
Natural Language Engineering (2020), 1–00
doi:10.1017/xxxxx

ARTICLE

Compositional Matrix-Space Models of Language:
Definitions, Properties, and Learning Methods

Shima Asaadi1, Eugenie Giesbrecht2, and Sebastian Rudolph1,*

1Technische Universität Dresden, Germany
2IBM Deutschland GmbH, Germany
*Corresponding author. Email: sebastian.rudolph@tu-dresden.de

(Received xx xxx xxx; revised xx xxx xxx; accepted xx xxx xxx)

Abstract
We give an in-depth account of Compositional Matrix-Space Models (CMSMs), a type of generic mod-
els for natural language, wherein compositionality is realized via matrix multiplication. We argue for the
structural plausibility of this model and show that it is able to cover and combine various common compo-
sitional NLP approaches. Then, we consider efficient task-specific learning methods for training CMSMs
and evaluate their performance in compositionality prediction and sentiment analysis.
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1. Introduction

Cognitively adequate models of language have been a subject of central interest in areas as diverse
as philosophy, (computational) linguistics, artificial intelligence, cognitive science, neurology, and
intermediate disciplines. Much effort in natural language processing (NLP) has been devoted to
obtain representations of linguistic unitsa, such as words, that can capture language syntax, seman-
ticsb, and other linguistic aspects for computational processing. One of the primary and successful
models for the representation of word semantics are Vector Space Models (VSMs) introduced by
Salton et al. (1975) and its variations, such as Word Space Models (Schütze 1993), Hyperspace
Analogue to Language (Lund and Burgess 1996), Latent Semantic Analysis (LSA) (Deerwester
et al. 1990), and more recently neural word embeddings, such as word2vec (Mikolov et al. 2013a)
and neural language models, such as BERT (Devlin et al. 2019). In VSMs, a vector representation
in a continuous vector space of some fixed dimension is created for each word in the text. VSMs
have been empirically justified by results from cognitive science (Gärdenfors 2000).

One influential approach to produce word vector representations in VSMs are distributional rep-
resentations, which are generally based on the distributional hypothesis first introduced by Harris

aA unit in natural language may refer to a letter, morpheme, word, phrase, clause, sentence, or text document. In this work,
we are mainly interested in words.

bIn this work, the term semantics in a general sense is used and refers to meaning.
© Cambridge University Press 2020
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(1954). The distributional hypothesis presumes that “difference of meaning correlates with dif-
ference of distribution” (Harris 1954, p. 156). Based on this hypothesis, “words that occur in the
same contexts tend to have similar meanings” (Pantel 2005, p 126), and the meaning of words is
defined by contexts in which they (co-)occur. Depending on the specific model employed, these
contexts can be either local (the co-occurring words) or global (a sentence or a paragraph or
the whole document). In VSMs, models that are obtained based on the distributional hypothe-
sis are called Distributional Semantic Models (DSMs). Word meaning is then modelled as an
n-dimensional vector, derived from word co-occurrence counts in a given context. In these mod-
els, words with similar distributions tend to have closer representations in the vector space. These
approaches to semantics share the usage-based perspective on meaning; that is, representations
focus on the meaning of words that comes from their usage in a context. In this way, semantic re-
lationships between words can also be understood using the distributional representations and by
measuring the distance between vectors in the vector space (Mitchell and Lapata 2010). Vectors
that are close together in this space have similar meanings and vectors that are far away are dis-
tant in meaning (Turney and Pantel 2010). In addition to mere co-occurrence information, some
DSMs also take into account the syntactic relationship of word pairs, such as subject-verb rela-
tionship, for constructing their vector representations (Padó and Lapata 2007; Baroni and Lenci
2010). Therefore, dependency relations contribute to the construction of the semantic space and
capture more linguistic knowledge. These dependency relations are asymmetric and hence reflect
the word position and order information in the word vector construction. In these models, text
preprocessing is required for building the model, as lexico-syntactic relations have to be extracted
first.

Many recent approaches utilize machine learning techniques with the distributional hypothesis
to obtain continuous vector representations that reflect the meanings in natural language. One
example is word2vec, proposed by Mikolov et al. (2013ab), which is supposed to capture both
syntactic and semantic aspects of words. In general, VSMs have proven to perform well in a
number of tasks requiring computation of semantic closeness between words, such as synonymy
identification (Landauer and Dumais 1997), automatic thesaurus construction (Grefenstette 1994),
semantic priming and word sense disambiguation (Padó and Lapata 2007), and many more.

Early VSMs represented each word separately, without considering representations of larger units
like phrases or sentences. Consequently, the compositionality properties of language were not
considered in VSMs (Mitchell and Lapata 2010). According to Frege’s principle of composition-
ality (Frege 1884), “The meaning of an expression is a function of the meanings of its parts and of
the way they are syntactically combined” (Partee 2004, p.153). Therefore, the meaning of a com-
plex expression in a natural language is determined by its syntactic structure and the meanings
of its constituents (Halvorsen and Ladusaw 1979). On sentence level, the meaning of a sentence
such as White mushrooms grow quickly is a function of the meaning of the noun phrase White
mushrooms combined as a subject with the meaning of the verb phrase grow quickly. Each phrase
is also derived from the combination of its constituents. This way, semantic compositionality al-
lows us to construct long grammatical sentences with complex meanings (Baroni et al. 2014).
Approaches have been developed that obtain meaning above the word-level and introduce compo-
sitionality for DSMs in NLP. These approaches are called Compositional Distributional Semantic
Models (CDSMs). CDSMs propose word representations and vector space operations (such as
vector addition) as the composition operation. Mitchell and Lapata (2010) propose a framework
for vector-based semantic composition in DSMs. They define additive or multiplicative functions
for the composition of two vectors and show that compositional approaches generally outperform
non-compositional approaches which treat a phrase as the union of single lexical items. Word2vec
models also exhibit good compositionality properties using standard vector operations (Mikolov
et al. 2013ab). However, these models cannot deal with lexical ambiguity and representations are
non-contextualized. Very recently, contextualized (or context-aware) word representation models,
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such as transformer-based models like BERT (Devlin et al. 2019), have been introduced. These
models learn to construct distinct representations for different meanings of the words based on
their occurrence in different contexts. Moreover, they consider the word order of input text for
training the final representations by adding the positional information of words to their repre-
sentations. These models compute word representations using large neural-based architectures.
Moreover, training such models needs rich computational resources. Due to their expensive com-
putational requirements, compressed versions of BERT have been introduced, such as DistilBERT
(Sanh et al. 2019). They have shown state-of-the-art performance in downstream NLP tasks, and
we refer the reader interested in contextualized word representations to the work by Devlin et al.
(2019). Our focus in this article is on light-weight computations of word representations in a given
context and the dynamic composition of word representations using algebraic operations.

Despite its simplicity and light-weight computations, one of the downsides of using vector
addition (or other commutative operations like the component-wise product) as the composi-
tionality operation is that word order information is inevitably lost. To overcome this limitation
while maintaining light-weight computations for compositional representations, this article de-
scribes an alternative, word-order-sensitive approach for compositional word representations,
called Compositional Matrix-Space Models (CMSMs). In such models, word matrices instead
of vectors are used as word representations and compositionality is realized via iterated matrix
multiplication.

Contributions. The contribution of this work can be grouped into two categories:

(1) On the formal, theoretical side, we propose CMSMs as word-level representation models
and provide advantageous properties of these models for natural language processing,
showing that they are able to simulate most of the known vector-based compositionality
operations and that several CMSMs can be combined into one in a straightforward way. We
also investigate expressiveness and computational properties of the languages accepted of
a CMSM-based grammar model, called matrix grammars. This contribution is an extended
and revised account of results by Rudolph and Giesbrecht (2010).

(2) On the practical side, we provide an exemplary experimental investigation of the practical
applicability of CMSMs in English by considering two NLP applications: compositional
sentiment analysis and compositionality prediction of short phrases. We chose these two
tasks for practical investigations since compositionality properties of the language play an
important role in such tasks. For this purpose, we develop two different machine learn-
ing techniques for the mentioned tasks and evaluate the performance of the learned model
against other distributional compositional models from the literature. By means of these
investigations we show that

• there are scalable methods for learning CMSMs from linguistic corpora and
• in terms of model quality, the learned models are competitive with other state-of-the-

art approaches while requiring significantly fewer parameters.
This contribution addresses the question “how to acquire CMSMs automatically in large-
scale and for specific purposes” raised by Rudolph and Giesbrecht (2010). Preliminary
results of this contribution concerning the sentiment analysis task have been published
by Asaadi and Rudolph (2017). In this article, we extend them with hitherto unpublished
investigations on compositionality prediction.

Structure. The structure of the article is as follows. We first review compositional distributional
models in literature and provide the related work for the task of compositional sentiment analysis
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and semantic compositionality prediction in Section 2. Then, to introduce CMSMs, we start by
providing the necessary basic notions in linear algebra in Section 3. In Section 4, we give a formal
account of the concept of compositionality, introduce CMSMs, and argue for the plausibility of
CMSMs in the light of structural and functional considerations. Section 5 demonstrates beneficial
theoretical properties of CMSMs: we show how common VSM approaches to compositionality
can be captured by CMSMs, while they are likewise able to cover symbolic approaches; moreover,
we demonstrate how several CMSMs can be combined into one model.

In view of these advantageous properties, CMSMs seem to be a suitable candidate in a diverse
range of different tasks of NLP. In Section 6, we focus on ways to elicit information from matri-
ces in order to leverage CMSMs for NLP tasks like scoring or classification. These established
beneficial properties motivate a practical investigation of CMSMs in NLP applications. Therefore,
methods for training such models need to be developed, e.g., by leveraging appropriate machine
learning techniques.

Hence, we address the problem of learning CMSMs in Section 7. Thereby, we focus on a gradient
descent method but apply diverse optimizations to increase the method’s efficiency and perfor-
mance. We propose to apply a two-step learning strategy where the output of the first step serves
as the initialization for the second step. The results of the performance evaluation of our learning
methods on two tasks are studied in Section 8. In the first part of the experiments, we investi-
gate our learning method for CMSMs on the task of compositionality prediction of Multi-Word
Expressions (MWE). Compositionality prediction is important in downstream NLP tasks such as
statistical machine translation (Enache et al. 2014; Weller et al. 2014), word-sense disambigua-
tion (McCarthy et al. 2003), and text summarization (ShafieiBavani et al. 2018) where a method is
required to detect whether the words in a phrase are used in a compositional meaning. Therefore,
we choose to evaluate the proposed method for CMSMs on the ability to detect the composition-
ality of phrases. In the second part of the experiments, we evaluate our method on the task of
fine-grained sentiment analysis. We choose this task since it allows a direct comparison against
two closely related techniques proposed by Yessenalina and Cardie (2011) and Irsoy and Cardie
(2015), which also trains a CMSM. We finally conclude by discussing the strengths and limitations
of CMSMs in Section 9.

As stated earlier, this article is a consolidated, significantly revised, and considerably extended
exposition of work presented in earlier conference and workshop papers (Rudolph and Giesbrecht
2010; Asaadi and Rudolph 2017).

2. Related work

We were not the first to suggest an extension of classical VSMs to higher-order tensors. Early
attempts to apply matrices instead of vectors to text data came from research in information re-
trieval (Gao et al. 2004; Liu et al. 2005; Antonellis and Gallopoulos 2006; Cai et al. 2006). Most
proposed models in information retrieval still use a vector-based representation as the basis and
then mathematically convert vectors into tensors, without linguistic justification of such a trans-
formation; or they use metadata or ontologies to initialize the models (Sun et al. 2006; Chew et al.
2007; Franz et al. 2009; Van de Cruys 2010). However, to the best of our knowledge, we were the
first to propose an approach of realizing compositionality via consecutive matrix multiplication. In
this section, a comprehensive review of related work on existing approaches to modeling words as
matrices, distributional semantic compositionality, compositional methods for sentiment analysis,
and compositionality prediction of MWEs is provided.
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Compositional Distributional Semantic Models. In compositional distributional semantics,
different approaches for learning word representations and diverse ways of realizing semantic
compositionality are studied. In the following, we discuss the related vector space approaches,
which are summarized in Table 1. However, be reminded that our compositional approach will be
formulated in matrix space as opposed to vector space.

Table 1. : Summary of the literature review in semantic compositionality.

Study Approach Evaluation methodology

Salton and McGill (1986) Additive model in vector space Evaluation in information retrieval sys-
tems

Kintsch (2001) Predication in vector space Evaluation on metaphor interpretation,
causal inferences, similarity judgments,
and homonym disambiguation and com-
parison with the standard composition
rule for vectors in Latent Semantic
Analysis (LSA)

Widdows (2008) Tensor product and convolution
operation in vector space

Evaluation on analogy task and semantic
similarity of pairs in which tensor product
outperforms additive model

Mitchell and Lapata (2010) Dilation in vector space Evaluation on compositional semantic
similarity of two-word phrases where
element-wise vector multiplication out-
performs other operations

Guevara (2010) Partial Least Square Regres-
sion (PLSR) in vector space
to model adjective–noun com-
pounds

Evaluation on predicting the represen-
tation of the adjective–noun compounds
and predicting neighbors of those com-
pounds. In the first task, PLSR outper-
forms additive and multiplicative models
and in the second task additive model
outperforms PLSR

Turney (2012) Dual-space model in vector
space obtained from the word-
context co-occurrence matrix

Evaluation on semantic compositionality
of bigram–unigram pairs in which dual-
space model outperforms additive and
multiplicative models

Baroni and Zamparelli (2010) Linear regression to model
adjective–noun composition
where adjectives are matrices
and nouns are vectors in vector
space

Evaluation on predicting nearest neigh-
bors and the representation of A-N com-
pounds, which outperforms additive and
multiplicative models on average

Maillard and Clark (2015) Tensor-based skip-gram model
for adjective–noun composition
with adjectives as matrices and
nouns as vectors in vector
space

Evaluation on phrase semantic similarity
and semantic anomaly. The model out-
performs standard skip-gram with addi-
tion and multiplication as composition op-
erations in the first task, and the additive
and multiplicative model in the second
task.

Chung et al. (2018) Tree-structured LSTM in vector
and matrix spaces

Evaluation on the Natural Language
Inference (NLI) task, which outperforms
the standard tree-LSTM in vector space

Salton and McGill (1986) introduce vector addition in VSMs as a composition method, which
is the most common method. Given two words wi and w j and their associated d-dimensional
semantic vector representations u∈Rd and v∈Rd , respectively, vector addition is defined as
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follows:

p = f (v, u) = v + u,

where p∈Rd is the resulting compositional representation of the phrase wiw j and f is called
the composition function. Despite its simplicity, the additive method is not a suitable method of
composition because vector addition is commutative. Therefore, it is not sensitive to word order
in the sentence, which is a natural property of human language.

Among the early attempts to provide more compelling compositional functions in VSMs is
the work of Kintsch (2001) who is using a more sophisticated composition function to model
predicate-argument structures. Kintsch (2001) argues that the neighboring words “strengthen fea-
tures of the predicate that are appropriate for the argument of the predication” (p. 178). For
instance, the predicate run depends on the noun as its argument and has a different meaning
in, e.g., “the horse runs” and “the ship runs before the wind”. Thus, different features are used
for composition based on the neighboring words. Also, not all features of a predicate vector are
combined with the features of the argument, but only those that are appropriate for the argument.

An alternative seminal work on compositional distributional semantics is by Widdows (2008).
Widdows proposes a number of more advanced vector operations well-known from quantum me-
chanics for semantic compositionality, such as tensor product and convolution operation to model
composition in vector space. Given two vectors u∈Rd and v∈Rd , the tensor product of two
vectors is a matrix Q∈Rd×d with Q(i, j) = u(i)v( j). Since the number of dimensions increases
by tensor product, the convolution operation was introduced to compress the tensor product oper-
ation to Rd space. Widdows shows the ability of the introduced compositional models to reflect
the relational and phrasal meanings on a simplified analogy task and semantic similarity which
outperform additive models.

