DL knowledge base, facts
about a specific application situation can be stated, by introduc-
ing named individuals and relating them to concepts and roles.
For example, the assertions

Woman(LINDA), child(LINDA, JAMES)

state that Linda is a woman, who has the child James.
Knowledge representation systems based on DLs provide

their users with various inference services that allow them to
deduce implicit knowledge from the explicitly represented knowl-
edge. For instance, the subsumption service allows one to de-
termine subconcept-superconcept relationships. For example,
w.r.t. the concept definitions from above, the concept Female
subsumes the concept Mother since all instances of the second
concept are necessarily instances of the first concept, i.e., when-
ever the above concept definitions are satisfied, then Mother is
interpreted as a subset of Female. With the help of the sub-
sumption service, one can compute the hierarchy of all concepts
defined in a TBox. This compound inference service is usually
called classification. The instance service can be used to check
whether an individual occurring in an ABox is necessarily an
instance of a given concept. For example, w.r.t. the above as-
sertions, concept definitions, and GCIs, the individual JAMES is
an instance of the concept Human. With the help of the instance
service, one can also compute answers to instance queries, i.e.,
all individuals occurring in the ABox that are instances of the
query concept C. In order to state more general search criteria,
one can use so-called conjunctive queries, i.e., conjunctions of
assertions that may also contain variables, of which some can
be existentially quantified. For example, the conjunctive query

∃y, z.Woman(x) ∧ child(x, y) ∧ child(z, y) ∧ Beatle(z)

asks for all women that have a child with a parent that is a
Beatle. With respect to the knowledge base we have introduced
so far, this conjunctive query has no individual as an answer.
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In order to ensure a reasonable and predictable behavior of a
DL system, the underlying inference problems (like the subsump-
tion and the instance problem) should at least be decidable for
the DL employed by the system, and preferably of low complex-
ity. Consequently, the expressive power of the DL in question
must be restricted in an appropriate way. If the imposed re-
strictions are too severe, however, then the important notions
of the application domain can no longer be expressed. Inves-
tigating this trade-off between the expressivity of DLs and the
complexity of their inference problems has been one of the most
important issues in DL research.

The general opinion on the (worst-case) complexity that is
acceptable for a DL has changed dramatically over time. Histor-
ically, in the early times of DL research people concentrated on
identifying formalisms for which reasoning is tractable, i.e., can
be performed in polynomial time [47]. The precursor of all DL
systems, Kl-One [16], as well as its early successor systems, like
Kandor [47], K-Rep [43], Back [48], and Loom [42], indeed
employed polynomial-time subsumption algorithms. Later on,
however, it turned out that subsumption in rather inexpressive
DLs may be intractable [38], that subsumption in Kl-One is
even undecidable [49], and that even for systems like Kandor
and Back, for which the expressiveness of the underlying DL
had been carefully restricted with the goal of retaining tractabil-
ity, the subsumption problem is in fact intractable [44]. The
reason for the discrepancy between the complexity of the sub-
sumption algorithms employed in the above mentioned early DL
systems and the worst-case complexity of the subsumption prob-
lems these algorithms were supposed to solve was due to the fact
that these systems employed sound, but incomplete subsump-
tion algorithms, i.e., algorithms whose positive answers to sub-
sumption queries are correct, but whose negative answers may
be incorrect. The use of incomplete algorithms has since then
largely been abandoned in the DL community, mainly because
of the problem that the behavior of the systems is no longer
determined by the semantics of the description language: an in-
complete algorithm may claim that a subsumption relationship
does not hold, although it should hold according to the seman-
tics. All the intractability results mentioned above already hold
for subsumption between concept descriptions without a TBox.
An even worse blow to the quest for a practically useful DL with
a sound, complete, and polynomial-time subsumption algorithm
was Nebel’s result [45] that subsumption w.r.t. an acyclic TBox
(i.e., an unambiguous set of concept definitions without cyclic
dependencies) in a DL with conjunction (u) and value restriction
(∀r.C) is already intractable.2

At about the time when these (negative) complexity results
were obtained, a new approach for solving inference problems in
DLs, such as the subsumption and the instance problem, was in-
troduced. This so-called tableau-based approach was first intro-
duced in the context of DLs by Schmidt-Schauß and Smolka [50],
though it had already been used for modal logics long before that
[22]. It has turned out that this approach can be used to handle
a great variety of different DLs [27, 26, 10, 7, 35, 15, 34, 30], and
it yields sound and complete inference algorithms also for very
expressive DLs. Although the worst-case complexity of these al-

