Technisch X
o u?\?vé'r'ifta'i International Center
Dresden for Computational Logic

COMPLEXITY THEORY

Lecture 29: Parameterized Complexity

Sergei Obiedkov
Knowledge-Based Systems

TU Dresden, 2 Feb 2026

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2025)
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

VERTEX COVER

VerTex Cover
Input: An undirected graph G = (V, E) and a natural number k

Problem: Does G contain k vertices that touch all edges (vertex cover)?

A solution is a subset V’ C V of size k.

Brute-force search: (Z) possible solutions to check, where n = |V|.

For fixed k,
= O(n").

n\ n! _nn—=1)---(n—k+1)
k] kln-k)! k!

For k = n/2, this is exponential in n:
n n 2"
= > —.
k n/2) " n+1

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 2 of 25

Kernelization

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 3 of 25

Simplify by Preprocessing

Idea:

Simplify the problem by making G smaller.
What vertices are useless in a vertex cover?
— Remove isolated vertices from G.
What vertices must be in every vertex cover of size k?
— Include a vertex with degree > k into a vertex cover, remove it from G, and
decrement k.
Apply these reduction rules until 1 < degree(v) < k for every v e V.
How many edges can be covered by k vertices in the resulting graph?
— At most k2. So, reject if |E| > k2.
If this graph has a vertex cover S C V of size k, how many vertices can V contain?
— [V\SI<KS|=k> = |VI<Kk+k So,rejectif |V|>k*+k.
We have obtained a kernel with O(k?) vertices and O(k?) edges.

2

: k”+k , .
Brute-force search needs to consider only () = 20klogk) hossible solutions.

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 4 of 25

Bounded Search Trees

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 5 of 25

Edge-Based Recursion

ForG=(V,E)anduc V:

Vo=V\{u} E,=EnV? G,=(V,,E).

For any (u,v) € E, graph G has a vertex cover of size k if and only if there is a
vertex cover of size k — 1 for graph G, or graph G,.

Proof:

= Let S be a vertex cover of Gand |S| = k. Thenu e Sorv € S. Assume u € S. There
are no edges incidentto u in E, C E. Hence, S\ {u} is a vertex cover of G,,.
< Let S, be a vertex cover of G, and |S,| = k — 1. Then, for every edge (v’,V') € E:
- W,V)€EE, = u €S, orv es,
- W,V)¢E, = ue{u,v}
Hence, S, U {u} is a vertex cover of G.

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 6 of 25

Edge-Based Recursion

Branching Algorithm
Input: G =(V,E),keN.
Output: A vertex cover of graph G of size < k if exists.
* If E= 9, return @.
e |f k =0, report that there is no cover of size < k.
® Select an edge (u,v) € E.
® Recursively find a cover S of size < k-1 for G,.
If found, return S U {u}.
® Recursively find a cover S of size < k -1 for G,.
If found, return SU {v}.
® Report that there is no cover of size < k.

® The execution of the algorithm follows a complete binary tree of height &
® Running time: O(2X|E|), or O(2*k?) if we have already applied kernelization

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 7 of 25

Bounded Search Trees

Let u be a function associating an instance of an optimization problem with an
integer indicating how hard the instance is.

Let I be an instance of such a problem.
In a branching step, generate instances I, ..., I, such that

1. For all i, a feasible solution S of I; corresponds to a feasible solution #4;(S) of I;
2. For some i and some feasible solution S of /;, a solution £/;(S) is optimal for I;

3. The number ¢ > 1 is small, e.g., bounded by a function of u(I) alone;
4. For all i, we have u(l;) < u(I) — ¢ for some constant ¢ > 0.

We obtain a bounded search tree whose branching is controlled by condition 3 and
depth is controlled by condition 4.

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 8 of 25

Edge-Based Recursion

Branching Algorithm

Input: G =(V,E),keN.
Output: A vertex cover of graph G of size < k if exists.
If E= @, return @.
If kK = 0, report that there is no cover of size < k.
Select an edge (u,v) € E.
Recursively find a cover S of size < k — 1 for G,,.
If found, return S U {u}.
Recursively find a cover S of size < k-1 for G,.
If found, return S U {v}.
Report that there is no cover of size < k.