Mitchell and Lapata (2010) formulate semantic composition as a function m = f (w1, w2, R, K)
where R is a relation between w1 and w2 and K is additional knowledge. They evaluate the model
with a number of addition and multiplication operations for vector combination and introduce
dilation as another composition operation. The dilation method decomposes v into a parallel and
an orthogonal component to u and then stretches the parallel component to adjust v along u:

p(i) = v(i)∑
j

u( j)u( j) + (λ − 1)u(i)∑
j

u( j)v( j),

where λ is the dilation factor and p is the composed vector. Therefore, u affects relevant elements
of vector v in the composition. Evaluation is done on their developed compositional semantic
similarity dataset of two-word phrases. They conclude that element-wise vector multiplication
outperforms additive models and non-compositional approaches in the semantic similarity of
complex expressions.

Giesbrecht (2009) evaluates four vector composition operations (addition, element-wise multipli-
cation, tensor product, convolution) in vector space on the task of identifying multi-word units.
The evaluation results of the three studies (Widdows 2008; Giesbrecht 2009; Mitchell and Lapata
2010) are not conclusive in terms of which vector operation performs best; the different outcomes
might be attributed to the underlying word space models; for example, the models of Widdows
(2008) and Giesbrecht (2009) feature dimensionality reduction while that of Mitchell and Lapata
(2010) does not.

Guevara (2010) proposes a linear regression model for Adjective-Noun (A-N) compositionality.
He trains a generic function to compose any adjective and noun vectors and produce the A-N rep-
resentation. The model which is learned by Partial Least Square Regression (PLSR) outperforms
additive and multiplicative models in predicting the vector representation of A-Ns. However, the
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additive model outperforms PLSR in predicting the nearest neighbors in the vector space. As op-
posed to this work, semantic compositionality in our approach is regardless of the parts of speech
(POS), and therefore, the model can be trained to represent different compositional compounds
with various POS tags.

Some approaches for obtaining distributional representation of words in VSMs have been also
extended to compositional distributional models. Turney (2012) proposes a dual-space model
for semantic compositionality. He creates two vector-space models from the word-context co-
occurrence matrix, one from the noun as the context of the words (called domain space) and the
other from the verb as the context of the word (called function space). Therefore, the dual-space
model consists of a domain space for determining the similarity in topic or subject, and a function
space for computing the similarity in role or relationship. He evaluates the dual-space model on the
task of similarity of compositions for pairs of bigram–unigram in which bigram is a noun phrase
and unigram is a noun. He shows that the introduced dual-space model outperforms additive and
multiplicative models.

Few approaches using matrices for distributional representations of words have been introduced
more recently, which are then used for capturing compositionality. A method to drive a distri-
butional representation of adjective–noun (A-N) phrases is proposed by Baroni and Zamparelli
(2010) where the adjective serves as a linear function mapping the noun vector to another vector
in the same space, which presents the A-N compound. In this method, each adjective has a matrix
representation. Using linear regression, they train separate models for each adjective. They evalu-
ate the performance of the proposed approach in predicting the representation of A-N compounds
and predicting their nearest neighbors. Results show that their model outperforms additive and
multiplicative models on average. A limitation of this model is that a separate model is trained
for each adjective, and there is no global training model for adjectives. This is in contrast to our
proposed approach in this work.

Maillard and Clark (2015) describe a compositional model for learning adjective–noun pairs
where, first, word vectors are trained using the skip-gram model with negative sampling (Mikolov
et al. 2013b). Then, each adjective–noun phrase is considered as a unit, and adjective matrices
are trained by optimizing the skip-gram objective function for adjective–noun phrase vectors. The
phrase vectors of the objective function are obtained by multiplying the adjective matrix with its
noun vector. Noun vectors in this step are fixed. Results on the phrase semantic similarity task
show that the model outperforms the standard skip-gram with addition and multiplication as the
composition operations. Moreover, the model outperforms additive and multiplicative models in
the semantic anomaly task.

More recently, Chung et al. (2018) introduced a learning method for a matrix-based composition-
ality model using a deep learning architecture. They propose a tree-structured Long Short-Term
Memory (LSTM) approach for the task of Natural Language Inference (NLI) in order to learn the
word matrices. In their method, the model learns to transform the pre-trained input word embed-
dings (e.g., word2vec) to word matrix embeddings (lift layer). Then word matrices are composed
hierarchically using matrix multiplication to obtain the representation of sentences (composition
layer). The sentence representations are then used to train a classifier for the NLI task.

Semantic Compositionality Evaluation. Table 2 summarizes the literature on techniques to
evaluate the existing compositional models on capturing semantic compositionality.

Reddy et al. (2011) study the performance of compositional distributional models on composi-
tionality prediction of multi-word compounds. For this purpose, they provide a dataset of noun
compounds with fine-grained compositionality scores as well as literality scores for constituent
words based on human judgments. They analyze both constituent-based models and composition-
function-based models regarding compositionality prediction of the proposed compounds. In
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Table 2. : Summary of the literature review in compositionality prediction.

Study Evaluated compositional models Test dataset

Reddy et al. (2011) Composition-function-based mod-
els: weighted additive, multiplicative
models

Fine-grained compositionality
scores for noun compounds
(bigrams)

Biemann and Giesbrecht (2011) Approaches based on statistical as-
sociation measures (e.g., PMI) and
approaches based on word space
models

Fine-grained English and Ger-
man compounds (bigrams)
with different parts of speech

Salehi et al. (2015) Constituent and composition-func-
tion-based approaches on three dif-
ferent vector-space models: count-
based models, word2vec and multi-
sense skip-gram

Fine-grained English noun
compounds, binary English
verb particle constructions,
and fine-grained German
noun compounds

Yazdani et al. (2015) Additive and multiplicative models in
vector space, neural network, linear
regression, and polynomial regres-
sion

Fine-grained English MWEs
(bigrams)

Cordeiro et al. (2016) Various distributional semantic mod-
els (GloVe, word2vec and PPMI-
based models) with normalized vec-
tor addition as composition operation

Nominal English and French
compounds

Li et al. (2017) A model based on the external con-
text and component words with a
compositionality constraint, additive
and multiplicative models in vector
space

English semantic relatedness
and similarity datasets

Cordeiro et al. (2019) Various distributional semantic mod-
els (GloVe, word2vec and PPMI-
based models) with weighted vec-
tor addition as composition operation
and also average similarity between
the compound and its components

Nominal English, French and
Portuguese compounds

constituent-based models, they study the relations between the contribution of constituent words
and the judgments on compound compositionality. They argue if a word is used literally in a
compound, most probably it shares a common co-occurrence with the corresponding compound.
Therefore, they evaluate different composition functions applied on constituent words and com-
pute their similarity with the literality scores of phrases. In composition-function-based models,
they evaluate weighted additive and multiplicative composition functions on their dataset, and
investigate the similarity between the composed word vector representations and the compound
vector representation. Results show that in both models, additive composition outperforms other
functions.

Biemann and Giesbrecht (2011) aim at extracting non-compositional phrases using automatic
distributional models that assign a compositionality score to a phrase. This score denotes the
extent to which the compositionality assumption holds for a given expression. For this purpose,
they created a dataset of English and German phrases which attracted several models ranging from
statistical association measures and word space models submitted in a shared task of SemEval’11.

Salehi et al. (2015) explore compositionality prediction of MWEs using constituent-based and
composition-function-based approaches on three different vector-space models, consisting of
count-based models, word2vec and multi-sense skip-gram model. In constituent-based models,
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they study the relation between the contribution of constituent words and the judgments on com-
pound compositionality. In the composition-function-based models, they study the additive model
in vector space on compositionality.

Yazdani et al. (2015) then explore different compositional models ranging from simple to complex
models such as neural networks for non-compositionality prediction of a dataset of MWEs. The
dataset is created by Farahmand et al. (2015), which consists of multi-word expressions anno-
tated with non-compositionality judgments. Representation of words are obtained from word2vec
of Mikolov et al. (2013a) and the models are trained using compounds extracted from a Wikipedia
dump corpus, assuming that most compounds are compositional. Therefore, the trained models are
expected to give a relatively high error to non-compositional compounds. They improve the accu-
racy of the models using latent compositionality annotation, and show that this method improves
the performance of non-linear models significantly. Their results show that polynomial regression
model with quadratic degree outperforms other models.

Cordeiro et al. (2016) and their extended work (Cordeiro et al. 2019) are closely related to our
work regarding the compositionality prediction task. They explore the performance of unsu-
pervised vector addition and multiplication over various distributional semantic models (GloVe,
word2vec and PPMI-based models) regarding predicting semantic compositionality of noun com-
pounds over previously proposed English and French datasets in (Cordeiro et al. 2016) and
a combination of previously and newly proposed English, French and Portuguese datasets in
(Cordeiro et al. 2019). Normalized vector addition in (Cordeiro et al. 2016) is considered as the
composition function, and the performance of word embeddings is investigated using different
setting of parameters for training them.

Cordeiro et al. (2019) consider a weighted additive model as the composition function in which
the weights of head and modifier words in the compounds range from 0 to 1, meaning that the
similarity between head only word and the compound, the similarity between modifier only word
and the compound, as well as the similarity between equally weighted head and modifier words
and the compound are evaluated. Moreover, they consider the average of the similarity between
head-compound pair and modifier-compound pair and compute the correlation between the av-
erage similarity score and the human judgments on the compositionality of compound. In both
works, they also study the impact of corpus preprocessing on capturing compositionality with
DSMs. Furthermore, the influence of different settings of DSMs parameters and corpus size for
training is studied. In our work, we evaluate our proposed compositional model using their in-
troduced English dataset. We compare the performance of our model with the weighted additive
model as well as other unsupervised and supervised models, and provide a more comprehensive
collection of compositional models for evaluation. In the weighted additive model we report the
best model obtained by varying the weights of the head and modifier words of the compound.

In a work by Li et al. (2017), a hybrid method to learn the representation of MWEs from their
external context and constituent words with a compositionality constraint is proposed. The main
idea is to learn MWE representations based on a weighted linear combination of both external
context and component words, where the weight is based on the compositionality of the MWEs.
Evaluations are done on the task of semantic similarity and semantic relatedness between bigrams
and unigrams. Recent deep learning techniques also focus on modeling the compositionality of
more complex texts without considering the compositionality of the smaller parts such as Wu and
Chi (2017), which is out of the scope of our study. None of the mentioned works, however, have
investigated the performance of CMSMs in compositionality prediction of short phrases on MWE
datasets.

Compositional Sentiment Analysis. There is a lot of research interest in the task of sentiment
analysis in NLP. The task is to classify the polarity of a text (negative, positive, neutral) or assign
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a real-valued score, showing the polarity and intensity of the text. In the following we review the
literature, which is summarized in Table 3.

Table 3. : Summary of the literature review in compositional sentiment analysis. SST denotes
Stanford Sentiment Treebank dataset.

Study Research goal Approach Dataset

Yessenalina and
Cardie (2011)

Fine-grained sentiment anal-
ysis on short sequen- ces in
matrix space

Ordered Logistic Regres-
sion (OLogReg)

MPQA

Socher et al. (2012) Binary and fine-grained senti-
ment analysis in vector space

Recursive neural network
using tree structure

SST

Socher et al. (2013) Binary and fine-grained senti-
ment analysis in vector space

Recursive neural tensor net-
work

SST

Irsoy and Cardie
(2015)

Fine-grained sentiment analy-
sis in matrix-space

Multiplicative recurrent neu-
ral network

MPQA and SST

Kiritchenko and
Mohammad (2016b)

Binary and fine-grained senti-
ment analysis in vector space

Support vector egression
with word2vec emebedding

Sentiment Composition
Lexicon with Opposing
Polarity Phrases

Le and Mikolov (2014) Binary and fine-grained senti-
ment analysis in vector space

Stochastic gradient descent SST

Hong and Fang (2015) Binary and fine-grained senti-
ment analysis in vector space

Long Short-Term Memory
and deep recursive neural
network vector space

Stanford Large Movie
Review Dataset (IMDB)
and SST

Wang et al. (2016) Fine-grained sentiment analy-
sis in vector space

Convolutional neural net-
work and recurrent neural
network

Movie reviews and SST

Yessenalina and Cardie (2011) propose the first supervised learning technique for CMSMs in fine-
grained sentiment analysis on short sequences after it was introduced by Rudolph and Giesbrecht
(2010). This work is closely related to ours as we propose learning techniques for CMSMs in the
task of fine-grained sentiment analysis. Yessenalina and Cardie (2011) apply Ordered Logistic
Regression (OLogReg) with constraints on CMSMs to acquire a matrix representation of words.
The learning parameters in their method include the word matrices as well as a set of thresholds
(also called constraints), which indicate the intervals for sentiment classes since they convert the
sentiment classes to ordinal labels. They argue that the learning problem for CMSMs is not a
convex problem, so it must be trained carefully and specific attention has to be devoted to a good
initialization, to avoid getting stuck in local optima. Therefore, they propose a model for ordinal
scale sentiment prediction and address the optimization problem using OLogReg with constraints
on sentiment intervals to relax the non-convexity. Finally, the trained model assigns real-valued
sentiment scores to phrases. We address this issue in our proposed learning method for CMSMs.
As opposed to Yessenalina and Cardie (2011)’s work, we address a sentiment regression problem
directly and our learning method does not need to constrain the sentiment scores to the certain
intervals. Therefore, the number of parameters to learn are reduced to only word matrices.

Recent approaches have focused on learning different types of neural networks for sentiment anal-
ysis, such as the work of Socher et al. (2012) and Socher et al. (2013). Moreover, the superiority of
multiplicative composition has been confirmed in their studies. Socher et al. (2012) propose a re-
cursive neural network which learns the vector representations of phrases in a tree structure. Each
word and phrase is represented by a vector v and a matrix M. When two constituents in the tree
are composed, the matrix of one is multiplied with the vector of the other constituent. Therefore,
the composition function is parameterized by the words that participate in it. Socher et al. (2012)
predict the binary (only positive and negative) sentiment classes and fine-grained sentiment scores
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using the trained recursive neural network on their developed Stanford Sentiment Treebank (SST)
dataset. This means that new datasets must be preprocessed to generate the parse trees for evaluat-
ing the proposed method. A problem with this method is that the number of parameters becomes
very large as it needs to store a matrix and a vector for each word and phrase in the tree together
with the fully labeled parse tree. In contrast, our compositional matrix-space model does not rely
on parse trees, and therefore, preprocessing of the dataset is not required. Each word is represented
only with matrices where the compositional function is the standard matrix multiplication, which
replaces the recursive computations with a sequential computation.

Socher et al. (2013) address the issue of the high number of parameters in the work by Socher
et al. (2012) by introducing a recursive neural tensor network in which a global tensor-based
composition function is defined. In this model, a tensor layer is added to their standard recursive
neural network where the vectors of two constituents are multiplied with a shared third-order
tensor in this layer and then passed to the standard layer. The output is a composed vector of
words which is then composed with the next word in the same way. The model is evaluated on
both fine-grained and binary (only positive and negative) sentiment classification of phrases and
sentences. Similar to Socher et al. (2012) a fully labeled parse tree is needed. In contrast, our
model in this work does not rely on parse trees.

Irsoy and Cardie (2015) propose a multiplicative recurrent neural network for fine-grained sen-
timent analysis inspired from CMSMs (Rudolph and Giesbrecht 2010). They show that their
proposed architecture is more generic than CMSM and outperforms additive neural networks in
sentiment analysis. In their architecture, a shared third-order tensor is multiplied with each word
vector input to obtain the word matrix in CMSMs. They use pre-trained word vectors of dimen-
sion 300 from word2vec (Mikolov et al. 2013b), and explore different sizes of matrices extracted
from the shared third-order tensor. The results on the task of sentiment analysis is compared to
the work by Yessenalina and Cardie (2011). We also compare the results of our model training on
the same task to this approach since it is closely related to our work. However, in our approach,
we do not use word vectors as input. Instead, the input word matrices are trained directly without
using a shared tensor. We show that our model performs better while using fewer dimensions.