2All the systems mentioned above supported these two concept
constructors, which were at that time viewed as being indispensable
for a DL. The DL with exactly these two concept constructors is called
FL0 [4].

gorithms is quite high, the tableau-based approach nevertheless
often yields practical procedures: optimized implementations of
such procedures have turned out to behave quite well in appli-
cations [9, 28, 31, 23, 29, 25], even for expressive DLs with a
high worst-case complexity (ExpTime and beyond). The advent
of efficient tableau-based algorithms was the main reason why
the DL community basically abandoned the search for DLs with
tractable inference problems, and concentrated on the design
of practical tableau-based algorithms for expressive DLs. The
most prominent modern DL systems, FaCT++ [53], Racer [24],
and Pellet [51] support very expressive DLs and employ highly-
optimized tableau-based algorithms.

In addition to the fact that DLs are equipped with a well-
defined formal semantics, the availability of mature systems that
support sound and complete reasoning in very expressive descrip-
tion formalisms was an important argument in favor of using DLs
as the foundation of OWL, the standard ontology language for
the Semantic Web. In fact, OWL DL is based on the expressive
DL SHOIN (D), for which reasoning is NExpTime-complete,
and its sublanguage OWL Lite is based on SHIF(D), for which
reasoning is still ExpTime-complete [32]. The OWL 2 standard
is based on the even more expressive DL SROIQ(D), which is
even 2NExpTime-complete [36].

Due to the ever increasing expressive power and worst-case
complexity of expressive DLs, there is also an increasing number
of ontologies emerging from practical applications that cannot
be handled by tableau-based reasoning systems without manual
tuning by the system developers, despite highly optimized im-
plementations. Perhaps the most prominent example is the well-
known medical ontology Snomed ct,3 which comprises 380,000
concepts and is used to generate a standardized health care ter-
minology used as a standard for medical data exchange in a
variety of countries such as the US, Canada, and Australia. In
tests performed in 2005 with FaCT++ and Racer, neither of
the two systems could classify Snomed ct [13],4 and Pellet still
could not classify Snomed ct in tests performed in 2008 [52].
From the DL point of view, Snomed ct is an acyclic TBox
that contains only the concept constructors conjunction (u),
existential restriction (∃r.C), and the top concept (>). The
DL with exactly these three concept constructors is called EL
[12]. In contrast to its counterpart with value restrictions, FL0,
the light-weight DL EL has much better algorithmic properties.
Whereas subsumption without a TBox is polynomial in both EL
[12] and FL0 [38], subsumption in FL0 w.r.t. an acyclic TBox is
coNP-complete [45] and w.r.t. GCIs it is even ExpTime-complete
[5]. In contrast, subsumption in EL stays tractable even w.r.t.
GCIs [17], and this result is stable under the addition of several
interesting means of expressivity [5, 6]. The DL EL and the
mentioned tractability results will be introduced in more detail
in the next section.

Another issue with expressive DLs and tableau-based algo-
rithms is that they do not scale too well to knowledge bases
with a very large ABox. In particular, query answering in expres-
sive DLs such as the already mentioned SHIF and SHOIN
is 2ExpTime-complete regarding combined complexity [39], i.e.,
the complexity w.r.t. the size of the TBox and the ABox. Thus

3http://www.ihtsdo.org/snomed-ct/
4Note, however, that more recent versions of FaCT++ and Racer

perform quite well on Snomed ct [52], due to optimizations specifi-
cally tailored towards the classification of Snomed ct.
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Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top concept > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential
restriction

∃r.C (∃r.C)I =
{x | ∃y : (x, y) ∈ rI ∧y ∈ CI}

general concept
inclusion (GCI)

C v D CI ⊆ DI

concept definition A ≡ C AI = CI

Table 1: Syntax and semantics of EL.

query answering in these logics is even harder than subsumption
while at the same time being much more time critical. Moreover,
query answering in these DLs is coNP-complete [46] regarding
data complexity (i.e., in the size of the ABox), which is viewed
as ‘unfeasible’ in the database community. These results are
dramatic since many DL applications, such as those that use
ABoxes as kind of web repositories, involve ABoxes with hun-
dred of thousands of individuals. It is a commonly held opinion
that, in order to achieve truly scalable query answering in the
short term, it is essential to make use of conventional relational
database systems for query answering in DLs. Given this pro-
viso, the question is what expressivity can a DL offer such that
queries can be answered using relational database technology
while at the same time meaningful concepts can be specified in
the TBox. As an answer to this, the DL-Lite family has been
introduced in [18, 19], designed to allow the implementation of
conjunctive query answering ‘on top of’ a relational database
system. In Section 3, we introduce DL-Litecore and two of its
extensions DL-LiteF and DL-LiteR. We also sketch the standard
approach to query answering in these languages. Interestingly,
also in EL it is possible to implement query answering using
a database system, though with a different approach than in
DL-Lite (see the end of Section 3).

