Hybrid Unification in the Description Logic \mathcal{EL}

Franz Baader, Oliver Fernández Gil and Barbara Morawska* {baader,morawska}@tcs.inf.tu-dresden.de, olitof11@gmail.com

Theoretical Computer Science, TU Dresden, Germany

1 Introduction

The description logic \mathcal{EL} belongs to the family of logic-based knowledge representation formalisms. It allows a user to define concepts with the help of concept names (N_c) , role names (N_r) and constructors: conjunction (\sqcap) , existential restriction $(\exists r.C \text{ for } r \in N_r \text{ and a concept } C)$ and top constructor (\top) .

Unification in Description Logics has been introduced in [6]. A unification problem in such logic is defined as a set of subsumptions between concepts which contain occurrences of a distinct set of concept names (called *variables*) and asks for definitions of these concept names, which would make the subsumptions valid.

Unification in \mathcal{EL} corresponds to unification modulo semilattices with monotone operators [5]. In [4], we were able to show that unification in \mathcal{EL} is NP-complete. The problem is how to extend the unification in \mathcal{EL} to such unification with a background ontology in the form of a set of definitions of some concept names occurring in the unification problem, or more generally in the form of additional statements about concept inclusions. If the background ontology is just a set of non-cyclic definitions, unification in \mathcal{EL} is NP-complete [5]. If the background ontology satisfies some cycle restriction, it is still NP-complete [2]. At the moment it is not known what is the status of the unification problem in \mathcal{EL} with a background ontology in the general case.

In this paper, instead of restricting the background ontology, we allow cyclic definitions to be used as unifiers. Moreover, we interpret these definitions in a greatest fixpoint semantics, while the background ontology is still interpreted in the usual descriptive semantics. We show that if the concept of unification in \mathcal{EL} is modified in this way, such unification is NP-complete. Detailed proofs and examples can be found in [3].

2 The Description Logic \mathcal{EL}

Concept descriptions written in the language of \mathcal{EL} are interpreted over an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ which consists of a non-empty domain $\Delta^{\mathcal{I}}$ and an interpretation function $\cdot^{\mathcal{I}}$ that maps concept names to subsets of $\Delta^{\mathcal{I}}$ and role names to binary relations over $\Delta^{\mathcal{I}}$. This function is inductively extended to concept descriptions as follows:

$$\top^{\mathcal{I}} := \Delta^{\mathcal{I}}, \quad (C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}, \quad (\exists r.C)^{\mathcal{I}} := \{x \mid \exists y : (x,y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$$

A concept definition is an expression of the form $X \equiv C$ where X is a concept name and C is a concept description, and a general concept inclusion (GCI) is an expression of the form $C \sqsubseteq D$, where C, D are concept descriptions. An interpretation \mathcal{I} is a model of this concept definition (this GCI) if it satisfies $X^{\mathcal{I}} = C^{\mathcal{I}}$ ($C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$). This semantics for GCIs and concept definitions is usually called descriptive semantics.

A TBox is a finite set \mathcal{T} of concept definitions that does not contain multiple definitions of the same concept name. Note that we do not prohibit cyclic dependencies among the concept

^{*}Supported by DFG under grant BA 1122/14-2

definitions in a TBox. An acyclic TBox is a TBox without cyclic dependencies. An ontology is a finite set of GCIs. The interpretation \mathcal{I} is a model of a TBox (ontology) iff it is a model of all concept definitions (GCIs) contained in it.

A concept description C is subsumed by a concept description D w.r.t. an ontology \mathcal{O} (written $C \sqsubseteq_{\mathcal{O}} D$) if every model of \mathcal{O} is also a model of the GCI $C \sqsubseteq D$. We say that C is equivalent to D w.r.t. \mathcal{O} ($C \equiv_{\mathcal{O}} D$) if $C \sqsubseteq_{\mathcal{O}} D$ and $D \sqsubseteq_{\mathcal{O}} C$. As shown in [7], subsumption w.r.t. \mathcal{EL} -ontologies is decidable in polynomial time.

3 Hybrid Ontologies

We assume that the set of concept names N_C is partitioned into the set of primitive concepts N_{prim} and the set of defined concepts N_{def} .