Kiritchenko and Mohammad (2016a) create a dataset of unigrams, bigrams and trigrams, which
contains specific phrases with at least one negative and one positive word. For instance a phrase
”happy tears“ contain a positive-carrying sentiment word (happy) and a negative word (tears).
They analyze the performance of Support-Vector Regression (SVR) with different features on the
developed dataset. We show that our approach can predict the sentiment score of such phrases in
matrix space with a much lower number of features than SVR.

There are a number of deep neural network models on the task of sentiment compositional analysis
such as Hong and Fang (2015) who apply long short-term memory and deep recursive-NNs, and
Wang et al. (2016) who combine convolutional neural networks and recurrent neural networks
leading to a significant improvement in sentiment analysis of short text. Le and Mikolov (2014)
also propose paragraph vector to represent long texts such as sentences and paragraphs, which is
applied in the task of binary and fine-grained sentiment analysis. The model consists of a vector
for each paragraph as well as the word vectors, which are concatenated to predict the next word
in the context. Vectors are trained using stochastic gradient descent method. These techniques do
not focus on training word representations that can be readily composed and therefore are not
comparable directly to our proposed model.
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3. Preliminaries

In this section, we recap some aspects of linear algebra to the extent needed for our considerations
about CMSMs. For a more thorough treatise we refer the reader to a linear algebra textbook (such
as Strang (1993)).

Vectors. Given a natural number n, an n-dimensional vector v over the reals can be seen as a
list (or tuple) containing n real numbers r1, . . . , rn ∈R, written v = (r1 r2 · · · rn). Vectors
will be denoted by lowercase bold font letters and we will use the notation v(i) to refer to
the ith entry of vector v. As usual, we write Rn to denote the set of all n-dimensional vectors
with real-valued entries. Vectors can be added entry-wise, i.e., (r1 · · · rn) + (r′1 · · · r′n) =
(r1+r′1 · · · rn+r′n). Likewise, the entry-wise product (also known as Hadamard product) is
defined by (r1 · · · rn) � (r′1 · · · r′n) = (r1 · r′1 · · · rn · r′n).

Matrices. Given two natural numbers n and m, an n×m matrix over the reals is an array of real
numbers with n rows and m columns. We will use capital letters to denote matrices and, given a
matrix M we will write M(i, j) to refer to the entry in the ith row and the jth column:

M =



M(1, 1) M(1, 2) · · ·M(1, j) · · ·M(1, m)

M(2, 1) M(2, 2)
...

...
...

M(i, 1) M(i, j)
...

...
...

M(n, 1) M(1, 2) · · · · · · · · ·M(n, m)


The set of all n×m matrices with real number entries is denoted by Rn×m. Obviously, m-
dimensional vectors can be seen as 1×m matrices. A matrix can be transposed by exchanging
columns and rows: given the n×m matrix M, its transposed version MT is a m× n matrix defined
by MT (i, j) = M( j, i).

Third-order Tensors. A third-order tensor of dimension d × n×m over real values is a d-array
of n×m matrices. Third-order tensors are denoted by uppercase bold font letters, and T(i, j, k)
refers to row j and column k of matrix i in T. Rd×n×m indicates the set of all tensors with real
number elements.

Linear Mappings. Beyond being merely array-like data structures, matrices correspond to a
certain type of functions, so-called linear mappings, having vectors as input and output. More
precisely, an n×m matrix M applied to an m-dimensional vector v yields an n-dimensional vector
v′ (written: vM = v′) according to

v′(i) =
m

∑
j=1

v( j) ·M(i, j).

Linear mappings can be concatenated, giving rise to the notion of standard matrix multiplication:
we write M1M2 to denote the matrix that corresponds to the linear mapping defined by applying
first M1 and then M2. Formally, the matrix product of the n× ` matrix M1 and the `×m matrix
M2 is an n×m matrix M = M1M2 defined by

M(i, j) =
`

∑
k=1

M1(i, k) ·M2(k, j).
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Note that the matrix product is associative (i.e., (M1M2)M3 = M1(M2M3) always holds, thus
parentheses can be omitted) but not commutative (M1M2 = M2M1 does not hold in general, i.e.,
the order of the multiplied matrices matters).

Permutations. Given a natural number n, a permutation on {1 . . . n} is a bijection (i.e., a mapping
that is one-to-one and onto) Φ : {1 . . . n}→ {1 . . . n}. A permutation can be seen as a “reordering
scheme” on a list with n elements: the element at position i will get the new position Φ(i) in the
reordered list. Likewise, a permutation can be applied to a vector resulting in a rearrangement of
the entries. We write Φn to denote the permutation corresponding to the n-fold application of Φ

and Φ−1 to denote the permutation that “undoes” Φ.

Given a permutation Φ, the corresponding permutation matrix MΦ is defined by

MΦ(i, j) =

{
1 if Φ( j) = i,

0 otherwise.

Then, obviously permuting a vector according to Φ can be expressed in terms of matrix
multiplication as well, since we obtain, for any vector v∈Rn,

Φ(v) = vMΦ.

Likewise, iterated application (Φn) and the inverses Φ−n carry over naturally to the corresponding
notions in matrices.

4. A Matrix-based Model of Compositionality

Frege’s principle of compositionality states that “the meaning of an expression is a function of the
meanings of its parts and of the way they are syntactically combined” (Partee 2004, p.153). Also,
according to Partee et al. (1993, p. 334) the mathematical formulation of the compositionality
principle involves “representing both the syntax and the semantics as algebras and the semantic
interpretation as a homomorphic mapping from the syntactic algebra into the semantic algebra”.

The underlying principle of compositional semantics is that the meaning of a composed sequence
can be derived from the meaning of its constituent tokensc by applying a composition operation.
More formally, the underlying idea can be described mathematically as follows: given a mapping
[[ · ]] : Σ→ S from a set of tokens (words) Σ into some semantic space S (the elements of which
we will simply call “meanings”), we find a semantic composition operation ./: S∗→ S mapping
sequences of meanings to meanings such that the meaning of a sequence of tokens s = σ1σ2 . . . σk
can be obtained by applying ./ to the sequence [[σ1]][[σ2]] . . . [[σk]]. This situation, displayed in
Fig. 1, qualifies [[ · ]] as a homomorphism between (Σ∗, ·) and (S, ./).
A great variety of linguistic models are subsumed by this general idea ranging from purely sym-
bolic approaches (like type systems and categorial grammars) to statistical models (like vector
space and word space models). At the first glance, the underlying encodings of word semantics
as well as the composition operations differ significantly. However, we argue that a great variety
of them can be incorporated – and even freely inter-combined – into a unified model where the
semantics of simple tokens and complex phrases is expressed by matrices and the composition
operation is standard matrix multiplication that considers the position of tokens in the sequence.

cWe use the term token for the atomic language elements and the term (token) sequence for the composed units, in order to
avoid misunderstandings due to ambiguity: In formal languages, the atomic elements are called letters from some alphabet,
which can be composed into words. In compositional semantics, the atomic elements are the words which can be composed
into phrases or sentences.
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syntactic space (Σ∗, ·) σ1

[[ · ]]

��

concatenation ·

''
σ2

[[ · ]]

��

''
· · · σk

[[ · ]]

��

((
σ1σ2 . . . σk

[[ · ]]

��
semantic space (S, ./) [[σ1]]

composition ./

77
[[σ2]] 66

· · · [[σk]] 55
[[σ1σ2 . . . σk]]

Figure 1: Semantic mapping as homomorphism.

More precisely, in Compositional Matrix-Space Models, we have S=Rm×m, i.e., the seman-
tic space consists of quadratic matrices, and the composition operator ./ coincides with matrix
multiplication as introduced in Section 3.

We next provide an argument in favor of CMSMs due to their “algebraic plausibility”. Most linear-
algebra-based operations that have been proposed to model composition in language models (such
as vector addition or the Hadamard product) are both associative and commutative. Thereby, they
realize a multiset (or bag-of-words) semantics which makes them oblivious of structural differ-
ences of phrases conveyed through word order. For instance, in an associative and commutative
model, the statements "Oswald killed Kennedy" and "Kennedy killed Oswald" would be mapped
to the same semantic representation. For this reason, having commutativity “built-in” in language
models seems a very arguable design decision.

On the other hand, language is inherently stream-like and sequential, thus associativity alone
seems much more justifiable. Ambiguities which might be attributed to non-associativity (such as
the different meanings of the sentence “The man saw the girl with the telescope.”) can be resolved
easily by contextual cues.

As mentioned before, matrix multiplication is associative but non-commutative, whence we
propose it as more adequate for modeling compositional semantics of language.

5. The Power of CMSMs

In the following, we argue that CMSMs have diverse desirable properties from a theoretical
perspective, justifying our confidence that they can serve as a generic approach to modeling
compositionality in natural language.

5.1 CMSMs Capture Compositional Vector-Space Models

In VSMs, numerous vector operations have been used to model composition (Widdows 2008). We
show how common composition operators can be simulated by CMSMs.d For each such vector

dIn our investigations we will focus on VSM composition operations which preserve the format (i.e., which yield a vector of
the same dimensionality), as our notion of compositionality requires models that allow for iterated composition. In particular,
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composition operation ./: Rn ×Rn→Rn, we will provide a pair of functions ψ./ : Rn→Rm×m

and χ./ : Rm×m→Rn satisfying χ./(ψ./(v))) = v for all v∈Rn. These functions translate between
the vector representation and the matrix representation in a way such that for all v1, . . . , vk ∈Rn

holds

v1 ./ . . . ./ vk = χ./(ψ./(v1) . . . ψ./(vk)),

where ψ./(vi)ψ./(v j) denotes matrix multiplication of the matrices assigned to vi and v j. This al-
lows us to simulate a ./-compositional vector-space model by a matrix-space model where matrix
multiplication is the composition operation (see Fig. 2). We can in fact show that vector addition,
element-wise vector multiplication, holographic reduced representation, and permutation based
composition approaches are captured by CMSMs. See Appendix A for detailed discussion and
proofs.

vector space Rn v1

ψ./

��

vector composition ./

))
v2

))

ψ./

��

· · · vk
**

ψ./

��

v1 ./ v2 ./ . . . ./ vk

matrix space Rm×m ψ./(v1)

matrix multiplication

55

χ./

RR

ψ./(v2) 44

χ./

RR

· · · ψ./(vk)

χ./

RR

33
ψ./(v1)ψ./(v2) . . . ψ./(vk)

χ./

RR

Figure 2: Simulating compositional VSM via CMSMs.

5.2 CMSMs Capture Symbolic Approaches

Now we will elaborate on symbolic approaches to language, i.e., discrete grammar formalisms,
and show how they can conveniently be embedded into CMSMs. This might come as a surprise, as
the apparent likeness of CMSMs to vector-space models may suggest incompatibility to discrete
settings.

Group Theory. Group theory and grammar formalisms based on groups and pre-groups play an
important role in computational linguistics (Lambek 1958; Dymetman 1998). From the perspec-
tive of our compositionality framework, those approaches employ a group (or pre-group) (G, ·)
as the semantic space S where the group operation (often written as multiplication) is used as
composition operation ./.

According to Cayley’s Theorem (Cayley 1854), every group G is isomorphic to a permutation
group on some set S. Hence, assuming finiteness of G and consequently S, we can encode group-
based grammar formalisms into CMSMs in a straightforward way by using permutation matrices
of size |S| × |S|.

Regular Languages. Regular languages constitute a basic type of languages characterized by a
symbolic formalism. We will show how to select the assignment [[ · ]] for a CMSM such that the

this rules out dot product and tensor product. However, the convolution product can be seen as a condensed version of the
tensor product.
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matrix associated to a token sequence exhibits whether this sequence belongs to a given regular
language, that is if it is accepted by a given finite state automaton. As usual, we define a nondeter-
ministic finite automaton A= (Q, Σ, ∆, QI, QF) with Q = {q0, . . . , qm−1} being the set of states,
Σ the input alphabet, ∆⊆Q× Σ×Q the transition relation, and QI and QF being the sets of initial
and final states, respectively.

Then we assign to every token σ ∈ Σ the m×m matrix [[σ ]] = M with

M(i, j) =

{
1 if (qi, σ , q j)∈ ∆,

0 otherwise.

Hence essentially, the matrix M encodes all state transitions which can be caused by the input σ .
Likewise, for a sequence s = σ1 . . . σk ∈ Σ∗, the matrix Ms := [[σ1]] . . . [[σk]] will encode all state
transitions mediated by s.

5.3 Intercombining CMSMs

Another central advantage of the proposed matrix-based models for word meaning is that sev-
eral matrix models can be easily combined into one. Again assume a sequence s = σ1 . . . σk
of tokens with associated matrices [[σ1]], . . . , [[σk]] according to one specific model and matrices
([σ1]), . . . , ([σk]) according to another.

Then we can combine the two models into one {[ · ]} by assigning to σi the matrix

{[σi]}=



0 · · · 0

[[σi]]
...

. . .

0 0

0 · · · 0
...

. . . ([σi])

0 0


.

By doing so, we obtain the correspondence

{[σ1]} . . . {[σk]}=



0 · · · 0

[[σ1]] . . . [[σk]]
...

. . .

0 0

0 · · · 0
...

. . . ([σ1]) . . . ([σk])

0 0


.

In other words, the semantic compositions belonging to two CMSMs can be executed “in parallel.”
Mark that by providing non-zero entries for the upper right and lower left matrix part, information
exchange between the two models can be easily realized.
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6. Eliciting Linguistic Information from Matrix Representations

In the previous sections, we have argued in favor of using quadratic matrices as representatives
for the meaning of words and – by means of composition – phrases. The matrix representation
of a phrase thus obtained then arguably carries semantic information encoded in a certain way.
This necessitates a “decoding step” where the information of interest is elicited from the matrix
representation and is represented in different forms.

In the following, we will discuss various possible ways of eliciting the linguistic information from
the matrix representation of phrases. Thereby we distinguish if this information is in the form of
a vector, a scalar, or a boolean value. Proofs for the given theorems and propositions can be found
in Appendix B.

6.1 Vectors

Vectors can represent various syntactic and semantic information of words and phrases, and are
widely used in many NLP tasks. The information in matrix representations in CMSMs can be
elicited in a vector shape allowing for their comparison and integration with other NLP vector-
space approaches. There are numerous options for a vector extraction function χ : Rm×m→Rn,
among them the different functions χ./, introduced in Section 5.1.

One alternative option can be derived from an idea already touched in the second part of
Section 5.2, according to which CMSMs can be conceived as state transition systems, where
states are represented by vectors, and multiplying a state-vector with a matrix implements a tran-
sition from the corresponding state to another. We will provide a speculative neuropsychological
underpinning of this idea in Section 9. If we assume that processing an input sequence will al-
ways start from a fixed initial state α ∈ Rm, then the state after processing s = σ1 . . . σk will be
αMσ1 . . . Mσk = αMs. Consequently, one simple but plausible vector extraction operation would
be given by the function χα where the vector v associated to a matrix M is

v = χα(M) = αM.

6.2 Scalars

Scalars (i.e., real values) may also represent semantic information in NLP tasks, such as semantic
similarity degree in similarity tasks or sentiment score in sentiment analysis. Also, the information
in scalar form requires less storage than matrices or vectors. To map a matrix M ∈Rm×m to a scalar
value, we may employ any m2-ary function which takes as input all entries of M and delivers a
scalar value. There are plenty of options for such a function. In this article, we will be focusing on
the class of functions brought about by two mapping vectors from Rm, called α and β , mapping a
matrix M to the scalar value r via

r = αMβ
>.