2 The DL EL and its extension EL++

Starting with a set Ncon of concept names and a set Nrole of
role names, EL-concept descriptions are built using the concept
constructors top concept (>), conjunction (u), and existential
restriction (∃r.C). The semantics of EL-concept descriptions is
defined in the usual way, using the notion of an interpretation
I = (∆I , ·I), which consists of a non-empty domain ∆I and an
interpretation function ·I that assigns binary relations on ∆I to
role names and subsets of ∆I to concept descriptions, as shown
in the semantics column of Table 1.

A general concept inclusion (GCI) is of the form C v D
where C,D are EL-concept descriptions, and a concept defini-
tion is of the form A ≡ C where A is a concept name and C is
an EL-concept description. The interpretation I is a model of
the GCI C v D or the concept definition A ≡ C if it satisfies
the condition stated in the semantics column of Table 1. Obvi-
ously, this semantics implies that the concept definition A ≡ C
is equivalent to the two GCIs A v C,C v A in the sense that
they have the same models. For this reason, in the following we

(R1) If A1 uA2 v B ∈ T and A1, A2 ∈ S(A)
then add B to S(A)

(R2) If A1 v ∃r.B ∈ T and A1 ∈ S(A)
then add r to R(A,B)

(R3) If ∃r.B1 v A1 ∈ T and B1 ∈ S(B), r ∈ S(A,B)
then add A1 to S(A)

Figure 1: The completion rules for subsumption in EL.

will consider only GCIs. A finite set of GCIs is called a TBox.
Given a TBox T and two EL-concept descriptions C,D, we

say that C is subsumed by D w.r.t. T (written C vT D) if
CI ⊆ DI holds for all models I of T .5

When designing a subsumption algorithm for EL it is actu-
ally enough to consider the case where C,D are concept names
occurring in the TBox. In fact, it is easy to see that C vT D iff
A vT ∪{AvC,DvB} B where A,B are new concept names, i.e.,
concept names not occurring in C, D, and T .

The polynomial-time subsumption algorithm for EL [17, 5]
that will be sketched below actually classifies the given TBox T ,
i.e., it simultaneously computes all subsumption relationships
between the concept names occurring in T . This algorithm
proceeds in four steps:

1. Normalize the TBox.
2. Translate the normalized TBox into a graph.
3. Complete the graph using completion rules.
4. Read off the subsumption relationships from the normal-

ized graph.
An EL-TBox is normalized iff it only contains GCIs of the fol-
lowing form: A1 u A2 v B,A v ∃r.B, ∃r.A v B, where
A,A1, A2, B are concept names or the top concept >. Any
EL-TBox can be transformed in polynomial time into a normal-
ized one by applying equivalence-preserving normalization rules
[17].

In the next step, we build the classification graph GT =
(V, V × V, S,R) where
• V is the set of concept names (including >) occurring in

the normalized TBox T ;
• S labels nodes with sets of concept names (again includ-

ing >);
• R labels edges with sets of role names.

The label sets are supposed to satisfy the following invariants:
• B ∈ S(A) implies A vT B, i.e., S(A) contains only

subsumers of A w.r.t. T .
• r ∈ R(A,B) implies A vT ∃r.B, i.e., R(A,B) contains

only roles r such that ∃r.B subsumes A w.r.t. T .
Initially, we set S(A) := {A,>} for all nodes A ∈ V , and
R(A,B) := ∅ for all edges (A,B) ∈ V × V . Obviously, the
above invariants are satisfied by these initial label sets.

The labels of nodes and edges are then extended by applying
the rules of Figure 1. Note that a rule is only applied if it really
extends a label set. It is easy to see that these rules preserve the
above invariants. For example, consider the (most complicated)
rule (R3). Obviously, ∃r.B1 v A1 ∈ T implies ∃r.B1 vT A1,
and the assumption that the invariants are satisfied before apply-
ing the rule yields B vT B1 and A vT ∃r.B. The subsumption

5In this section, we do not introduce ABoxes and the instance
problem. It should be noted, however, that the tractability results
sketched in this section extend to the instance problem.

