
OntoComP: A Protégé Plugin for Completing

OWL Ontologies

Barış Sertkaya�

Theoretical Computer Science, TU Dresden, Germany
sertkaya@tcs.inf.tu-dresden.de

Abstract. We describe OntoComP, a Protégé 4 plugin that supports
ontology engineers in completing OWL ontologies. More precisely, On-
toComP supports an ontology engineer in checking whether an ontology
contains all the relevant information about the application domain, and
in extending the ontology appropriately if this is not the case. It acquires
complete knowledge about the application domain efficiently by asking
successive questions to the ontology engineer. By using novel techniques
from Formal Concept Analysis, it ensures that, on the one hand, the in-
teraction with the ontology engineer is kept to a minimum, and, on the
other hand, the resulting ontology is complete in a certain well-defined
sense.

1 Introduction

Ontologies play a key role for the Semantic Web. Since the standardization of
OWL as the ontology language for the Semantic Web, several ontology editors
now support OWL [4,3], and ontologies written in OWL are employed in more
and more semantic web applications in various domains. As the number and
size of these ontologies grows, tools that support improving their quality be-
come more important. The tools available until now mostly deal with detecting
inconsistencies and inferring consequences, i.e., implicit knowledge that can be
deduced from the knowledge explicitly represented in the ontology. There are
also promising approaches that allow to pinpoint the reasons for inconsistencies
and for certain unwanted consequences. These approaches address the quality
dimension of soundness of an ontology, both within itself (consistency) and w.r.t.
the intended application domain (no unwanted consequences). In our previous
work [1,5], we have considered a different quality dimension, namely complete-
ness of the knowledge in an ontology. We have provided a formally well-founded
technique called ontology completion, that supports the ontology engineer in
checking whether an ontology contains all the relevant information about the
application domain, and in extending the ontology appropriately if this is not
the case.

An OWL ontology typically consists of two parts, the terminological part
(TBox), which defines concepts and also states additional constraints (so-called

� Supported by German Research Foundation (DFG) under grant BA 1122/12-1.

L. Aroyo et al. (Eds.): ESWC 2009, LNCS 5554, pp. 898–902, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

OntoComP: A Protégé Plugin for Completing OWL Ontologies 899

general concept inclusions or GCIs) on the interpretation of these concepts, and
the assertional part (ABox), which describes individuals and their relationship to
each other and to concepts. Given an application domain and an OWL ontology
describing it we can ask:

– Are all the relevant constraints that hold between concepts in the domain
captured by the TBox?

– Are all the relevant individuals existing in the domain represented in the
ABox?

Such questions cannot be answered by an automated tool alone. Clearly, to
check whether a given relationship between concepts—which does not already
follow from the TBox—holds in the domain, one needs to ask a domain expert,
and the same is true for questions regarding the existence of individuals not
described in the ABox. The role of the ontology completion tool here is to ensure
that the expert is asked as few questions as possible; in particular, she should
not be asked trivial questions, i.e., questions that could actually be answered
based on the represented knowledge.

2 Motivating Example

As an example, of how ontology completion supports the ontology engineer in
practice, consider the OWL ontology for human protein phosphatases that has
been described and used in [7]. This ontology was developed based on informa-
tion from peer-reviewed publications. The human protein phosphatase family
has been well characterised experimentally, and detailed knowledge about dif-
ferent classes of such proteins is available. This knowledge is represented in the
terminological part of the ontology. Moreover, a large set of human phosphatases
has been identified and documented by expert biologists. These are described
as individuals in the assertional part of the ontology. One can now ask whether
the information about protein phosphatases contained in this ontology is com-
plete. That is, are all the relationships that hold among the introduced classes of
phosphatases captured by the constraints in the TBox, or are there relationships
that hold in the domain, but do not follow from the TBox? Are all possible kinds
of human protein phosphatases represented by individuals in the ABox, or are
there phosphatases that have not yet been included in the ontology or even not
yet been identified?

Clearly, these questions need to be answered by a biologist. In this exam-
ple, answering a non-trivial question regarding human protein phosphatases
may require the biologist to study the relevant literature, query existing pro-
tein databases, or even to carry out new experiments. Thus, the expert may be
prompted to acquire new biological knowledge.