Again, we can motivate this choice along the lines of transitional plausibility. If, as argued in
the previous section, α represents an “initial mental state” then, for a sequence s, the vector vs =
αMs ∈Rm represents the mental state after receiving the sequence s. Then rs = αMsβ

> = vsβ
>

is the scalar obtained from a linear combination of the entries of vs, that is rs = b1 · v(1) + . . .+
bm · v(m), where β = (b1 · · · bm).
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Clearly, choosing appropriate “mapping vectors” α and β will dependent on the NLP task and
the problem to be solved. However, it turns out that with a proper choice of the token-to-matrix
mapping, we can restrict α and β to a very specific form.

To this end, let

α = e1 = (1 0 · · · 0) and β = em = (0 · · · 0 1) ,

which only moderately restricts the expressivity of our model as made formally precise in the
following theorem.

Theorem 1. Given matrices M1, . . . , M` ∈Rm×m and vectors α, β ∈Rm, there are matrices
M̂1, . . . , M̂` ∈R(m+1)×(m+1) such that for every sequence i1 · · · ik of numbers from {1, . . . , `}
holds

αMi1 · · ·Mik β
> = e1M̂i1 · · · M̂ik e>m+1.

In words, this theorem guarantees that for every CMSM-based scoring model with arbitrary vec-
tors α and β there is another such model (with dimensionality increased by one), where α and β

are distinct unit vectors. This theorem justifies our choice mentioned above.

6.3 Boolean Values

Boolean values can be also obtained from matrix representations. Obviously, any function ζ :
Rm×m→{true, false} can be seen as a binary classifier which accepts or rejects a sequence of
tokens as being part of the formal language Lζ defined by

L = {σ1 . . . σk | ζ (Jσ1K . . . JσkK) = true}.

One option for defining such a function ζ is to first obtain a scalar (for instance using the mapping
discussed before), as described in the preceding section and then compare that scalar against a
given threshold value.e Of course, one can also perform several such comparisons. This idea gives
rise to the notion of matrix grammars.

Definition 1. (Matrix Grammars). Let Σ be an alphabet. A matrix grammar M of degree m
is defined as the pair 〈 J·K, AC〉 where J·K is a mapping from Σ to m×m matrices and
AC = {〈α1, β1, r1〉, . . . , 〈α`, β`, r`〉} with α1, β1, . . . , α`, β` ∈Rm and r1, . . . , r` ∈R is a finite
set of acceptance conditions. The language generated by M (denoted by L(M)) contains a to-
ken sequence σ1 . . . σk ∈ Σ∗ exactly if αiJσ1K . . . JσkKβ T

i ≥ ri for all i∈ {1, . . . , `}. We will call a
language L matricible if L = L(M) for some matrix grammarM.

Then, the following proposition is a direct consequence from the preceding section.

Proposition 1. Regular languages are matricible.

However, as demonstrated by the subsequent examples, many non-regular and even non-context-
free languages are also matricible, hinting at the expressivity of matrix grammars.

eIn the world of weighted finite automata, a language obtained this way would be denoted as cut language.
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Example 1. DefineM〈 [[ · ]], AC〉 with Σ = {a, b, c} as well as

[[a]] =


3 0 0 0

0 1 0 0

0 0 3 0

0 0 0 1

 , [[b]] =


3 0 0 0

0 1 0 0

0 1 3 0

1 0 0 1

 , [[c]] =


3 0 0 0

0 1 0 0

0 2 3 0

2 0 0 1

 , and

AC = { 〈(0 0 1 1), (1 −1 0 0), 0〉,
〈(0 0 1 1), (−1 1 0 0), 0〉}.

Then L(M) contains exactly all palindromes from {a, b, c}∗, i.e., the words d1d2 . . . dn−1dn for
which d1d2 . . . dn−1dn = dndn−1 . . . d2d1.

Example 2. DefineM= 〈 [[ · ]], AC〉 with Σ = {a, b, c} as well as

[[a]] =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, [[b]] =



0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 1


, [[c]] =



0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 2


, and

AC = { 〈(1 0 0 0 0 0), (0 0 1 0 0 0), 1〉,
〈(0 0 0 1 1 0), (0 0 0 1 −1 0), 0〉,
〈(0 0 0 0 1 1), (0 0 0 0 1 −1), 0〉,
〈(0 0 0 1 1 0), (0 0 0 −1 0 1), 0〉 }.

Then L(M) is the (non-context-free) language {ambmcm |m > 0}.

The following properties of matrix grammars and matricible language are straightforward.

Proposition 2. All languages characterized by a set of linear equations on the letter counts are
matricible.

Proposition 3. The intersection of two matricible languages is again a matricible language.

Note that the fact that the language {ambmcm |m > 0} is matricible, as demonstrated in Example 2
is a straightforward consequence of the Propositions 1, 2, and 3, since the language in question
can be described as the intersection of the regular language a+b+c+ with the language character-
ized by the equations xa − xb = 0 and xb − xc = 0. We proceed by giving another account of the
expressivity of matrix grammars by showing undecidability of the emptiness problem.

Proposition 4. The problem whether there is a word which is accepted by a given matrix grammar
is undecidable.
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These results demonstrate that matrix grammars cover a wide range of formal languages.
Nevertheless some important questions remain open and need to be clarified next:

• Are all context-free languages matricible? We conjecture that this is not the case.f Note that
this question is directly related to the question whether Lambek calculus can be modeled by
matrix grammars.

• Are matricible languages closed under concatenation? That is: given two arbitrary ma-
tricible languages L1, L2, is the language L = {w1w2 |w1 ∈ L1, w2 ∈ L2} again matricible?
Being a property common to all language types from the Chomsky hierarchy, answering
this question is surprisingly non-trivial for matrix grammars.

In case of a negative answer to one of the above questions it might be worthwhile to introduce an
extended notion of context grammars to accommodate those desirable properties. For example,
allowing for some nondeterminism by associating several matrices to one token would ensure
closure under concatenation.

7. On Learning of CMSMs

In the previous sections, we have shown many advantageous theoretical properties of CMSMs,
demonstrating their principled suitability and expressivity in compositional NLP tasks.

However, for practical applicability, methods are needed to automatically acquire the word-
to-matrix assignments from available data. This important aspect – learning of CMSMs –
has remained largely unexplored with few notable exceptions (Yessenalina and Cardie 2011;
Giesbrecht 2014). Methods for training such models can be inspired by appropriate machine
learning methods. Training CMSMs is supposed to yield a type of word embedding, assigning
to each word a preferably low-dimensional real-valued matrix. Thereby, similar to word vectors,
each word matrix is supposed to contain syntactic and semantic information about the word. In
the following, we describe options for supervised learning of CMSMs.

As discussed by Asaadi and Rudolph (2016), there is a close relationship between CMSMs and
weighted finite automata (WFA, cf. Sakarovitch (2009)), so the problem of learning CMSMs
could be mapped to the problem of learning WFA in order to extract the matrix representation of
words. In fact, several methods for learning WFAs have been described (Balle et al. 2014; Balle
and Mohri 2015), e.g. based on the principles of Expectation Maximization (Dempster et al. 1977)
and Method of Moments (Pearson 1894). However, in the context of the NLP tasks investigated by
us, these techniques performed very poorly in terms of scalability and accuracy, hence we reverted
to gradient descent-based methods.

Gradient descent is an iterative optimization algorithm which is applied to linear and nonlinear
problems. In gradient descent, the goal is to find the local minimum/maximum of an objective
function by taking steps proportional to the negative/positive gradient of the function at the current
point toward the local optimum. In many problems, gradient descent is used to minimize the cost
function or the error function by estimating the parameter values of the model.

There are several variants of gradient descent optimization methods. One basic distinction made
is that of batch vs. stochastic learning. Given a set of training examples, in batch gradient de-
scent, parameter updates are done at each iteration to minimize the sum of the error functions
of all training examples, while in stochastic gradient descent parameters are updated after seeing
a training example. We found stochastic gradient descent to be a suitable optimization method

fFor instance, we have not been able to find a matrix grammar that recognizes the language of all well-formed parenthesis
expressions.
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for learning CMSMs. The specific learning task is to train the model by adapting the word ma-
trix representations iteratively to locally minimize the cost function. Each word matrix is updated
according to the gradient descent update principle until finally, the trained word matrices in the
CMSM represent (good approximations of) the syntactic and semantics of compositional texts.

In the following, we will describe three variants of CMSM learning methods for two different
scenarios: First, in Section 7.1, we will look into learning techniques for compositional phrase
scoring models, i.e., tasks where phrases are assigned a “score”, being a scalar value. Two variants
of CMSM learning, i.e, plain gradient descent and gradual gradient descent, are designed for this
purpose and will be investigated in the sentiment analysis task. Second, in Section 7.2, we address
the scenario aimed at simulating a compositional vector embedding for phrases by means of a
CMSM, for which we also present a gradient descent learning method. This approach will be
investigated for the compositionality prediction task.

7.1 Gradient Descent for Phrase Scoring

We start by describing the supervised learning task for phrase scoring. We assume to be given a
training set containing pairs (si, ωi) of phrases si and real values ωi (representing si’s associated
score) for i∈ {1, . . . , N} with N the size of training set, in which si = σ1 . . . σki is a phrase con-
sisting of ki tokens (words) and ωi is a scalar value as the score of the corresponding sequence
(phrase) si. Recall that a CMSM assigns to each word σ j a matrix Mσ j ∈Rm×m. Then the ma-
trix representation of some phrase s = σ1 . . . σk is the matrix product of the word matrices in the
corresponding order:

Ms = Mσ1Mσ2 . . . Mσk = Jσ1KJσ2K . . . JσkK.

To finally associate a scalar value ωs to a phrase s, we map the matrix representation of s to a real
number using the mapping vectors e1, em ∈Rm as follows:

ωs = e1Mse>m .

7.1.1 Plain Gradient Descent

We first take all the words in the training set as our vocabulary, creating for each a quadratic
matrix of size m×m. This provides us with the initial word-to-matrix mapping J·K. For every
phrase si = σ1 . . . σki from the training set, we compute its predicted score ω̂i as given above, that
is, via

ω̂i = e1Msie
>
m = e1Jσ1KJσ2K . . . JσkiKe

>
m .

Then, we apply the batch gradient descent optimization method on the training set to minimize
the error function defined as the summed squared error (SSE)

E(J·K) = 1
2

N

∑
i=1

(ω̂i −ωi)
2,

where ω̂i is the predicted score, ωi is the target score from the training set to be learned and N is
the size of the training set. To prevent from over-fitting and ill-conditioned matrices in learning,
we let

C(J·K) = E(J·K) + penalty(J·K),
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adding a penalty term to the optimization problem. In this work, we consider L2 regularization,
i.e., we let

penalty(J·K) = λ

2 ∑
σ

||JσK||22 ,

where λ is the regularization parameter. In batch gradient descent, at each iteration, parameter
values are updated to converge to the local optimum. In this work, the parameters to be updated
are the word matrices. Therefore, we update each word matrix Mσ according to

M′σ = Mσ − η · (∂C(J·K)
∂Mσ

) = Mσ − η · (∂E(J·K)
∂Mσ

+ λMσ ),

where η is the step size towards the local minimum of the error function, called learning rate. L2
regularization is used because it is differentiable with respect to weight matrices.

Following Petersen and Pedersen (2012), the derivative of the predicted score ω̂i for a phrase
si = σ1 . . . σki with respect to the j-th word-matrix Mσ j = Jσ jK is computed by

∂ω̂i

∂Mσ j

=
∂ (αMσ1 · · ·Mσ j · · ·Mσki

β>)

∂Mσ j

= (αMσ1 · · ·Mσ j−1)
>(Mσ j+1 · · ·Mσk β

>)>.

If a word x j occurs several times in the phrase, then the partial derivative of the phrase with respect
to Mσ j is the sum of partial derivatives with respect to each occurrence of Mσ j .

7.1.2 Gradual Gradient Descent

In gradual gradient descent optimization, we (1) perform an “informed initialization” exploiting
available scoring information for one-word phrases (unigrams), (2) apply a first learning step
only on parts of the matrices and using scored one- and two-word phrases from our training set
(unigrams and bigrams), and (3) use the matrices obtained in this step as initialization for training
the full matrices on the full training set.

Initialization. In this step, we first take all the words in the training data as our vocabulary,
creating quadratic matrices of size m×m with entries from a normal distributionN (µ, σ2). Then,
we consider the words which appear in unigram phrases si = σ with associated score ωi in the
training set. We exploit the fact that for any matrix M, computing e1Me>m extracts exactly the
entry of the first row, last column of M, that is,

ω̂i = e>1 Mem =


1
...

0


>

x1,1 · · · x1,m
...

. . .
...

xm,1 · · · xm,m




0
...

1

= x1,m.

Hence, to minimize the error, we update this entry in every matrix Mσ that corresponds to a
unigram si = σ of a scored unigram phrase (si, ωi) in our training set by this value, i.e. we let

Mσ =


· · · · ωi
...

. . .
...

· · · · ·

.

This way, we have initialized the word-to-matrix mapping such that it leads to perfect scores on
all unigrams mentioned in the training set.
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First Learning Step. After initialization, we consider bigram phrases. The predicted score ω̂i of
a bigram phrase si = σσ ′ is now computed by

ω̂i = e1Mσ Mσ ′e>m =


1
...

0


>

x1,1 · · · x1,m
...

. . .
...

xm,1 · · · xm,m




y1,1 · · · y1,m
...

. . .
...

ym,1 · · · ym,m




0
...

1

=


x1,1

...

x1,m


>

y1,m
...

ym,m

=
m

∑
j=1

x1, jy j,m.

We observe that for bigrams, multiplying the first row of the first matrix (row vector) with the last
column of the second matrix (column vector) yields the score of the bigram phrase. Hence, as far
as the scoring of unigrams and bigrams are concerned, only the corresponding row and column
vectors are relevant – thanks to our specific choice of the vectors α = e1 and β = em.

This observation justifies the next learning step: we use the unigrams and bigrams in the training
set to learn optimal values for the relevant matrix entries only.

Second Learning Step. Using the entries obtained in the previous learning step for initialization,
we finally repeat the optimization process, using the full training set and optimizing all the matrix
values simultaneously, as described in the previous section.

7.2 Gradient Descent for Vector Extraction with Pre-trained Vector Embeddings

The type of learning method discussed here is different from the previous ones. As opposed to
these, we are not aiming at a scoring model that assigns scalars to phrases, but want to associate
phrases with vectors. This is particularly suitable for NLP tasks that require linguistic entities
to be mapped into a vector space for comparison via distance or similarity measures. In such a
setting, the training data consists of pairs (si, vi), where si is a phrase and vi the vector associated
to it. Such training data can be obtained in different ways. One of the popular methods is to use
the word2vec model (Mikolov et al. 2013b), in which a two-layer neural network is trained to
produce high-dimensional vectors for words. In this model, short phrases can also be considered
as units and the model is trained to extract a vector representation for phrases as well as for
words (Mikolov et al. 2013b).

The model we train for this task is along the lines of Section 6.1. That is, given the word-to-
matrix mapping J·K, we obtain the predicted vector v̂i for a phrase si = σ1 . . . σk through the
multiplication of its word matrices Jσ jK∈Rm×m and the projection of the resulting matrix to the
vector space Rm using a mapping vector α ∈Rm as follows:

v̂i = αJσ1K . . . JσkK.