Page 3



relationship B vT B1 obviously implies ∃r.B vT ∃r.B1. By
applying transitivity of the subsumption relation vT , we thus
obtain A vT A1.

The fact that subsumption in EL w.r.t. TBoxes can be de-
cided in polynomial time is an immediate consequence of the
following two facts (see [17, 5] for proofs):

1. Rule application terminates after a polynomial number of
steps.

2. If no more rules are applicable, then A vT B iff B ∈
S(A).

Theorem 1 Subsumption in EL w.r.t. TBoxes can be decided
in polynomial time.

This result is not only of theoretical interest. Experiments
have shown that an optimized implementation [13] of the sub-
sumption algorithm sketched above in the CEL system6 [14]
behaves very well on large life science ontologies [13, 52].

The tractability result for EL can be extended to EL++,
which extends EL by the following means of expressiveness:
• The bottom concept ⊥ is always interpreted as the empty

set. It can, for example, be used to express disjointness
of concepts, as in the GCI Woman uMan v ⊥.

• Nominals are basically names for individuals, but used as
concept constructors with set brackets around the individ-
ual name. A nominal {n} is always interpreted as a single-
ton set. For example, we can use the nominal {OBAMA}
to express the concept of all individuals that like Obama:
∃likes.{OBAMA}. Nominals can also be used to express
ABox assertions through GCIs. For example, the role as-
sertion r(a, b) can be expressed as {a} v ∃r.{b}.

• Concrete domains can be used to refer to data types like
numbers or strings when defining concepts. For exam-
ple, the concept description Humanu≥18(age) describes
adult human beings. However, only very restricted forms
of concrete domains are admissible in EL++ (see [5] for
details).

• Restricted role-value maps are of the form r1◦. . .◦rk v r.
They are TBox axioms and not concept constructors. In a
model of this role-value map, the composition of the roles
r1, . . . , rk must be contained in the role r. Special cases
of such role-value maps are transitivity of a role r, ex-
pressed as r◦r v r and right-identity rules r◦s v r, which
are both important for medical ontologies. For example,
we may want to say that the part of relation is transitive,
which can be expressed as part of ◦ part of v part of,
and that medical findings are inherited along part of, ex-
pressed as finding at ◦ part of v finding at. Given the
second role-value maps together with GCIs stating that
a finger is part of the hand, an injury of the finger is an
injury found at the finger, and an injury of the hand is
an injury found at the hand, we can then deduce that an
injury of the finger is an injury of the hand.

• A reflexivity axiom for the role r states that this role is
reflexive, i.e., every individual is related to itself w.r.t. this
role. For example, in a medical ontology one may want
to state that the part of relation is reflexive, i.e., every
entity is part of itself.

6http://cel.googlecode.com

• The range restriction ran(r) v C says that the second
component of every tuple belonging to r must belong to
C. For example, the range restriction ran(finding at) v
Body structure says that finding sites must belong to the
body structure, i.e., this role is used to specify where in
the body something (e.g., an injury) is found. The range
restriction ran(r) v C could of course be expressed using
the GCI > v ∀r.C, but value restrictions ∀r.C are not
available in EL++. Thus, range restrictions can be seen as
a restricted way of using value restrictions in EL++. Note,
however, that the unrestricted use of value restrictions
would destroy tractability.

Note that the original version of EL++ [5] did not have reflex-
ive roles and range restrictions. They were added in the version
introduced in [6], which is the version of EL++ that underlies
the designated OWL EL profile of OWL 2. To keep tractability
(even decidability), one must actually impose a syntactic re-
striction on EL++-TBoxes that prevents interactions between
restricted role-value maps and range restrictions (see [6] for de-
tails). It should also be noted that basically all other additions of
typical DL constructors to EL make subsumption w.r.t. TBoxes
ExpTime-hard [5, 6].

3 The DL-Lite family of DLs

DL-Litecore is the basic member of the DL-Lite family [20]. Con-
cept descriptions of this DL are of the form

A, ∃r.>, ∃r−.>

where A is a concept name, r is a role name, and r− denotes
the inverse of the role name r, with the obvious semantics

(r−)I = {(y, x) | (x, y) ∈ rI}.