® Running time: O(2X|E|), or O(2*k?) if we have already applied kernelization

Can we use simpler subproblems?

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 9 of 25

Edge-Based vs Vertex-Based Recursion

ForG=(V,E)anducV:

Ve=V\{u E,=EnV?: G,=(V,E).

For any (u,v) € E, graph G has a vertex cover of size k if and only if there is a
vertex cover of size k — 1 for graph G, or graph G,.

ForG=(V,Eyand U C V:

Vy=V\U Ey=EnVy Gy=VyEp.

For any u € V, graph G has a vertex cover of size k if and only if there is a vertex
cover of size k — 1 for graph G, or a vertex cover of size k — [N(u)| in graph Gy,
where N(u) ={ve V| (u,v) € E}.

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 10 of 25

Vertex-Based Recursion

Branching Algorithm
Input: G=(V,E),keN.
Output: A vertex cover of graph G of size < k if exists.
® y := arg max,cy degree(v)
® If degree(u) < 2, solve in linear time.
e |f k <0, report that there is no cover of size < k.
® Recursively find a cover S of size < k-1 for G,.
If found, return S U {u}.
® Recursively find a cover § of size < k — |N(u)| for Gy-
If found, return S U N(u).
® Report that there is no cover of size <.

® Running time: the number of nodes in the tree x O(|E])
® How many nodes are there in this tree?

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 11 of 25

Vertex-Based Recursion

® Running time: the number of nodes in the tree x O(|E])
® Such a tree with ¢ leaves contains < 2¢ — 1 nodes.

The number of leaves in a tree obtained with the parameter k is at most

Tk-1D+Tk=-2) ifk>1;
T(k) = .
otherwise.

To have T'(k) < cA* for some constants ¢ > 0 and A > 1, it suffices that, for k > 1,

Tk) =Tk -1 +Tk=2) < cA"" + A2 < ek,

This holds when A + 1 < 2.

_ o1 5
The smallest A satisfying this is i < 1.6181.

e This works if we set ¢ = 2; then, T(0) =2 =2-1.6181°and T(1) =2 < 2- 1.6181".
* Runtime: O(1.6181*|E|), or O(1.6181%k?) if we have already applied kernelization.

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 12 of 25

Vertex-Based Recursion

Branching Algorithm
Input: G =(V,E),keN.
Output: A vertex cover of graph G of size < k if exists.
® i := argmax,cy degree(v)
o If degree(u) < 2, solve in linear time.
e |f k <0, report that there is no cover of size < k.
® Recursively find a cover S of size < k-1 for G,.
If found, return S U {u}.
® Recursively find a cover § of size < k — |N(u)| for Gy.
If found, return S U N(u).
® Report that there is no cover of size < k.

Can we use simpler subproblems?

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 13 of 25

Vertex-Based Recursion

Branching Algorithm
Input: G=(V,E),keN.
Output: A vertex cover of graph G of size < k if exists.
® y := arg max,cy degree(v)
® |f degree(u) < 3, solve in linear time. How?
e |f k <0, report that there is no cover of size < k.
® Recursively find a cover S of size < k-1 for G,.
If found, return S U {u}.
® Recursively find a cover § of size < k — |N(u)| for Gy-
If found, return S U N(u).
® Report that there is no cover of size < k.

o T(k)=Tk—1)+Tk-73)
* Runtime: O(1.4656|E|), or O(1.4656%k?) if we have already applied kernelization.

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 14 of 25

Kernels and Fixed-Parameter Tractability

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 15 of 25

Kernel

Definition 29.1: A parameterized problem is a language L C X* XN for some finite
alphabet X. For (x, k) € * X N, the number £ is the parameter.

Definition 29.2: A kernel for a parameterized problem L € ** x N is a function
K computable in polynomial time that maps an instance (x, k) to an equivalent in-
stance (1, k')

(x,k)eL < K(x,k)eL

such that ¥’ < k and |x’| < s(k), where s is some computable function.