We could now train the word matrices directly similar to the approach introduced in Section 7.1.1.
However, we will exploit the fact that for every word σ a pre-trained vector vσ is readily available
and, as previous studies in DSMs have shown, semantic similarity between two words σ and σ ′

correlates with smaller distances between their vector representations vσ and v′σ (Padó and Lapata
2007; Mitchell and Lapata 2008; Turney and Pantel 2010). We want to preserve that information
by making sure that closeness of vσ and v′σ entails similarity of JσK and Jσ ′K. To this end, in the
learning algorithm, we let

JσK= vσ T,

where T∈Rm×m×m is a shared third-order tensor and vσ T yields the matrix M with

M(i, j) =
m

∑
k=1

vσ (k)T(k, i, j).
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Besides having the above mentioned effect, the usage of a shared tensor significantly reduces the
number of model parameters to be trained. Using a shared tensor in this way is inspired by Irsoy
and Cardie (2015).

T must produce suitable word matrices, which consequently result in vector representation of the
corresponding phrase. Therefore, we train the tensor in a regression model. Stochastic gradient
descent optimization is used to train the tensor T as a regression task in order to minimize the loss
function defined as Sum of the Squared Error (SSE), namely

ET =
N

∑
i=1
||v̂i − vi||22.

Note that Jσ1K . . . JσkK in Equation 7.2 is the compositional matrix representation of the com-
pound, but since the training dataset is only available in vector space, we use a global mapping
vector α to map the final matrix to a vector representation.

The output is to learn a composition function ψ , which predicts the vector v̂i for a compound
si = σ1 . . . σki through the multiplication of its word matrices Jσ jK∈Rm×m, obtained from the
trained tensor T, and the projection of the resulting matrix to the vector space Rm using the global
mapping vector α ∈Rm as follows:

v̂i = ψ(si) = α
>Jσ1K . . . JσkiK.

Finally, the CMSM learns to compose the word matrix representations and predicts the vector
representation of the compound by mapping the final compound matrix to the vector space.

8. Experiments

As discussed before, CMSMs can be used as alternative models to compositional vector-space
models in various NLP tasks. In this section, we conduct experiments to evaluate the performance
of CMSMs on predicting compositionality. First, we investigate CMSMs on compositionality pre-
diction of a sub-category of Multi-Word Expressions (MWEs), i.e., nominal compounds, and
compare to popular baseline compositional VSMs. Then, considering sentiment analysis tasks,
we study how well CMSMs capture sentiment composition of different types of short phrases.

8.1 Evaluation on Fine-Grained Compositionality Prediction

MWEs are short compounds with two or more words showing a range of semantic composi-
tionality (semantic idiomaticity). The semantics of a compositional MWE can be understood
from the meaning of its components such as graduate student, whereas the semantics of a non-
compositional compounds cannot be predicted from the semantics of its parts, such as kick the
bucket. The meaning of this compound is “to die”, which cannot be obtained from the meaning
of kick and bucket (Baldwin and Kim 2010). MWEs are of different types such as nominal and
verbal MWEs. Predicting the degree of compositionality of MWEs is specially important in NLP
applications such as phrase-based machine translation (Kordoni and Simova 2014) and word sense
disambiguation (Finlayson and Kulkarni 2011). Therefore, suitable models to capture the degree
of semantic compositionality of MWEs are required for downstream applications. In this exper-
iment, we evaluate the performance of several baseline Compositional Distributional Semantic
Models (CDSMs) on predicting the degree of MWEs’ compositionality and compare them to
CMSMs.
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Baseline Compositional Distributional Semantic Models. Each model defines a composition
function f over the constituent word vectors to predict the compound vector. Given two words wi
and w j with associated vectors vi ∈Rm and v j ∈Rm, we evaluate the following baseline CDSMs:

• Weighted additive model: In this model, the predicted compound vector representation is
obtained as the weighted sum of the constituent word vectors (Mitchell and Lapata 2008;
Reddy et al. 2011), letting

v̂i j = f (wi, w j) = λ1vi + λ2v j with λ1 + λ2 = 1,

where λ1 and λ2 are the weight coefficients.
• Multiplicative model: In this model, the predicted compound vector representation is the

element-wise product of the constituent word vectors (Mitchell and Lapata 2008; Reddy
et al. 2011), i.e.,

v̂i j = f (wi, w j) = vi � v j.

• Polynomial regression model: In this model, to predict the compound representation vi j, the
constituent word vectors are stacked together [vi, v j] and a polynomial function ψ is applied
to them (Yazdani et al. 2015), yielding

v̂i j = f (wi, w j) = ψ([vi, v j])θ ,

where θ is the weight matrix to be trained, and ψ is the quadratic transformation

ψ(x1 · · · x2m) = (x2
1 · · · x2

2m x1x2 · · · x2m−1x2m x1 · · · x2m)

applied to the input vectors.
• Feedforward Neural Network (NN): In this model, the constituent word vectors are stacked

together as the input vector, and the input and output weight matrices are trained in order to
predict the vector representation of the compound (Yazdani et al. 2015), defined by

v̂i j = f (vi, v j) = σ([vi, v j]W )V,

where W and V are the input-to-hidden and hidden-to-output layer weight matrices to be
trained and σ is a nonlinear function, such as the sigmoid function. The size of the hidden
layer h in the network is set to 300.

• Recurrent Neural Network (RNN): In this model, the input word vectors are fed into the
network sequentially. The hidden state at time step t is computed by

ht = g(vtU + ht−1W + b),

where g is an activation function, such as tanh, to introduce nonlinearity. The hidden state
ht−1 from previous time step is combined with the current input vt and a bias b. The new
hidden state ht that we computed will then be fed back into the RNN cell together with the
next input and this process continues until the last input feeds into the network.
Inputs are the word vectors of the compounds in a sequence. The size of the hidden layer is
set to 300. We only require the output of the last time step T in the sequence, and therefore
we pass the last hidden layer hT through a linear layer to generate the predicted compound
vector representation via

v̂i j = hTV + c,

where V is the shared weight matrix of the linear layer.
• Compositional Matrix-Space Model: this model has been introduced in Section 7.2.

LSTM networks have been developed to deal with long input sequences of variable length and
vanishing gradients (Hochreiter and Schmidhuber 1997; Yu et al. 2019). However, our investi-
gations focus on sequences of length just two, so plain RNNs do not suffer from the vanishing
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gradient problem. Thus, we refrain from separately reporting on LSTMs, as their performance
does not significantly differ from that of plain RNNs.

For all models tested, the predicted compound vectors are compared to the true (target) vector
representation of the compounds through the similarity measurements. Note that the constituent
word vectors and the target compound vectors are obtained by training the vector embeddings
of all words and compounds using word2vec (Mikolov et al. 2013a) and fastText (Bojanowski
et al. 2017) on English Wikipedia dump 2018g as our corpus. It has been shown that these models
capture the semantics of short compositional phrases as well as words (Mikolov et al. 2013b). We
report the results of word2vec and fastText separately.

Training Data. For supervised models (CMSM, Polynomial regression model, FeedForward NN,
and RNN), we fit the composition function f using supervised learning methods to capture the
compositional representation of the compounds. Therefore, as described in Section 7.2, we create
a training dataset from frequent two-word compounds extracted from our corpus Wikipedia dump
2018. We create two training datasets for our experiments: one dataset consists of compounds with
associated target representations obtained from word2vec, and the other includes the same com-
pounds with associated target representations obtained from fastText. We limit our experiments to
bigrams as they are the most basic compositional structures and to respect the evaluation datasets
standard. We assume the majority of compounds are compositional and train the compositional
models on each training dataset separately. From each created training data, we extracted about
0.1 of the data as the development set.

Evaluation Datasets. Finally, we use two recent gold standard evaluation datasets which reflect
the compositionality judgments of MWEs to evaluate all compositional models:

• Farahmand15h (Farahmand et al. 2015) provides 1, 042 English noun–noun com-
pounds (bigrams) extracted from Wikipedia which were annotated with a non-
compositionality degree between 0 (fully compositional) to 1 (fully non-compositional)
using crowdsourcing. Each compound was annotated by four annotators for binary non-
compositionality judgments, and the average of annotations was considered as the final
score of the compound which is a value from {0, 0.25, 0.5, 0.75, 1}.

• Reddy++i (Ramisch et al. 2016; Reddy et al. 2011) provides 180 English noun–noun
and adjective–noun compounds (bigrams) with real-valued compositionality degree ranging
from 0 (fully non-compositional) to 5 (fully compositional) obtained from crowdsourcing
and averaged over around ten to twenty annotators per compound. The dataset contains 143
noun-noun and 37 adjective–noun compounds.

The vector representation of bigrams in the evaluation datasets are obtained from word2vec and
fastText for examining the learned compositional models.

Experimental Setting and Results. In the experiments with word2vec, some compounds of the
datasets are not available in the word embeddings. Therefore, in order to test each model we
consider 800 compounds from the Farahmand15 dataset and 148 compounds from the Reddy++
dataset. The size of the training and development set are 7,692 and 854 compounds, respectively,
and fixed for all models. In the experiments with fastText, all compounds of the Farahmand15
and the Reddy++ datasets are included in fastText and therefore, we test each model on the whole
dataset. The size of the training and development set are 11,566 and 1,156 compounds, respec-
tively, and fixed for all models. The batch size for the training is set to b = 10. The learning rate
is adapted experimentally for each model.

ghttps://dumps.wikimedia.org/
hhttps://github.com/meghdadFar/en_ncs_noncompositional_conventionalized
ihtt p://pageperso.lif.univ-mrs.fr/ carlos.ramisch/?page=downloads/compounds

https://github.com/meghdadFar/en_ncs_noncompositional_conventionalized
http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/compounds
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Table 4. : Pearson value r for compositionality prediction using word2vec.

Compositionality measures Cosine similarity SE loss

Model

Dataset
Reddy++ Farahmand15 Reddy++ Farahmand15

Additive 0.631 0.398 0.621 0.393

Multiplicative 0.218 0.055 0.225 0.057

Multiple Regression 0.699 ± 0.008 0.404 ± 0.005 0.698 ± 0.008 0.394 ± 0.005

Feedforward NN 0.658 ± 0.027 0.395 ± 0.016 0.642 ± 0.029 0.382 ± 0.018

RNN 0.688 ± 0.011 0.394 ± 0.006 0.687 ± 0.010 0.382 ± 0.006

CMSM 0.710 ± 0.012 0.401 ± 0.005 0.700 ± 0.011 0.389 ± 0.004

We apply early stopping by computing the loss value of the development set in order to prevent
overfitting. If the absolute difference of development loss in two consecutive iterations is lower
than the threshold of ε = 10−5, we stop the training. Once the model is trained, we evaluate the
performance of the trained model on both test datasets. The tensor T in the CMSM is initialized
with Gaussian distribution N (0, 0.01). The size of all vectors is set to 300 in both experiments
with word2vec and fastText. We report the average results over fifteen runs.

In order to measure the closeness (proximity) between the predicted compound representations
using CDSMs and the true (target) representations of compounds, we compute cosine similarity
as well as the loss between the two representations. Cosine similarity computes the cosine be-
tween the predicted composed vector and the true vector representation of the compound. In order
to obtain the loss, we compute the squared error loss (SE loss) between the predicted and the true
vector representation of the compound being sensitive to small errors. We expect a high loss value
for non-compositional compounds as the composition functions are not able to capture their repre-
sentations (Yazdani et al. 2015). Then, we compute the linear relationship between the computed
similarity values and the compositionality judgments from the test datasets. For this purpose, we
use the Pearson coefficient value r where a linear correlation between the values is computed
ranging from −1 to 1 with higher values showing more correlation between the predicted and
gold standard values.

Table 4 and 5 show the average Pearson correlation coefficient r between the predicted similarity
values and the gold standard values in each dataset for different compositional models. Table 4
shows the results of the word2vec word embedding and Table 5 shows the results of the fastText
word embeddings. Compositionality prediction of models are shown in two ways as described
before. First, if a method captures the compositional representation of the compounds, the co-
sine similarity between the predicted and true representations has a higher value, otherwise the
cosine similarity is a low value. Therefore, the cosine similarity column in both tables shows the
result of Pearson correlation value between the cosine similarity of the representation and the gold
standard values in the test datasets, which are normalized between −1 (non-compositional) and
1 (compositional) compounds. Second, if a method captures the compositional representation of
the compounds, following Yazdani et al. (2015), the loss value between the predicted and true
representation of a compositional compound must be low and close to 0, otherwise it is a high
value. Therefore, the squared error loss (SE loss) column in the tables shows the result of the
correlation of the loss value (between the representations) with the gold standard values in the test
datasets, which are normalized to 0 (fully compositional) and 1 (fully non-compositional). The
tables demonstrate that the two measures provide very similar results.
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Table 5. : Pearson value r for compositionality prediction using fastText.

Compositionality measures Cosine similarity SE loss

Model

Dataset
Reddy++ Farahmand15 Reddy++ Farahmand15

Additive 0.355 0.527 0.348 0.523

Multiplicative 0.091 0.021 0.104 0.028

Multiple Regression 0.583 ± 0.011 0.521 ± 0.003 0.576 ± 0.011 0.513 ± 0.003

Feedforward NN 0.583 ± 0.009 0.493 ± 0.004 0.586 ± 0.010 0.482 ± 0.005

RNN 0.565 ± 0.005 0.505 ± 0.003 0.557 ± 0.005 0.495 ± 0.003

CMSM 0.617 ± 0.009 0.513 ± 0.004 0.605 ± 0.009 0.503 ± 0.004

We report the best results of the additive and multiplicative models obtained by adapting λ1 and
λ2 (ranging from 0 to 1 with step size of 0.1) in these models. As we observe in both tables, the
multiplicative model is not powerful enough to predict compositionality. These results are in line
with the results in the work by Yazdani et al. (2015). The CMSM is trained to predict the composi-
tionality better than other models in the Reddy++ dataset in both tables, which means that CMSM
gives a higher loss value and lower cosine similarity to non-compositional compounds. Moreover,
the CMSM converges to its best model in fewer training iterations on average. The number of
training iterations for each supervised compositional model to reach its optimal performance is
shown in Table 6.

Table 6. : Average number of training iterations for each supervised model trained using
word2vec and fastText.

Average iterations Average iterations

Model in word2vec in fastText

Multiple Regression 114 221

Neural Network 320 258

RNN 98 126

CMSM 124 169

As is observed, CMSM converges faster than neural network in both word embeddings and faster
than multiple regression in the fastText embedding, which shows an advantage of the model in
convergence speed with the same vector dimensionality. It is not significantly slower than other
models. The different iteration numbers in the two word embeddings are due to the different
learning rate adapted to obtain the best models on the word embeddings. Various parameters such
as the training data and vector embeddings impact the performance of the models. Therefore, in
our experiments, we used the same training data and vector embeddings for all models to obtain a
more reliable indication regarding the relative performance of the models.

In the Farahmand15 dataset, the additive model outperforms CMSM while in the Reddy++ dataset,
the CMSM outperforms the additive model considerably. We speculate that this is because the
Reddy++ is a dataset with much more fine-grained values and CMSMs tend to be more accurate
in predicting the nuanced values than other models. Moreover, Reddy++ contains adjective–noun
and noun–noun compounds as opposed to Farahmand15, which contains only noun compounds.
Therefore, we conclude that CMSMs can learn to capture the compositionality degree of the
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Figure 3: Sample compounds from Reddy++ with predicted average compositionality scores by
different models and gold standard scores. Results of fastText embeddings are reported. Gold

standard scores are between 0 (non-compositional) and 1 (fully compositional). A: Adjective, N:
Noun, FF: Feedforward.

combination of different compound types and predicts the compositionality of adjective–noun
compounds better than the studied compositional models. Figures 3 and 4 present sample com-
pounds from Reddy++ and Farahmand15 datasets with predicted compositionality degrees by
different models. In both figures, we analyze the prediction of models that are trained using fast-
Text embeddings and cosine similarity is the compositionality measure showing the scores. As
can be seen in Figure 3, we choose different A-N and N-N compounds from Reddy++ with vary-
ing gold standard scores from 0, i.e., wet blanket to 1, i.e., insurance company. The relationship
between gold and predicted scores in the figure describes the Pearson correlation value presented
in Table 5. Compared to the competitive additive model, CMSM follows an increasing trend in the
predicted scores. It assigns a slightly higher score to the A-N compound mental disorder than to
cellular phone. All models fail to predict the score of the A-N compound private eye, which can be
due to the lower frequency of its subwords in the given Wikipedia training corpus. Multiplicative
model fails to follow the increasing trend in the predicted scores as opposed to other models.