Definition 1 (Hybrid \mathcal{EL} -ontologies). A hybrid \mathcal{EL} -ontology is a pair $(\mathcal{O}, \mathcal{T})$, where \mathcal{O} is an \mathcal{EL} -ontology containing only concept names from N_{prim} , and \mathcal{T} is a (possibly cyclic) \mathcal{EL} -TBox such that $X \equiv C \in \mathcal{T}$ if and only if $X \in N_{def}$.

A primitive interpretation \mathcal{J} is defined like an interpretation, with the only difference that it does not provide an interpretation for the defined concepts.

Given a primitive interpretation \mathcal{J} , we say that the (full) interpretation \mathcal{I} is based on \mathcal{J} if it has the same domain as \mathcal{J} and its interpretation function coincides with \mathcal{J} on N_{prim} and N_r .

Given two interpretations \mathcal{I}_1 and \mathcal{I}_2 based on the same primitive interpretation \mathcal{J} , we define $\mathcal{I}_1 \leq_{\mathcal{J}} \mathcal{I}_2$ iff $X^{\mathcal{I}_1} \subseteq X^{\mathcal{I}_2}$ for all $X \in N_{def}$.

It is easy to see that the relation $\leq_{\mathcal{J}}$ is a partial order on the set of interpretations based on \mathcal{J} . In [1] the following was shown: given an \mathcal{EL} -TBox \mathcal{T} and a primitive interpretation \mathcal{J} , there exists a unique model \mathcal{I} of \mathcal{T} such that

- \mathcal{I} is based on \mathcal{J} ;
- $\mathcal{I}' \leq_{\mathcal{J}} \mathcal{I}$ for all models \mathcal{I}' of \mathcal{T} that are based on \mathcal{J} .

We call such a model \mathcal{I} a *gfp-model* of \mathcal{T} .

Definition 2 (Semantics of hybrid \mathcal{EL} -ontologies). The interpretation \mathcal{I} is a *hybrid model* of the hybrid \mathcal{EL} -ontology $(\mathcal{O}, \mathcal{T})$ iff \mathcal{I} is a gfp-model of \mathcal{T} and the primitive interpretation \mathcal{I} it is based on is a model of \mathcal{O} .

It is well-known that gfp-semantics coincides with descriptive semantics for acyclic TBoxes. Let $(\mathcal{O}, \mathcal{T})$ be a hybrid \mathcal{EL} -ontology and C, D \mathcal{EL} -concept descriptions. Then C is subsumed by D w.r.t. $(\mathcal{O}, \mathcal{T})$ (written $C \sqsubseteq_{gfp,\mathcal{O},\mathcal{T}} D$) iff every hybrid model of $(\mathcal{O}, \mathcal{T})$ is also a model of the GCI $C \sqsubseteq D$. As shown in [8, 10], subsumption w.r.t. hybrid \mathcal{EL} -ontologies is decidable in polynomial time.

Our algorithms for hybrid unification in \mathcal{EL} are based on the Gentzen style calculus $HC(\mathcal{O}, \mathcal{T}, \Delta)$ from [10]. $HC(\mathcal{O}, \mathcal{T}, \Delta)$ is parametrized by a hybrid ontology $(\mathcal{O}, \mathcal{T})$ and a set of subsumptions Δ . It decides if $C \sqsubseteq_{gfp,\mathcal{O},\mathcal{T}} D$ holds where C, D are concept descriptions occurring in Δ .

4 Hybrid unification in \mathcal{EL}

Definition 3. Let \mathcal{O} be an \mathcal{EL} -ontology containing only concept names from N_{prim} . An \mathcal{EL} -unification problem w.r.t. \mathcal{O} is a finite set of GCIs $\Gamma = \{C_1 \sqsubseteq D_1, \dots, C_n \sqsubseteq D_n\}$ (which may

also contain concept names from N_{def}). The TBox \mathcal{T} is a hybrid unifier of Γ w.r.t. \mathcal{O} if $(\mathcal{O}, \mathcal{T})$ is a hybrid \mathcal{EL} -ontology that entails all the GCIs in Γ , i.e., $C_1 \sqsubseteq_{gfp,\mathcal{O},\mathcal{T}} D_1, \ldots, C_n \sqsubseteq_{gfp,\mathcal{O},\mathcal{T}} D_n$. We call such a TBox \mathcal{T} a classical unifier of Γ w.r.t. \mathcal{O} if \mathcal{T} is acyclic.