Vertex Cover has a kernel with at most k(k + 1) vertices and at most k> edges.

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 16 of 25

Kernel for INDEPENDENT SET

INDEPENDENT SET
Input: An undirected graph G and a natural number k&

Problem: Does G contain k vertices that share no edges (in-
dependent set)?

We’ll use an additional parameter: the maximum degree d of a vertex.

Fny graph with > k(d + 1) vertices has an independent set of size k.

Accept if n > k(d + 1); otherwise, solve by brute-force search.

e Kernel: a fixed yes-instance or the (small) graph itself
® Running time: O(n) for counting vertices + f(k, d) for brute-force search

Sergei Obiedkov; 2 Feb 2026 Complexity Theory

FPT

slide 17 of 25

The class FPT

Definition 29.3: A parameterized problem L C ¥* x N is fixed-parameter tractable
if there exist a constant ¢, a computable function f: N — N, and an algorithm that
correctly decides whether (x, k) € L in time bounded by

S - 1x, O

FPT is the class of all fixed-parameter tractable problems.

| PPt |

Wa decidable problem L has a kernel, then L € FPT. \

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 18 of 25

FPT and Kernels

Fheorem 29.4: Every problem in FPT has a kernel. \

Proof: Let L € FPT, and let A be an algorithm for L with running time < f(k) - |(x, k)|°.

Kernel for (x, k)
e Let A(x, k) run for time |(x, k)|*!
e [f it terminates and accepts, return some x € L.
e [f it terminates and rejects, return some x ¢ L.
e Otherwise, return (x, k).

® The output instance is computed in polynomial time and is equivalent to (x, k).
¢ |f the algorithm terminates, the size of the output is constant.
® |f not:

|G, DI < f(k) - |(x, B
e, ol < fk)

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 19 of 25

Slice-wise Polynomial Problems

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 20 of 25

The class XP

Definition 29.5: A parameterized problem L € X* x N is slice-wise polynomial if
there exist two computable functions f,g: N — N, and an algorithm that correctly
decides whether (x, k) € L in time bounded by

F) - 10x, kD

XP is the class of all slice-wise polynomial problems.

® Polynomial for each fixed k&
® Degree depends on k

| PcrPTCXP |

Example 29.6:

® Cuaue: Given G, k, does G contain a clique of size k?
e Brute force: On*) = in XP
® Believed not to be in FPT

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 21 of 25

LP-Based Kernel for VErTEx Cover

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 22 of 25

Vertex Cover as an-nteger Linear Program

VerTex CovEr

Input: An undirected graph G = (V, E) and a natural number k

Problem: Does G contain k vertices that touch all edges (vertex cover)?

® |ntroduce a variable x, for every v e V
® Minimize } .y x, subject to
1. x, +x, > 1forevery (u,v) € E

2. 0<x,<1foreveryveV
3. xyeZforeveryveV

® Can be solved in polynomial time

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 23 of 25

Vertex Cover as a Linear Program

® Minimize } .y x, subject to
1. x, +x, > 1forevery (u,v) € E

2. 0<x,<1foreveryveV

® Consider a solution to this problem. Denote

1 1 1
Voz{VEVva<§} V;z{veVvazz} Vlz{VEVva>§}

Fheorem 29.7: G has a minimum vertex cover S such that V; € Sc V; U V%. ‘

Proof: See blackboard.

Reduction rule: If 3 .y x, > k, return a no-instance. Otherwise, include V,
in the vertex cover, remove V, and V; from G, and decrease k by |V|.

Fhis gives a kernel with < 2k vertices. \

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 24 of 25

Outlook

What’s next?
® Summary and consultation

e Examinations

Sergei Obiedkov; 2 Feb 2026

Complexity Theory

slide 25 of 25

	Parameterized Complexity
	Kernelization
	Bounded Search Trees
	Kernels and Fixed-Parameter Tractability
	Slice-wise Polynomial Problems
	LP-Based Kernel for Vertex Cover