We randomly selected 15 compounds from the Farahmand15 dataset. Figure 4 confirms the in-
creasing trend in the predicted scores by all models except by the multiplicative model. In general,
compounds with the same gold standard score are not assigned to the same score in regression
tasks. The high difference in some compounds, such as in face value and zip code, could be due
to different frequencies and distributions of their subwords, resulting in different compositional-
ity prediction. In most cases, CMSM predictions are closer than the additive model’s predictions,
e.g., in building block, navy blue and touch screen compounds.

Note that while this work is similar to the very recent work by Cordeiro et al. (2019), our corpus
size and parameter settings for training word embeddings, such as embedding size, are different.
Therefore, their results are not directly comparable to our results and we repeated the experiment.
Higher performance reported in (Cordeiro et al. 2019) is due to a much bigger training corpus
of word and compound embeddings and larger embedding size, which consequently consumes
memory. They only experiment on unsupervised approaches as opposed to our work, in which we
evaluate supervised approaches as well.



30 S. Asaadi et al.

Figure 4: Sample compounds from Farahmand15 with predicted average compositionality scores
by different models and gold standard scores. Results of fastText embeddings are reported. Gold
standard scores are between 0 (non-compositional) and 1 (fully compositional). FF: Feedforward.

According to these results, we can conclude that a CMSM can be trained to capture the semantic
compositionality of compounds more efficiently than baseline vector-space models. Moreover,
CMSMs are sensitive to syntactic properties such as the word order of the compound which affects
the meaning of complex expressions. The results suggest that matrix multiplication should be
considered instead of additive models as the composition operation in order to capture semantic
composition along long texts.

8.2 Evaluation on Fine-Grained Sentiment Analysis

Sentiment analysis is one of the most popular tasks in NLP. The task is to determine the sentiment
polarity and intensity of a text, for example “a very good movie” indicates a positive sentiment
about the movie while “a very bad movie” carries a negative sentiment. With the increasing im-
portance of review websites for marketing, a lot of research has been done in sentiment analysis to
automatically extract the opinion of people about a certain topic. In general, the task of sentiment
analysis is to rate the sentiment of a text using either binary classification (negative, positive) or
multiple classes (negative, positive, neutral) with intensities (weak, medium, extreme), the latter
being called fine-grained sentiment analysis. The sentiment score can be also computed as a real-
valued score in a continuous interval showing the polarity and intensity of the text, which then can
be mapped to classification problem by discretization.

Sentiment analysis can be applied to a single word or texts of varying length including short and
long texts. There are several aspects which must be considered when analyzing complex texts.
First, different types of constituents and functional words such as negators, adjectives, adverbs,
intensifiers, etc. affect the total sentiment of the text differently. Second, a different order of the
words results in a different sentiment score. Yessenalina and Cardie (2011) showed an applica-
tion of CMSMs in compositional sentiment analysis task (see an example in Fig. 5) and how it
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captures compositionality and the above properties in this task. They proposed a supervised ma-
chine learning technique for learning CMSMs in sentiment analysis of short texts. The proposed
method learns a matrix representation for each word which captures compositionality properties
of the language.

very good very good

[
0.5 1

2 1

] [
1 2

0.5 −3

] [
1 −2

2.5 1

]

concatenation

JveryK JgoodK

matrix multiplication

Figure 5: Sentiment composition of a short phrase with matrix multiplication as a composition
operation in CMSMs.

In high dimensional matrix-space models, each dimension is a model parameter to be estimated in
the optimization problem. Some parameters might not be relevant to the problem, and the number
of parameters is usually higher than the size of the data. Parameters in a high-dimensional space
are also dependent on each other. Due to these properties, several local optima in the objective
surface can be found during the optimization of the objective function. In such a situation, the so-
lution depends heavily on initialization to provide a better starting point for exploration of optimal
points and avoid immediate local optima. Furthermore, training steps can be designed carefully to
help effective exploration and exploitation.

Training CMSMs using machine learning techniques yields a type of word embedding for each
word, which is a low-dimensional real-valued matrix. Similar to word vectors in VSMs, each
word matrix is supposed to contain syntactic and semantic information about the word. Since we
consider the task of sentiment analysis, word embeddings must be trained to contain sentiment-
related information.

In the following, we train CMSMs to capture the sentiment score of compositional phrases. We
apply our learning approach introduced in Section 7.1.2 to train CMSMs. Word matrices are ini-
tialized in two ways: random initialization from the Normal distribution and identity matrices
plus a noise value from the Normal distribution. Our approach with the introduced informed ini-
tialization and two learning steps (see Section 7.1.2) is called Gradual Gradient Descent-based
Matrix-Space Models (Grad-GMSM) in which the word matrices are initialized randomly. The
same approach with the identity plus a noise value as the initialization for matrices is called Grad-
GMSM+IdentityInit. We conduct several experiments with two different datasets and discuss the
results in detail.

Datasets. We use the following datasets for our experiment purposes:
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• SCL-OPP (Sentiment Composition Lexicon with Opposing Polarity Phrases)j: this dataset
consists of 602 unigrams, 311 bigrams, and 265 trigrams that have been taken from a cor-
pus of tweets, and annotated with real-valued sentiment scores in the interval [−1,+1] by
Kiritchenko and Mohammad (2016b). Each multi-word phrase contains at least one nega-
tive word and one positive word. The dataset contains different noun and verb phrases. The
frequency of polarities are as per Table 7.

Table 7. : Phrase polarities and their occurrence frequencies.

Polarity Frequency

negative 647

neutral 12

positive 519

• MPQA (Multi-Perspective Question Answering) opinion corpusk: this dataset contains
newswire documents annotated with phrase-level polarity and intensity. We extracted the
annotated verb and noun phrases from the corpus documents, obtaining 9,501 phrases. We
removed phrases with low intensity similar to Yessenalina and Cardie (2011). The levels
of polarities and intensities, their translation into numerical values, and their occurrence
frequency are as per Table 8.

Table 8. : Phrase polarities and intensities in the MPQA corpus, their translation into sentiment
scores and their occurrence frequency.

Polarity Intensity Score Frequency

negative high, extreme −1.0 1581

negative medium −0.5 1940

neutral medium, high, extreme 0.0 4475

positive medium 0.5 1151

positive high, extreme 1.0 354

8.2.1 Evaluation on SCL-OPP

The purpose of this experiment is to investigate the performance of the CMSMs in predicting the
sentiment composition of phrases that contain words with opposing polarities. The sentiment value
of words (unigrams) are given for training the CMSM. In the first part, we compare the results
to the results obtained from word2vec embeddings in the work by Kiritchenko and Mohammad
(2016b). In the second part, we explore different choices of dimensionality in learning CMSMs.

For the purposes of the first experiment, we set the dimension of matrices to m = 200 to be able to
compare the results with those reported in (Kiritchenko and Mohammad 2016b) as well as m = 5,
and number of iterations to T = 400. We choose m = 5 based on practical experiments, and as
we will show in Table 11, by increasing the dimensions from 2 to 5 better performance could
be obtained, however, with higher dimensions we did not observe significant improvement in the

jhttp://www.saifmohammad.com/WebPages/SCL.html
khttp://mpqa.cs.pitt.edu/corpora/mpqa_corpus/

http://www.saifmohammad.com/WebPages/SCL.html
http://mpqa.cs.pitt.edu/corpora/mpqa_corpus/
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performance of the model. Word matrices are initialized with an identity matrix plus a noise from
Gaussian distribution N (0, 0.01) as it is also suggested in previous works (Socher et al. 2012;
Maillard and Clark 2015). We use the sentiment value of unigrams to initialize the corresponding
element in the word matrices. The learning rate η in gradient descent is set to 0.017 and 0.001 for
dimension 200 and 5, respectively. We use the Pearson correlation coefficient r for performance
evaluation, which measures the linear correlation between the predicted and the target sentiment
value of phrases. Pearson coefficient value ranges from −1 to 1 with higher values showing more
correlation between the predicted and target values.

We first report the results for training only trigrams in the dataset since training bigrams does not
train all the elements in word matrices. When bigrams are trained using the mapping vectors e1
and em, only the first row of the first word matrix and the last column of the second word matrix
are trained and other elements of the matrices remain fixed. This can be seen in Equation 1. Then,
we combine trigrams and bigrams as our training set and apply our regular training procedure on
the whole dataset. We consider it important that the learned model generalizes well to phrases
of variable length, hence we consider the training of one model per phrase length not conducive.
Rather, we argue that training CMSM can and should be done independent of the length of phrases,
by ultimately using the combination of different length phrases for training and testing, given the
sentiment value of unigrams.

We apply a ten-fold cross-validation process on the training data as follows: eight folds are used
as training set, one fold as validation set and one fold as test set. We average over ten repeated runs
to obtain the final results. At each run, folds are selected randomly and we report the best results
obtained from early stopping in T iterations. As a measure of statistical dispersion, we report the
standard deviation of Pearson values in ten repeated runs.

Kiritchenko and Mohammad (2016b) study different patterns of sentiment composition in phrases.
They analyze the efficacy of baseline and supervised methods on these phrases, and the effect of
different features such as POS tags, pre-trained word vector embeddings, sentiment score of un-
igrams, etc. in learning sentiment regression. Table 10 shows the results of different methods for
training the trigrams. As baseline, they evaluate the last unigram of the phrase (Row 1), POS tags
of the phrase (Row 2), and most polar unigram of the phrase (Row 3) to predict the overall senti-
ment score of the phrase. As a supervised method, they apply RBF kernel-based Support-Vector
Regression (RBF-SVR). In RBF-SVR different set of features are evaluated on predicting real-
valued sentiment scores. Row 8 considers the following features which give the best results: all
unigrams (uni), their sentiment scores (sent. score), POS tags (POS), and concatenation of uni-
gram embeddings (emb(conc)). Results show that concatenation of unigram embeddings as the
composition operation outperforms average of unigram embeddings (emb(ave)) and maximal em-
beddings (emb(max)). The embeddings are obtained from word2vec (Mikolov et al. 2013a). They
analyze the results for bigrams and trigrams separately. Our approach does not use information ex-
tracted from other resources (such as pre-trained word embedding) nor POS tagging techniques,
i.e., we perform a light-weight training with fewer features, which can be considered as an ad-
vantage of CMSMs. As it is shown in Table 10, we observe better performance of Grad-GMSM
on trigram phrases (Rows10) over baseline methods and emb(ave) as the composition operation
(Row 7). We also obtained similar results with significantly lower dimensions (Row 9), which still
outperforms the described models. In contrast, vector concatenation as the composition operation
(Rows 6 and 8) outperforms our model by transforming the embeddings to a different space (to a
higher dimensional space). Matrix multiplication remains in the same space and this introduces an
advantage of matrix multiplication over vector concatenation. Table 9 presents the sentiment score
of some representative phrases with different POS predicted by CMSMs and their gold standard
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Table 9. : Example phrases with average sentiment scores on ten-fold cross-validation and
different POS tags. A: Adjective, N: Noun, V: Verb, &: and, D: Determiner.

Phrase Grad-GMSM Gold-standard POS

happy tears 0.644 0.828 A–N

spent the afternoon 0.395 0.203 V–D–N

tired bt happy 0.599 0.438 A–&–A

best winter break 0.571 0.844 A–N–V

holiday madness 0.306 0.203 N–N

Table 10. : Performance comparison for different methods in SCL-OPP dataset considering only
trigram phrases.

Pearson
Row Method r

1 Baseline last unigram 0.376

2 Baseline POS rule 0.515

3 Baseline most polar unigram 0.551

4 RBF-SVR(POS, sent. score) 0.578

5 RBF-SVR(POS, sent. score, uni) 0.711

6 RBF-SVR(POS, emb(conc), uni) 0.744

7 RBF-SVR(POS, sent. score, emb(avg), emb(max)) 0.710

8 RBF-SVR(POS, sent. score, uni, emb(conc)) 0.753

9 Grad-GMSM + IdentityInit (m=5) 0.741 ± 0.010

10 Grad-GMSM + IdentityInit (m=200) 0.737 ± 0.017

scores. On average, the predicted results correlate with the gold standard results. A small discrep-
ancy can be observed, e.g, best winter break is expected to be more positive than happy tears and
tired but happy, but it is predicted as less positive.

Finally, we repeated the experiments on the Grad-GMSM+IdentityInit model with values of m
(i.e., different numbers of dimensions), and using the whole dataset (i.e., bigram and trigram
phrases). Note that unigrams are only included for initialization of the training step and we
excluded them from the validation and test sets. The noise values are drawn from Gaussian distri-
bution N (0, 0.01). Number of iterations are set to T = 400. The learning rate η is set to 0.01 and
0.001 for the first and second steps, respectively. For each dimension number, we take the average
of five runs of 10-fold cross validation. As shown in Table 11, the results improve only marginally
when increasing m over several orders of magnitude. Also the average number of required itera-
tions remains essentially the same, except for m = 1, which does not exploit the matrix properties
and performs like the bag-of-words model. We see that – as opposed to vector-space models –
good performance can be achieved already with a very low number of dimensions. By increasing
the dimensionality, the number of parameters to train grows, which leads the model to get stuck
in local optima in the objective surface.

8.2.2 Evaluation on MPQA

The purpose of this experiment is to evaluate the performance of CMSMs in predicting the senti-
ment value of phrases of variable length. We compare the performance of our proposed method to
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Table 11. : Performance comparison for different dimensions of matrices in the complete
SCL-OPP dataset (i.e., considering bigrams and trigrams for the experiment).

Number of Ranking Pearson Total number
dimensions loss r of iterations

1 0.389 0.463 283.48

2 0.300 0.702 179.75

3 0.293 0.716 130.13

5 0.289 0.722 153.60

10 0.292 0.724 150.17

50 0.293 0.721 151.35

100 0.291 0.722 153.30

200 0.289 0.724 157.15

300 0.292 0.722 160.36

two closely related approaches introduced by Yessenalina and Cardie (2011), called Matrix-space
OLogReg+BowInit, and by Irsoy and Cardie (2015), called multiplicative RNN (mRNN). We
choose these two approaches because the first learning method focuses on training the CMSMs.
The latter method, inspired by CMSMs, generalizes the model and incorporates multiplicative
interaction of matrices for compositionality in RRNs in the task of sentiment analysis. First, we
explain these methods and their relevance to our work. Then, we discuss the obtained results in
different methods.

Yessenalina and Cardie (2011) propose a model to predict an ordinal sentiment score (e.g., la-
bel 0 for highly negative sentiment, 1 for medium negative, 2 for neutral, and so on) for a given
phrase. The model learns an interval for each sentiment label. Therefore, the model parameters
to optimize are the word matrices as well as a set of threshold values (also called constraints),
which indicate the intervals for sentiment classes as they convert sentiment classes to ordinal
labels. Word matrices are initialized in two ways: random initialization using the normal distribu-
tion, and BOWs initialization. In the latter case, first a Bag-of-Words Ordered Logistic Regression
(BOW-OLogReg) model is trained on the same dataset in which each word in the BOWs model
learns a scalar weight using OLogReg. Then, a specific element of matrices is initialized with the
learned weights from BOW-OLogReg. They apply OLogReg to train word matrices and optimize
the threshold values by maximizing the probability of predicting the sentiment interval of given
phrases in the dataset or minimizing the negative log of the probability. To avoid ill-conditioned
matrices, they add a projection step to matrices after each training iteration by shrinking all sin-
gular values of matrices close to one. The trained model with random initialization is called
Matrix-space OLogReg+RandInit and the one with BOW initialization is called Matrix-space
OLogReg+BowInit. The latter model outperforms the random initialization of the matrix-space
model. They argue that the learning problem for CMSMs is a non-convex optimization problem,
i.e., the objective function of optimization problem can get stuck at local optima in the high di-
mensional matrix space. Therefore, the model must be initialized and trained carefully to avoid
getting stuck in local optima.