Notice that N_{prim} and N_{def} respectively correspond to the sets of concept constants and concept variables in previous papers on unification in DLs. A substitution σ can be expressed as concept definitions $X \equiv E$ in a corresponding acyclic TBox. In contrast, hybrid unifiers cannot be translated into substitutions since the unfolding process would not terminate for a cyclic TBox.

Our hybrid unification algorithm works on a *flat* unification problem and assumes a *flattened* ontology. In order to define this form we need the following notions.

An *atom* is a concept name or an existential restriction. An atom is called *flat* if it is a concept name or an existential restriction of the form $\exists r.A$ for a concept name A or $\exists r.\top$.

The GCI $C \sqsubseteq D$ is called *flat* if C is a conjunction of $n \ge 0$ flat atoms and D is a flat atom. The unification problem Γ w.r.t. the ontology \mathcal{O} is called *flat* if both Γ and \mathcal{O} consist of flat GCIs.

Given a unification problem Γ w.r.t. an ontology \mathcal{O} , we can compute in polynomial time (see [3]) a flat ontology \mathcal{O}' and a flat unification problem Γ' such that Γ has a (hybrid or classical) unifier w.r.t. \mathcal{O} iff Γ' has a (hybrid or classical) unifier w.r.t. \mathcal{O}' . For this reason, we will assume in the following that all unification problems are flat.

The main reason why hybrid unification in \mathcal{EL} is in NP is that any unification problem that has a unifier also has a local unifier. For classical unification w.r.t. background ontologies this is only true if the background ontology is cycle-restricted [2].

Given a flat unification problem Γ w.r.t. an ontology \mathcal{O} , we denote by At the set of atoms occurring as sub-descriptions in GCIs in Γ or \mathcal{O} . The set of non-variable atoms is defined as by $\operatorname{At}_{\mathsf{nv}} := \operatorname{At} \setminus N_{def}$.

In order to define local unifiers, we consider assignments ζ of subsets ζ_X of $\mathrm{At}_{\mathsf{nv}}$ to defined concepts $X \in N_{def}$. Such an assignment induces a TBox

$$T_{\zeta} := \{ X \equiv \bigcap_{D \in \zeta_X} D \mid X \in N_{def} \}.$$

We call such a TBox *local*. The (hybrid or classical) unifier \mathcal{T} of Γ w.r.t. \mathcal{O} is called *local unifier* if \mathcal{T} is local, i.e., there is an assignment ζ such that $\mathcal{T} = T_{\zeta}$.

5 Hybrid \mathcal{EL} -unification is NP-complete

The fact that hybrid \mathcal{EL} -unification w.r.t. arbitrary \mathcal{EL} -ontologies is in NP is an easy consequence of the following proposition.

Proposition 4. Consider a flat \mathcal{EL} -unification problem Γ w.r.t. an \mathcal{EL} -ontology \mathcal{O} . If Γ has a hybrid unifier w.r.t. \mathcal{O} then it has a local hybrid unifier w.r.t. \mathcal{O} .

In fact, the NP-algorithm simply guesses a local TBox and then checks (using the polynomial-time algorithm for hybrid subsumption) whether it is a hybrid unifier.

To prove the proposition, we assume that \mathcal{T} is a hybrid unifier of Γ w.r.t. \mathcal{O} . We use this unifier to define an assignment $\zeta^{\mathcal{T}}$ as follows:

$$\zeta_X^{\mathcal{T}} := \{ D \in \operatorname{At}_{\mathsf{nv}} \mid X \sqsubseteq_{gfp,\mathcal{O},\mathcal{T}} D \}.$$

Let \mathcal{T}' be the TBox induced by this assignment. To show that \mathcal{T}' is indeed a hybrid unifier of Γ w.r.t. \mathcal{O} , we consider the set of GCIs

$$\Delta := \{ C_1 \sqcap \ldots \sqcap C_m \sqsubseteq D \mid C_1, \ldots, C_m, D \in At \},\$$

and show that, for any GCI $C_1 \sqcap ... \sqcap C_m \sqsubseteq D \in \Delta$, a proof of $C_1 \sqcap ... \sqcap C_m \sqsubseteq D$ by $HC(\mathcal{O}, \mathcal{T}, \Delta)$ implies a proof of $C_1 \sqcap ... \sqcap C_m \sqsubseteq D$ also in $HC(\mathcal{O}, \mathcal{T}', \Delta)$.