3 Ontology Completion

The key technologies lying under ontology completion are Description Logic
reasoning, and the attribute exploration method developed in Formal Concept

900 B. Sertkaya

Fig. 1. Ontology completion process

Analysis (FCA) [2]. FCA is a field of applied mathematics that aims to formalize
the notions of a concept and a conceptual hierarchy by means of mathematical
tools. It is used for conceptual data analysis and knowledge processing. Attribute
exploration is a knowledge acquisition method of FCA that is used to acquire
complete knowledge about an application domain by asking successive questions
to a domain expert. It asks the expert questions of the form “is it true that
instances of the classes Ci1, . . . , Cik also instances of Cj1, . . . , Cjl?”. When such
a question is asked, the expert is expected to either confirm the question, in
which case a new implication in the application domain has been discovered,
or reject it. If the expert rejects such a question, she is expected to give a
counterexample, i.e., an individual that is instances of the classes Ci1, . . . , Cik

but is not an instance of at least one of Cj1, . . . , Cjl. This counterexample is
then added to the ontology as a new individual, and the next question is asked.

OntoComP: A Protégé Plugin for Completing OWL Ontologies 901

Fig. 2. OntoComP window during completion

What makes attribute exploration an attractive method for capturing expert
knowledge is that it guarantees to make best use of the expert’s answers, and to
ask the minimum possible number of questions that suffices to acquire complete
knowledge about the application domain.

4 OntoComP

Based on our results in [1,5], we have implemented an open-source ontology
completion tool called OntoComP1, which stands for Ontology Completion
Plugin. It is written in the Java programming language as a plugin for the
Protégé 4 ontology editor. It can be easily installed by just copying the jar
file provided under the URL given below into the plugins directory of an ex-
isting Protégé 4 installation. Then upon a new start, Protégé will find the
OntoComP plugin and open a new tab for it.

In order to complete an ontology with OntoComP, the user first classifies the
ontology with a reasoner that is supported by Protégé 4, namely FaCT++
or Pellet. Once the ontology is classified, the OntoComP tab displays the
class hierarchy on the left. At this point the user can drag “interesting” class
names, which she wants to have in the completion process, from this hierarchy
and drop them into the Context tab on the right. Simultaneously, the instances
of these classes will also be displayed in a table in the Context tab. In this table
a + in row a and column C means that the individual a is an intance of the
class C, a - means that a is an instance of the complement of C, and a ? means
that nothing is known about the membership of a in class C. When the user
is done with selecting the relevant classes, she starts the completion by hitting
1 Available under http://ontocomp.googlecode.com

http://ontocomp.googlecode.com

902 B. Sertkaya

the Start button and sees the first question in the Messages tab. If she confirms
the question by hitting the Yes button, OntoComP comes up with the next
question. If she rejects the question by hitting No button OntoComP opens
the Counterexample editor tab where the user can generate a counterexample
to the rejected question. The process continues until all questions have been
answered by the user. During completion, at any time the user can suspend the
completion process and see her answering history. If she thinks she has made
an error at some point, she can repair it by undoing that particular erroneous
answer and can continue completion. A similar FCA-based ontology refinement
tool that is related to OntoComP, but mainly aimed at acquiring domain-range
restrictions has been described in [6].

5 The Demo

During the demo, the audience will have the opportunity to see OntoComP in
action on ontologies from real world application domains, which do not require
specialized expert knowledge (so that the demo is still understandable for the
whole audience). We are going to demonstrate in detail how to use OntoComP
and how it supports the ontology engineer in completing an ontology. We are
going to prepare scenarios where the ontology engineer makes errors during
ontology completion and demonstrate how to repair them.

References

1. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing Description Logic
Knowledge Bases using Formal Concept Analysis. In: Proc. of the Twentieth In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2007). AAAI Press,
Menlo Park (2007)

2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

3. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., Hendler, J.A.: Swoop: A web on-
tology editing browser. Journal of Web Semantics 4(2), 144–153 (2006)

4. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The protégé OWL plugin:
An open development environment for semantic web applications. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
229–243. Springer, Heidelberg (2004)

5. Sertkaya, B.: Formal Concept Analysis Methods for Description Logics. Ph.D. dis-
sertation, Institute of Theoretical Computer Science, TU Dresden, Germany (2007)

6. Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology
refinement. In: Proc. of the 7th International Conference on Web Intelligence (WI
2008) (2008)

7. Wolstencroft, K., Brass, A., Horrocks, I., Lord, P.W., Sattler, U., Turi, D., Stevens,
R.: A little semantic web goes a long way in biology. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 786–800.
Springer, Heidelberg (2005)

	OntoComP: A Protégé Plugin for Completing OWL Ontologies
	Introduction
	Motivating Example
	Ontology Completion
	OntoComP
	The Demo

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