A DL-Litecore knowledge base (KB) consists of a TBox and an
ABox. The TBox formalism allows for GCIs and disjointness
axioms between DL-Litecore concept descriptions C,D:

C v D and disj(C,D),

where an interpretation I is a model of disj(C,D) if it satisfies
CI ∩ DI = ∅. Although conjunction is not available in DL-
Litecore , it can be simulated to a certain extent: a conjunction
on the right-hand side of a GCI C v D1 uD2 can be expressed
by the two GCIs C v D1 and C v D2. Disjunction on the
left-hand side of a GCI can be expressed in a similar way. The
following is an example of a DL-Litecore -TBox:

Tex = {∃child.> v Parent, Parent v Human,
Human v ∃child−.>, disj(Human, Insect)}.

A DL-Litecore -ABox is a finite set of concept and role assertions:
A(a) and r(a, b), where A is a concept name, r is a role name,
and a, b are individual names. An interpretation I assigns an
element cI ∈ ∆I to every individual name c such that the unique
name assumption (UNA) is satisfied, i.e. aI 6= bI for distinct
individual names a, b.7 It is a model of A(a) if it satisfies aI ∈

7The impact of dropping the UNA on the complexity of reasoning
in the DL-Lite family has been investigated in [3].
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AI and of r(a, b) if it satisfies (aI , bI) ∈ rI . The restriction
to concept names in concept assertions can be circumvented by
introducing a GCI for a new concept name, say Anew v C, in
the TBox and then stating Anew(a) in the ABox. The following
is an example of a DL-Litecore -ABox:

Aex = {Woman(LINDA), child(LINDA, JAMES),
Beatle(PAUL), child(PAUL, JAMES) }.

In [20], the following two extensions of DL-Litecore have also
been considered:
• DL-LiteF , in which the TBox may additionally contain

functionality axioms func(r) for role names and their in-
verses. Such an axiom can, e.g., be used to state that the
role father is functional, i.e., every individual has at most
one father.

• DL-LiteR, in which the TBox may additionally contain
role inclusion axioms r1 v r2 and role disjointness axioms
disj(r1, r2) for role names and their inverses. Such axioms
can, e.g., be used to state that the roles father and mother
are disjoint subroles of child−.

Other members of the DL-Lite family have, e.g., been defined
in [21, 2, 37].

The DL-Lite family of DLs is tailored towards applications
in which huge amounts of data (represented as an ABox) are
queried w.r.t. fairly light-weight ontologies. In this setting, it is
no longer sufficient that query answering is tractable. One needs
to be able to store the ABox in a relational database system,
and answer queries using a relational query engine. From a
logical point of view, a relational database is a finite first-order
interpretation I, and the relational query engine can efficiently
answer first-order queries (FOL queries). Such a query is a first-
order formula φ(~x) over the vocabulary of the database and with
free variables ~x; an answer tuple ~c is a sequence of elements of
the domain of I such that φ(~c) evaluates to true in I. Given
an FOL query q, we denote the set of its answer tuples in the
database I with qI .

In DL-Lite, one concentrates on answering a restricted form
of FOL queries, so-called unions of conjunctive queries. A con-
junctive query is a conjunction of atoms, built using concept
and role names as predicate symbols, individual names as con-
stant symbols, and variables, of which some may be existentially
quantified. For example, the following is a conjunctive query:

qex = ∃y, z1, z2. Woman(x) ∧ child(x, y) ∧ child(z1, y) ∧
Human(z1) ∧ child(z2, z1)

A union of conjunctive queries is a finite set of conjunctive
queries, which is interpreted as the disjunction of its elements.
Given a union of conjunctive queries or a conjunctive query q and
a knowledge base K, the set of answers to q over K (denoted
ans(q,K)) consists of all tuples ~a of individual names appearing
in the knowledge base such that ~aI ∈ qI for every model I of
the knowledge base. For the knowledge base Kex = (Tex,Aex)
of our example and the conjunctive query qex, it is easy to see
that ans(qex,Kex) = {LINDA}.

The approach for query answering in DL-Lite using a rela-
tional database system proceeds as follows:

1. use the TBox T to reformulate the given union of con-
junctive queries q into an FOL query qT and then discard
the TBox;

2. view the ABoxA as a relational database IA, which has as
its domain all individuals names occurring in A, interprets
concept names A as AIA = {a | A(a) ∈ A}, and role
names r as rIA = {(a, b) | r(a, b) ∈ A};

3. evaluate qT in the database IA using a relational query
engine.

If this approach is correct for a given DL L, i.e., there is a re-
formulation function q 7→ qT such that qT

IA = ans(q, (T ,A))
for all unions of conjunctive queries q, then one says that an-
swering conjunctive queries in L is FOL-reducible. The following
theorem is proved in [20].