We relax the non-convexity issue in our proposed learning method by introducing a specific
initialization and gradual stochastic gradient descent learning strategy. Our results in the sen-
timent analysis task demonstrate the effectiveness of the proposed initialization and training
strategy in obtaining better performance of the trained model than existing approaches. Moreover,
Yessenalina and Cardie (2011) propose a model for ordinal sentiment scale prediction and address
the optimization problem using the OLogReg method with constraints on sentiment intervals. As
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opposed to their work, we directly address a sentiment regression task. Therefore, our learning
method does not need to constrain the sentiment scores to certain intervals, and thus, the number
of parameters to learn reduces to only word matrices.

Inspired by CMSMs, Irsoy and Cardie (2015) proposed multiplicative RNN to train the CMSMs.
In mRNN, a multiplicative interaction between the input vector and the previous hidden layer in
a RNN is introduced using a shared third-order tensor T∈Rm×m×m. At each time step, the input
word vector v∈Rm is multiplied with the weight tensor T, which results in a matrix M of size
m×m. Then the resulting matrix is multiplied with the previous hidden layer ht−1 to finally obtain
the current hidden layer at time step t. Therefore, if the current hidden layer of a RNN is defined
by

ht = g(vtU + ht−1W + b),

then the Multiplicative RNN computes the current hidden layer according to

ht = g(vtU + ht−1W + v>t Tht−1 + b),

where in both equations, U and W are the shared weight matrices for input-to-hidden and hidden-
to-hidden layers, respectively, and b is the bias of the network. g is a nonlinear activation function,
such as tanh function. vt is the specific input word at time t, while ht is the result of the current
hidden layer. This means that the multiplicative relation between the input and the previous hidden
layer is added to the current hidden layer computation. Thus, by introducing the shared tensor T,
they incorporate multiplicative interaction in matrix space to RNNs using the term v>t Tht−1. They
use pre-trained word vectors of dimension m = 300 from word2vec (Mikolov et al. 2013b) as the
input to their network. They show that the interactive multiplication outperforms the additive
interaction in vector space in RNNs in the task of compositional sentiment analysis. Moreover, in
this way, the number of parameters to learn in the CMSMs is reduced. Furthermore, as opposed to
the approach for compositionality via multiplicative interaction introduced by Socher et al. (2013),
parse trees are not required. Inspired by this model, we introduce a shared third-order tensor to the
model and train the tensor to obtain word matrix representations by multiplying any word vector
with the trained tensor. Then, word matrices are further utilized for capturing compositionality
of phrases in CMSMs using matrix multiplication. Moreover, similar to this work, we aim at
capturing compositionality through sequential multiplication without using parse trees. However,
as opposed to this work, we do not introduce nonlinear functions in our proposed approach as we
aim to keep the original characteristics of CMSMs.

As described above, word matrices are initialized in two ways. Our proposed approach in Section
7.1.2 with random initialization of matrices from the Normal distribution is called Grad-GMSM,
and with identity matrices plus a noise value from the Normal distribution is called Grad-
GMSM+IdentityInit. To assess the effect of our gradual two-step training method, we study the
impact of different types of matrix initialization and compare the results of Grad-GMSM against
those obtained by random initialization followed by a single training phase where the full matrices
were optimized (RandInit-GMSM).

We apply a ten-fold cross-validation process on the training data as follows: eight folds are used
as training set, one fold as validation set and one fold as test set. The initial number of iterations
in the first learning and second learning steps are set to T = 400 each, but we stop iterating when
we obtain the minimum ranking loss

E =
1
n

n

∑
i=1
|ω̂i −ωi|

on the validation set. Finally, we record the ranking loss of the obtained model for the test set.
The learning rate η of the first and second training steps were adapted experimentally to 0.01 and
0.001, respectively. The dimension of matrices is set to m = 3 in order to be able to compare our
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Table 12. : Ranking loss of compared methods.

Ranking
Method loss

BOW-OLogReg (Yessenalina and Cardie (2011)) 0.6665

Matrix-space OLogReg+RandInit (Yessenalina and Cardie (2011)) 0.7417

Matrix-space OLogReg+BowInit (Yessenalina and Cardie (2011)) 0.6375

Multiplicative RNN (Irsoy and Cardie (2015)) 0.5147

RandInit-GMSM 0.3645 ± 0.007

Grad-GMSM 0.3429 ± 0.013

Grad-GMSM + IdentityInit 0.3086 ± 0.009

Table 13. : Frequent phrases with average sentiment scores

Matrix-space
Phrase Grad-GMSM OLogReg+BowInit
good 0.64 2.81

very good 0.84 3.53

not good -0.43 -0.16

not very good -0.23 0.66

bad -0.69 -1.67

very bad -0.81 -2.01

not bad 0.32 -0.54

not very bad 0.21 -1.36

results to the related approaches described by Yessenalina and Cardie (2011) and Irsoy and Cardie
(2015). However, we study the impact of the number of dimensions on the CMSM performance.

Table 12 compares the result of our model to the explained Yessenalina and Cardie (2011)’s
models and Irsoy and Cardie (2015)’s model in the matrix space. As we observe, Grad-
GMSM+IdentityInit obtains a significantly lower ranking loss than previously proposed methods
and our Grad-GMSM approach.

By comparing Grad-GMSM+IdentityInit with Grad-GMSM we also observe faster convergence,
since the lowest ranking loss of Grad-GMSM+IdentityInit is obtained after 114.55 number of
training iterations on average. In Grad-GMSM, the lowest ranking loss happens on average after
161.85 number of training iterations. RandInit-GMSM is not able to converge to its best model in
T iterations.

Table 13 shows the sentiment scores of some example phrases trained using these two methods. As
shown in the table, the two approaches’ results coincide regarding the order of basic phrases: the
score of “very good” is greater than “good” (and both are positive) and the score of “very bad” is
lower than “bad” (and both are negative). Also, “not good” is characterized as negative by both
approaches. On the other hand, there are significant differences between the two approaches: for
example, our approach characterizes the phrase “not bad” as mildly positive while Yessenalina
and Cardie (2011)’s approach associates a negative score to it, the same discrepancy occurs for
“not very bad”. Intuitively, we tend to agree more with our method’s verdict on these phrases.

In general, our findings confirm those of Yessenalina and Cardie (2011): “very” seems to intensify
the value of the subsequent word, while the “not” operator does not just flip the sentiment of the
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Figure 6: The order of sentiment scores for sample phrases (trained on MPQA corpus).

word after it, but also dampens the sentiment of the words gradually. On the other hand, the
scores of phrases starting with “not very” defy the assumption that the described effects of these
operators can be combined in a straightforward way. Adverbs and negators in natural language
play an important role in determining the sentiment score of phrases. Our results showed that
multiplicative interaction in CMSMs captures the effect of adverbs and negators on the sentiment
score when composed with a phrase.

Fig. 6 provides a more comprehensive selection of phrases and their predicted scores by our ap-
proach. We obtained the range of sentiment scores by taking the minimum and maximum values
predicted in the ten-fold cross-validation. We obtained an average of ω(very very good) = 0.98,
which is greater than “very good”, and ω(very very bad) =−0.95 lower than “very bad”.
Therefore, we can also consider “very very” as an intensifier operator. Moreover, we observe
that the average score of ω(not really good) =−0.34 is not equal to the average score of
ω(really not good) =−0.58, which demonstrates that the matrix-based compositionality oper-
ation shows sensitivity to word orders, arguably reflecting the meaning of phrases better than any
commutative operation could.

Although the training data consists of only the values of Table 8, we consider a regression method
for training CMSMs. Thus, the training of the model is done in a way that sentiment scores for
phrases with more extreme intensity might yield real values greater than +1 or lower than −1,
since we do not constrain the sentiment scores to [−1,+1]. Moreover, in our experiments we
observed that no extra precautions were needed to avoid ill-conditioned matrices or abrupt changes
in the scores while training.

To observe the effect of a higher number of dimensions on our approach, we repeated the ex-
periments for Grad-GMSM+IdentityInit with m = 50, and observed a ranking loss of e = 0.3092
± 0.011 (i.e., virtually the same as for m = 3) and almost similar values for the number of training
iterations T = 122 confirming the observation of Yessenalina and Cardie (2011), that increasing
the number of dimensions does not significantly improve the prediction quality of the obtained
model.

In Table 14, we study the time cost required for training CMSMs in the studied training data
(SCL–OPP and MPQA) and with two different dimensionality (5 and 200). Note that we report
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the time cost for 10-fold cross validation. Results show the advantage of smaller dimensionality
of CMSMs in faster convergence.

Table 14. : Time cost for training CMSMs with different dimensionality and datasets. Time is
reported in minutes.

Approach Time (MPQA) Time (SCL–OPP)

Grad-GMSM+IdentityInit (m=5) 13 4

Grad-GMSM+IdentityInit (m=200) 270 90

9. Discussion, Conclusion and Future Work

We have introduced a generic model for compositionality in language where matrices are associ-
ated with tokens and the matrix representation of a token sequence is obtained by iterated matrix
multiplication. On the theoretical side, we have given algebraic and structural plausibility indica-
tions in favor of this choice. We have shown that the proposed model is expressive enough to cover
and combine distributional and symbolic aspects of natural language, and simulate both numeric
and symbolic approaches to language in contrast to vector-space models.

On the practical side, we have studied the behavior of CMSMs along different aspects (e.g. di-
mensionality) experimentally. According to experimental investigations in Section 8, CMSMs are
a promising framework to model task-specific semantic compositionality such as compositional
sentiment analysis and compositionality prediction of short phrases. The proposed approach for
learning CMSMs in compositional sentiment analysis provides an informed initialization for a
better starting point for exploration of optimal points and a gradual gradient descent-based learn-
ing strategy to avoid immediate local optima. It outperforms previous approaches to CMSMs in
this task. Moreover, matrix product as the composition operation in CMSMs outperforms vector
averaging as the composition operation in vector-space models in the same task and on a special
dataset consisting of opposing polarity phrases. Small dimensionality and independence from ex-
tra preprocessing of the training data (e.g., POS tagging) can be put forward as the advantages of
CMSMs in compositional sentiment analysis.

In the compositionality prediction task, CMSMs outperform several vector-space baseline models
on a gold standard dataset consisting of noun–noun and adjective–noun compounds. Results show
that CMSMs are more accurate in predicting the compositionality of adjective–noun compounds
than the studied VSMs. However, CMSMs do not outperform vector addition on another gold
standard dataset of noun–noun compounds, which is in contrast to the theoretical studies showing
superiority of matrix product over vector addition. We speculate that other aspects than composi-
tionality play an important role in such tasks, such as the approach to create the underlying gold
standard dataset, and the distribution of semantic representation of individual words in the space.

We have seen strong evidence that CMSMs embed relevant information in considerably fewer
dimensions than in vector-space models on these specific tasks, which gives a clear advantage
in terms of computational cost and storage in training. Certainly, while CMSMs overcome cer-
tain limitations of VSMs, they may still inherit some of their foundational weaknesses (cf. Ježek
(2016)). We are aware that experiments have been only done on short length sequences, and fur-
ther investigation is needed for examining the suitability of CMSMs for longer texts, such as
sentences.
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Matrix multiplication on long sequences introduces the vanishing or exploding gradient problem
and can cause the final matrix to contain extremely small values. Hence, when updating word
matrices in the gradient descent algorithm, small values are obtained from the derivative of the
loss function with respect to a word matrix M, which may not update the word matrix values
adequately. Therefore, mechanisms are needed to avoid this issue when training CMSMs on long
sequences. Moreover, when CMSMs are trained on long sequences in a specific task, such as
sentiment analysis, not all words contain task-specific information. A method could be introduced
to learn attention weights for words and give more weights to those words that carry the relevant
information, for instance, sentiment-carrying words in sentiment analysis.

Furthermore, due to associativity, matrix multiplication cannot capture all syntactic information
of a long sentence. Therefore, certain linguistic effects (like a-posteriori disambiguation) cannot
be modeled via associative mappings. Thus, we might equip CMSMs with nonlinear functions
to introduce non-associativity to the CMSMs and resolve word sense disambiguation problems
in natural language. For instance, one could apply some sort of sigmoid function to the output
of matrix multiplications for any given two matrices in a sequence. The resulting matrix can
then be multiplied with the next word matrix followed again by application of a nonlinear map-
ping. Thus, another avenue of further research is to generalize from the linear approach, very
much in line with the current trend in deep learning techniques. For instance, when designing
deep neural architectures, we can incorporate word matrices and multiplicative composition in-
stead of additive vector composition into hidden layers of the network to obtain intermediate
representation for phrase matrices. That is, weight matrices in the hidden layers of a network are
replaced with third-order weight tensors, which results in matrix-space operations. A similar idea
has been proposed by Chung et al. (2018) who incorporate CMSMs into Tree-structured LSTMs
to capture multiplicative interaction in the composition of words to sentences for natural language
understanding.

Recently, contextualized word representation models, such as ELMo (Peters et al. 2018) and
BERT (Devlin et al. 2019), have shown state-of-the-art performance in downstream NLP tasks.
These models have been trained on pre-training objectives, such as masked language modeling,
using huge text corpora. However, they need to be fine-tuned on downstream NLP tasks using
task-specific training data. Since CMSMs can be also trained using similar task-specific datasets,
we suggest that when dealing with NLP tasks where compositionality plays an important role,
such as in phrase-based statistical machine translation (Weller et al. 2014; Kordoni and Simova
2014), a comparative analysis of contextualized and non-contextualized representation models in
capturing the compositional meaning of phrases would be helpful to choose the best approach for
phrase-level compositional representation. CMSMs capture the nuances of compositional phrase
meaning and training these models needs lower computational cost, which could be useful in
situations where limited computational resources are available.

Overall, this work demonstrates that CMSMs compose attractive theoretical features and practical
behavior, which strongly suggest CMSMs as a suitable model of semantic compositionality in
downstream NLP applications. Moreover, recent research in psycholinguistics has focused on
assessing the cognitive plausibility of distributional semantic models and word embeddings in
VSMs. We can similarly argue for the psychological plausibility of CMSMs, which is presented in
Appendix C. However, we leave the justification of these models as a separate research work since
systematic analysis of these models in psychologically related tasks, such as semantic priming, is
needed.

As future work, we will explore how to train task-independent CMSMs to capture the distribu-
tional representation of words similar to non-contextualized distributional vector-space models
such as word2vec and even contextualized language representation models such as pre-trained
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BERT (Devlin et al. 2019) in which distinct embeddings of a word can be obtained when oc-
curring in different contexts. One immediate advantage of employing distributional matrix-space
models is that matrix multiplication is an operation which is most natural, plausible on several
levels, word-order-sensitive, and allows for a dynamic composition of word matrices to longer
phrases and even sentences. However, if and how semantic information can be embedded in fewer
dimensions than BERT or word2vec still needs to be investigated.

Another interesting line of research on CMSMs is to investigate the performance of CMSMs in
capturing compositionality in other languages such as German, where individual words can be
combined to make compounds leading to infinite number of German compounds. However, suit-
able preprocessing techniques for compound splitting would be needed for this purpose (Weller
et al. 2014).
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Appendix A. CMSMs Capture Compositional Vector-Space Models

A.1 Vector Addition

As a simple (and arguably the most straight-forward) basic model for semantic composition, vec-
tor addition has been proposed. Thereby, tokens σ get assigned (usually high-dimensional) vectors
vσ and to obtain a representation of the meaning of a sequence s = σ1 . . . σk, the vector sum of
the vectors associated to the constituent tokens is calculated: vs = ∑

k
i=1 vσi .