NP-hardness does *not* follow directly from NP-hardness of classical \mathcal{EL} -unification. In fact an \mathcal{EL} -unification problem that does not have a classical unifier may well have a hybrid unifier. Instead, we reduce \mathcal{EL} -matching modulo equivalence to hybrid \mathcal{EL} -unification.

An \mathcal{EL} -matching problem modulo equivalence is an \mathcal{EL} -unification problem of the form $\{C \subseteq D, D \subseteq C\}$ such that D does not contain elements of N_{def} . A matcher of such a problem is a classical unifier of it. As shown in [9], testing whether a matching problem modulo equivalence has a matcher or not is an NP-complete problem. Thus, NP-hardness of hybrid \mathcal{EL} -unification w.r.t. \mathcal{EL} -ontologies is an immediate consequence of the following lemma, whose (non-trivial) proof can be found in [3].

Lemma 5. If an EL-matching problem modulo equivalence has a hybrid unifier w.r.t. the empty ontology, then it also has a matcher.

To sum up, we have thus determined the exact worst-case complexity of hybrid \mathcal{EL} -unification.

Theorem 6. The problem of testing whether an \mathcal{EL} -unification problem w.r.t. an arbitrary \mathcal{EL} -ontology has a hybrid unifier or not is NP-complete.

6 Conclusions

In this paper, we have proved that hybrid \mathcal{EL} -unification w.r.t. arbitrary \mathcal{EL} -ontologies is NP-complete. In [3] we have developed also a goal-oriented NP-algorithm for hybrid \mathcal{EL} -unification that is better than the brute-force "guess and then test" algorithm used to show the "in NP" result. The decidability and complexity of classical \mathcal{EL} -unification w.r.t. arbitrary \mathcal{EL} -ontologies is an important topic for future research. We hope that hybrid unification may also be helpful in this context.

References

- [1] Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003). pp. 325–330. Morgan Kaufmann, Los Altos, Acapulco, Mexico (2003)
- [2] Baader, F., Borgwardt, S., Morawska, B.: Extending unification in \mathcal{EL} towards general TBoxes. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2012). pp. 568–572. AAAI Press/The MIT Press (2012)
- [3] Baader, F., Fernández Gil, O., Morawska, B.: Hybrid unification in the description logic \mathcal{EL} . LTCS-Report 13-07, Chair for Automata Theory, Institute for Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2013), see http://lat.inf.tu-dresden.de/research/reports.html.
- [4] Baader, F., Morawska, B.: Unification in the description logic &\mathcal{E}\mathcal{L}\$. In: Treinen, R. (ed.) Proc. of the 20th Int. Conf. on Rewriting Techniques and Applications (RTA 2009). Lecture Notes in Computer Science, vol. 5595, pp. 350–364. Springer-Verlag (2009)

- [5] Baader, F., Morawska, B.: Unification in the description logic \$\mathcal{\mathcal{E}}\mathcal{L}\$. Logical Methods in Computer Science 6(3) (2010)
- [6] Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of Symbolic Computation 31(3), 277–305 (2001)
- [7] Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.) Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004). pp. 298–302 (2004)
- [8] Brandt, S., Model, J.: Subsumption in \mathcal{EL} w.r.t. hybrid thoxes. In: Proc. of the 28th German Annual Conf. on Artificial Intelligence (KI'05). pp. 34–48. Lecture Notes in Artificial Intelligence, Springer-Verlag (2005)
- [9] Küsters, R.: Non-standard Inferences in Description Logics, Lecture Notes in Artificial Intelligence, vol. 2100. Springer-Verlag (2001)
- [10] Novakovic, N.: A proof-theoretic approach to deciding subsumption and computing least common subsumer in w.r.t. hybrid TBoxes. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) Proc. of the 11th Eur. Conf. on Logics in Artificial Intelligence (JELIA'2004). Lecture Notes in Computer Science, vol. 5293, pp. 311–323. Springer-Verlag (2008)