Theorem 2 Answering conjunctive queries in DL-Litecore , DL-
LiteF , and DL-LiteR is FOL-reducible.

Since the size of the reformulated query does not depend
on the size of the ABox, the data complexity of evaluating the
original query (i.e., the complexity in terms of the size of the
ABox) is the same as evaluating the reformulated query. Because
the data complexity of evaluating FOL queries in a relational
database is complete for the complexity class AC0, this implies
that the data complexity of answering conjunctive queries in DL-
Litecore , DL-LiteF , and DL-LiteR is in AC0, which is a proper
subclass of the class of all tractable problems P . This method
for query answering in DL-Lite based on FOL-reducibility has
been implemented in the QuOnto system [1].

The reformulation approach developed in [20] actually yields
a union of conjunctive queries rather than an arbitrary FOL
query. Instead of describing it in detail, we illustrate it with
our example. The main idea is to use the GCIs in the TBox as
rewrite rules from right to left. Each rewrite step replaces an
atom in a conjunctive query q contained in the union of conjunc-
tive queries. The rewritten conjunctive query q′ is then added
to the union of conjunctive queries (without removing the orig-
inal query q). Consider the atom child(z2, z1) in qex. Since z2
is existentially quantified, this basically says that z1 belongs to
∃child−.>, and thus the GCI Human v ∃child−.> can be used
to replace this atom with Human(z1), which already occurs in
the conjunctive query. Thus, the new conjunctive query q(1):

∃y, z1.Woman(x) ∧ child(x, y) ∧ child(z1, y) ∧ Human(z1)

is added. In q(1), the atom Human(z1) can be replaced by
Parent(z1), which yields the additional conjunctive query q(2).
Using the GCI ∃child.> v Parent, the atom Parent(z1) in q(2)

can be replaced by child(z1, z3), where z3 is a new existentially
quantified variable. This yields the new conjunctive query q(3):

∃y, z1, z3.Woman(x) ∧ child(x, y) ∧ child(z1, y) ∧ child(z1, z3)

It is easy to see that LINDA is an answer for the query q(3) in
the database IAex , and thus of the union of conjunctive queries
generated by the reformulation process. In addition to rewriting
atoms using GCIs, the general reformulation process also uses
unification of atoms in a conjunctive query to generate new
conjunctive queries (see [20] for details).

It should be noted that also for (a fragment of) EL++,
an approach to conjunctive query answering using relational
database systems has been developed [40, 41]. Since the data
complexity of query answering in EL is PTime-complete, the ap-
proach follows a different route than the one for DL-Lite (since
FOL-reducibility implies that the data complexity of query an-
swering is in AC0). In particular, the TBox is incorporated into
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the ABox and not into the query. However, some limited query
reformulation (independent of both the TBox and the ABox)
is still required. Interestingly, both the ABox rewriting and the
query reformulation cause only a polynomial blow-up, in contrast
to DL-Lite, where the blow-up of the query may be exponential
in the size of the original query [20]. This alternative approach
for query answering using a relational database system can also
be applied to DL-Lite [37]. The approach introduced in [37]
causes an exponential blow-up of the query, but we believe that
this may be avoidable. Nevertheless, even with this blow-up the
query execution times are typically smaller than those of the
approach introduced in [20].

4 Conclusion

We have described the origins of two novel families of light-
weight DLs: logics of the EL family were designed to admit
subsumption and classification in polynomial time, while still
providing sufficient expressive power for life-science ontologies;
logics of the DL-Lite family have been designed to enable query
answering using relational database systems, while still provid-
ing sufficient expressive power to capture conceptual modelling
formalisms. The relevance of the small DLs discussed in this
article is underlined by the fact that both of them are captured
in the official W3C profiles8 document for the candidate recom-
mendation of OWL 2. Each of the OWL 2 profiles are designed
for specific application requirements. For applications that rely
on reasoning services for ontologies with a large number of con-
cepts, the profile OWL 2 EL has been introduced, which is based
on EL++. For applications that deal with large sets of data and
that mainly use the reasoning service of query answering, the
profile OWL 2 QL has been defined. The DL underlying this
profile is DL-LiteR. Both, the profile OWL 2 EL and OWL 2
QL pave the way to apply very efficient reasoning services in
practical applications. The recent research and standardization
efforts discussed in this paper suggest that small is indeed again
beautiful in Description Logics.
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