This kind of composition operation is subsumed by CMSMs; suppose in the original model, a
token σ gets assigned the vector vσ , then by defining

ψ+(vσ ) =


1 · · · 0 0
...

. . .
...

0 1 0

vσ 1


(mapping n-dimensional vectors to (n + 1)× (n + 1) matrices) as well as

χ+(M) = (M(m, 1) M(m, 2) · · · M(m, m− 1))

(that is, given a matrix M, extract the lowest row omitting the last entry), we obtain for a sequence
s = σ1 . . . σk

χ+(ψ+(vσ1) . . . ψ+(vσk)) = vσ1 + . . .+ vσk = vs.

Proof. The correspondence is a direct consequence of the equality ψ+(vσ1) . . . ψ+(vσk) =
ψ+(vσ1 + . . .+ vσk) which we prove by induction over k. For k = 1, the claim is trivial. For k > 1,
we have

ψ+(vσ1) . . . ψ+(vσk−1)ψ+(vσk)
i.h.
= ψ+

(
k−1

∑
i=1

vσi

)
ψ+(vσk)

=



1 · · · 0 0
...

. . .
...

0 1 0
k−1

∑
i=1

vσi(1) · · ·
k−1

∑
i=1

vσi(n) 1




1 · · · 0 0
...

. . .
...

0 1 0

vσk(1) · · · vσk(n) 1

 =



1 · · · 0 0
...

. . .
...

0 1 0
k

∑
i=1

vσi(1)· · ·
k

∑
i=1

vσi(n) 1


= ψ+

( k

∑
i=1

vσi

)
= ψ+(vσ1 + . . .+ vσk) q.e.d.

A.2 Component-wise Multiplication

On the other hand, the Hadamard product (also called entry-wise product, denoted by�) has been
proposed as an alternative way of semantically composing token vectors.
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By using a different encoding into matrices, CMSMs can simulate this type of composition
operation as well. By letting

ψ�(vσ ) =


vσ (1) 0 · · · 0

0 vσ (2)
...

. . . 0

0 · · · 0 vσ (n)

 ,

as well as

χ�(M) = (M(1, 1) M(2, 2) · · · M(m, m))

(that is, χ� extracts the values of M’s diagonal), we obtain an n× n matrix representation such
that for any sequence s = σ1 . . . σk holds

χ�(ψ�(vσ1) . . . ψ�(vσk)) = vσ1 � . . .� vσk = vs.

Proof. The correspondence is a direct consequence of the equality ψ�(vσ1) . . . ψ�(vσk) =
ψ�(vσ1 � . . .� vσk) which we prove by induction on k. For k = 1, the claim is trivial. For k > 1,
we have

ψ�(vσ1) . . . ψ�(vσk−1)ψ�(vσk)
i.h.
= ψ�

(⊙k−1
i=1 vσi

)
ψ�(vσk)

=


∏

k−1
i=1 vσi(1) · · · 0

...
. . .

...

0 · · · ∏
k−1
i=1 vσi(n)




vσk(1) · · · 0
...

. . .
...

0 · · · vσk(n)

=


∏

k
i=1vσi(1) · · · 0

...
. . .

...

0 · · · ∏
k
i=1vσi(n)


= ψ�

(
k⊙

i=1

vσi

)
= ψ�(vσ1 � . . .� vσk) q.e.d.

A.3 Holographic Reduced Representations

Holographic reduced representations as introduced by Plate (1995) can be seen as a refinement of
convolution products with the benefit of preserving dimensionality: given two vectors v1, v2 ∈Rn,
their circular convolution product v1 ~ v2 is again an n-dimensional vector v3 defined by

v3(i + 1) =
n−1

∑
k=0

v1(k + 1) · v2((i− k mod n) + 1)

for 0≤ i≤ n− 1. Now let ψ~(v) be the n× n matrix M with

M(i, j) = v(( j− i mod n) + 1).

In the 3-dimensional case, this would result in

ψ~(v(1) v(2) v(3)) =


v(1) v(2) v(3)

v(3) v(1) v(2)

v(2) v(3) v(1)

 .

Fig. 7 illustrates the computation of circular convolution operation as a compressed outer product
of two vectors. Furthermore, let

χ~(M) = (M(1, 1) · · · M(1, n))
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Figure 7: Circular convolution operation on two 3-dimensional vectors v1 and v2. Illustration adapted from (Plate 1995).

that is, χ~ extracts the first row of M. Then we obtain, for any sequence s = σ1 . . . σk, the desired
correspondence

χ~(ψ~(vσ1) . . . ψ~(vσk)) = vσ1 ~ . . .~ vσk = vs.

Proof. We first show the following claim (∗): for any v1, v2 ∈Rn holds ψ~(v1 ~ v2) =
ψ~(v1)ψ~(v2). To this end, let v3 = v1 ~ v2 and N = ψ~(v3), furthermore, let N1 = ψ~(v1) and
N2 = ψ~(v2) as well as N′ = N1N2. Then

N(i, j) = v3(( j− i mod n) + 1) =
n−1

∑
k=0

v1(k + 1) · v2((( j− i mod n)− k mod n) + 1)

=
n−1

∑
k=0

v1(k + 1) · v2(( j− i− k mod n) + 1)

as well as

N′(i, j) =
n

∑
`=1

N1(i, `) ·N2(`, j) =
n

∑
`=1

v1((`− i mod n) + 1) · v2(( j− ` mod n) + 1)

=
n−1

∑
k=0

v1(k + 1) · v2(( j− i− k mod n) + 1),

where, in the last step, we substituted ` by k + i mod n and reordered the sum. Hence, we have
shown that all entries of N and N′ coincide and therefore ψ~(v1 ~ v2) = N′ = N = ψ~(v1)ψ~(v2),
proving (∗).
Now we proceed to show the original statement, which is a direct consequence of the equality
ψ~(vσ1) . . . ψ~(vσk) = ψ~(vσ1 + . . .+ vσk) by induction on the length of s. For the base case
(w = σ1), this equality is trivial. For the induction step we find

ψ~(vσ1) . . . ψ~(vσk−1)ψ~(vσk)
i.h.
= ψ~(vσ1 ~ . . .~ vσk−1)ψ~(vσk)

(∗)
= ψ~(vσ1 ~ . . .~ vσk),

which finishes our proof. q.e.d.

A.4 Permutation-based Approaches

Sahlgren et al. (2008) use permutations on vectors to account for word order. In this approach,
given a token σm occurring in a sentence s = σ1 . . . σk with predefined “uncontextualized” vectors
vσ1 . . . vσk , we compute the contextualized vector vs,m for σm by

vs,m = Φ
1−m(vσ1) + . . .+ Φ

k−m(vσk).
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Note that the approach is still token-centered, i.e., a vector representation of a token σm is endowed
with contextual representations of surrounding tokens. To transfer this setting into a sequence-
centered one, we define the vector representation of a sequence s = σ1 . . . σk to be identical to the
contextualized vector representation of its last token σk, i.e.,

vs = vs,k =
k

∑
`=1

Φ
`−k(vσ`

) =
k

∑
`=1

vσ`
Mk−`

Φ
.

Note that from this vs, the contextualized vector representations for any other token σm can then be
easily retrieved by applying Φk−m to vs. Now, given some permutation Φ, we define the function
ψΦ which assigns to every vσ the matrix

ψΦ(vσ ) =


0

MΦ

...

0

vσ 1

 ,

where MΦ denotes the permutation matrix associated to Φ as described in Section 3. Furthermore,
we let

χΦ(M) = (M(m, 1) M(m, 2) · · · M(m, m− 1))

(that is, given a matrix M, extract the lowest row omitting the last entry). Then we obtain for a
sequence s = σ1 . . . σk

χΦ

(
ψΦ(vσ1) . . . ψΦ(vσk)

)
= vs.

Proof. The statement is a direct consequence of the following equality, which we show by
induction on k:

ψΦ(vσ1) . . . ψΦ(vσk) =


0

Mk
Φ

...

0

∑
k
`=1 vσ`

Mk−`
Φ

1

 .

For the base case, i.e., s = σ1, the statement follows from the definition. For the induction step,
we find

ψΦ(vσ1) . . . ψΦ(vσk) =
(
ψΦ(vσ1) . . . ψΦ(vσk−1)

)
ψΦ(vσk)

=


0

Mk−1
Φ

...

0
k−1

∑
`=1

vσ`
Mk−1−`

Φ
1




0

MΦ

...

0

vσk 1

=


0

Mk−1
Φ

MΦ

...

0( k−1

∑
`=1

vσ`
Mk−1−`

Φ

)
MΦ + vσk 1

=


0

Mk
Φ

...

0
k

∑
`=1

vσ`
Mk−`

Φ
1

 .

q.e.d.
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Appendix B. Proofs for Section 6

Proof of Theorem 1. If α is the zero vector, all scores will be zero, so we can let all Ŵh be the
(m + 1)× (m + 1) zero matrix.

Otherwise let W be an arbitrary m×m matrix of full rank, whose first row is α , i.e., e1W = α .
Now, let

M̂h :=

WMhW−1 MMhβ>

0 · · · 0 0


for every h∈ {1, . . . , `}. Then, we obtain

M̂gM̂h =

WMgMhW−1 WMgMhβ>

0 · · · 0 0


for every g, h∈ {1, . . . , `}. This leads to

e1M̂i1 · · · M̂ik e>m+1

= e1WMi1 · · ·Mik β>

= αMi1 · · ·Mik β> q.e.d.

Proof of Proposition 2. Suppose Σ = {a1, . . . an}. Given a word w, let xi denote the number of
occurrences of ai in w. A linear equation on the letter counts has the form

k1x1 + . . .+ knxn = k
(
k, k1, . . . , kn ∈R

)
Now define [[ai]] = ψ+(ei), where ei is the ith unit vector, i.e. it contains a 1 at the ith position and 0
in all other positions. Then, it is easy to see that w will be mapped to M = ψ+(x1 · · · xn). Due
to the fact that en+1M = (x1 · · · xn 1) we can enforce the above linear equation by defining
the acceptance conditions

AC = { 〈en+1, (k1 . . . kn − k), 0〉,
〈−en+1, (k1 . . . kn − k), 0〉}. q.e.d.

Proof of Proposition 3. This is a direct consequence of the considerations in Section 5.3 together
with the observation, that the new set of acceptance conditions is trivially obtained from the old
ones with adapted dimensionalities. q.e.d.

Proof of Proposition 3. The undecidable Post correspondence problem (Post 1946) is described
as follows: given two lists of words u1, . . . , un and v1, . . . , vn over some alphabet Σ′, is there a
sequence of numbers h1, . . . , hm (1≤ h j ≤ n) such that uh1 . . . uhm = vh1 . . . vhm?
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We now reduce this problem to the emptiness problem of a matrix grammar. W.l.o.g., let Σ′ =
{a1, . . . , ak}. We define a bijection # from Σ′∗ to N by

#(an1an2 . . . anl ) =
l

∑
i=1

(ni − 1) · k(l−i)

Note that this is indeed a bijection and that for w1, w2 ∈ Σ′∗, we have

#(w1w2) = #(w1) · k|w2| + #(w2).

Now, we defineM as follows:

Σ = {b1, . . . bn} [[bi]] =


k|ui| 0 0

0 k|vi| 0

#(ui) #(vi) 1


AC = { 〈(0 0 1), (1 − 1 0), 0〉,

〈(0 0 1), (−1 1 0), 0〉}

Using the above fact about # and a simple induction on m, we find that

[[ah1 ]] . . . [[ahm ]] =


k|uh1...uhm | 0 0

0 k|vh1...vhm | 0

#(uh1 . . .uhm) #(vh1 . . .vhm) 1

 .

Evaluating the two acceptance conditions, we find them satisfied exactly if #(uh1 . . . uhm) =
#(vh1 . . . vhm). Since # is a bijection, this is the case if and only if uh1 . . . uhm = vh1 . . . vhm .
ThereforeM accepts bh1 . . . bhm exactly if the sequence h1, . . . , hm is a solution to the given Post
Correspondence Problem. Consequently, the question whether such a solution exists is equivalent
to the question whether the language L(M) is non-empty. q.e.d.

Appendix C. Discussion on Cognitive Plausibility of CMSMs

Recent research in psycholinguistics has focused on assessing the cognitive plausibility of dis-
tributional semantic models and word embeddings in VSMs. Mandera et al. (2017) evaluate the
performance of prediction-based models, e.g., skip-gram and CBOW (Mikolov et al. 2013a), and
count-based models, e.g., word-context matrix, on predicting behavioral data on psychologically
relevant tasks, such as semantic priming. In their experiments, Mandera et al. (2017) show that
prediction-based models reflect human behavior better than count-based models on semantic-
related tasks. They argue that learning in cognitive systems is incremental and all information
is not simultaneously available to the learning system. Thus, prediction-based models, such as
word2vec, which are also trained incrementally, are suggested as being much better grounded
psychologically. Günther et al. (2019) also show that recent models, such as word2vec, show
psychologically plausible learning mechanisms to obtain semantic meaning of words through
semantic-related tasks. In this article, we proposed a learning technique for CMSMs, which is gen-
erally based on the distributional hypothesis. Incremental learning of the trained model is feasible
by employing new data and information. Thus, these models are considered as prediction-based
models, and their psychological plausibility can be analyzed systematically via psychologically
relevant tasks, such as semantic priming and similarity/relatedness rating tasks. We leave this line
of work as a future research in psycholinguistics.
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Moreover, a recent study on vector-space DSMs by Sassenhagen and Fiebach (2019) shows that,
when dealing with semantics, there is a correlation between the brain’s activity and semantic in-
formation in distributional models. They argue that a state in the human brain can be encoded
in vectors, and therefore, vector mappings can be decoded from brain activity. More specifically,
they show that there is a correspondence between the structure of brain activity and semantic vec-
tor spaces when processing language. With this in mind, suppose a state of a human’s brain at
one specific moment in time can be encoded by a vector v of numerical values. Then, an external
stimulus or signal, such as a perceived word, will result in a transition of the mental state. Thus,
the external stimulus can be seen as a function being applied to v yielding as result the vector v′
that corresponds to the human’s mental state after receiving the signal. Therefore, it seems sensi-
ble to associate with every signal (in our case: word σ ) a respective function (a linear mapping),
represented by a matrix Mσ = [[σ ]] that maps mental states to mental states (i.e. vectors v to vec-
tors v′ = vMσ ).l Consequently, the subsequent reception of inputs σ , σ ′ associated to matrices
Mσ and Mσ ′ will transform a mental vector v into the vector (vMσ )Mσ ′ which by associativity
equals v(Mσ Mσ ′). Therefore, Mσ Mσ ′ represents the mental state transition triggered by the signal
sequence σσ ′, as illustrated by Fig. 8. Naturally, this consideration carries over to sequences of ar-
bitrary length. This way, abstracting from specific initial mental state vectors, our matrix space S,
introduced in Section 4, can be seen as a function space of mental transformations represented by
matrices, whereby matrix multiplication realizes subsequent execution of those transformations
triggered by external stimulus sequence, such as input token sequence. This way, we speculate
the coherency of CMSMs with mental state progression; However, this needs to be confirmed by
practical analysis in a similar way to the work by Sassenhagen and Fiebach (2019) in vector-space
DSMs. Using matrices to represent these transitions restricts them to linear mappings. Although
this restriction brings about benefits in terms of computability and theoretical accessibility, the
limitations introduced by linearity assumption need to be further investigated.

σ σ ′

v vMσ = v′ v′ v′Mσ ′ = v′′ v′′

σσ ′

v vMσσ ′ = vMσ Mσ ′ = v′Mσ ′ = v′′ v′′

Figure 8: Matrices as cognitive state transformations.

lWe are, however, not aware of findings that would favor linear mappings over other types of functions, so our argument
remains somewhat speculative.
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