
Defaults in Action: Non-monotonic Reasoning About States in Action Calculi

Hannes Strass and Michael Thielscher
Department of Computer Science
Dresden University of Technology
{hannes.strass, mit}@inf.tu-dresden.de

Abstract

We propose a mechanism for default reasoning in action for-
malisms that allows to make useful assumptions unless infor-
mation to the contrary. The mechanism is shown to behave
properly when actions are performed, in particular we show
that it suffices to apply defaults to the initial state. This allows
for very simple reasoning, since the defaults need only be ap-
plied once and monotonic entailment can thence be used to
solve projection problems. We finally consider two simple,
natural generalizations of the approach and show that they
admit unintuitive conclusions.

Introduction
This paper is concerned with the combination of two suc-
cessful approaches to the logical formalization of common-
sense reasoning: logics for actions and non-monotonic log-
ics. The present work is by no means the first to join the
two; non-monotonic logics have already been used by the
reasoning about actions community in the past. After (Mc-
Carthy and Hayes 1969) discovered the fundamental prob-
lem of determining the non-effects of actions, the frame
problem, it was widely believed that non-monotonic reason-
ing were necessary to solve it. Then (Hanks and McDermott
1987) gave a (by now famous) example of how straightfor-
ward use of non-monotonic logics in reasoning about ac-
tions and change can lead to counter-intuitive results. When
monotonic solutions to the frame problem were found (Re-
iter 1991; Thielscher 1999), non-monotonic reasoning again
seemed to be obsolete.

In this paper, we argue that utilizing default logic still is
of use when reasoning about actions. We will not use it to
solve the frame problem, however, the solution to the frame
problem we use here is monotonic and similar to the one of
(Thielscher 1999), but to make useful default assumptions
about states.

The approach we propose uses deterministic actions with-
out conditional effects and a restricted form of default as-
sumptions. The main reasoning task we are interested in is
the projection problem, that is, given an initial situation and
a sequence of actions, the question whether a certain condi-
tion holds in the resulting state. The approach can be used
to draw intuitive conclusions that are not possible to draw in
a monotonic way. As the main result of this paper, we show
that default applications can be restricted to the initial state

without losing any inferences, thus giving way to a simple
reasoning mechanism.

In the second half of the paper, we consider two gener-
alizations of our approach and show how they permit coun-
terintuitive conclusions, which justifies the restrictions made
earlier. The first generalization allows for more general de-
faults: they are still supernormal, that is, prerequisite-free
and normal, but enable default conclusions to be “carried
back in time.” This clearly disqualifies for solving projection
problems, since we would have to take an infinite number of
future time points into account. The second generalization
allows for more general effect axioms: they are still deter-
ministic but permit to express conditional effects. This again
causes conclusions that rely on time points that are intrinsi-
cally irrelevant for the question to be answered.

Background
This section introduces the foundations upon which our
work rests. Firstly, a unifying action calculus that we will
use to axiomatize action domains. Secondly, a restricted
version of one of the most prominent non-monotonic logics,
Raymond Reiter’s Default Logic (Reiter 1980).

The Unifying Action Calculus
Recently, (Thielscher 2009) proposed a unifying action cal-
culus (UAC) with the objective of bundling research efforts
in action formalisms. It does not confine to a particular time
structure and can thus be instantiated with situation-based
action calculi, like the Situation Calculus (McCarthy 1963)
or the Fluent Calculus (Thielscher 1999), as well as with
formalisms using a linear time structure, like the Event Cal-
culus (Kowalski and Sergot 1986).

The UAC uses only the sorts FLUENT, ACTION, and TIME
along with the predicates < : TIME × TIME (denoting an
ordering of time points), Holds : FLUENT × TIME (stat-
ing whether a fluent evaluates to true at a given time point),
and Poss : ACTION× TIME× TIME (indicating whether an
action is applicable for particular starting and ending time
points). Uniqueness-of-names is assumed for all (finitely
many) functions into sorts FLUENT and ACTION.

The following definition introduces the most important
types of formulas of the unifying action calculus: they allow
to express properties of states and applicability conditions
and effects of actions.

Definition 1. Let ~s be a sequence of variables of sort TIME.
• A state formula Φ[~s] in ~s is a first-order formula with free

variables ~s where
– for each occurrence of Holds(ϕ, s) in Φ[~s] we have
s ∈ ~s and

– predicate Poss does not occur.
Let s, t be variables of sort TIME and A be a function into
sort ACTION.
• A precondition axiom is of the form

Poss(A(~x), s, t) ≡ πA[s] (1)

where πA[s] is a state formula in s with free variables
among s, t, ~x.

• An effect axiom is of the form

Poss(A(~x), s, t) ⊃
(∀f)((γ+

A ∨ (Holds(f, s) ∧ ¬γ−A)) ≡ Holds(f, t)) (2)

where

γ+
A =

∨
0≤i≤n+

A

f = ϕi and γ−A =
∨

0≤i≤n−A

f = ψi

and the ϕi and ψi are terms of sort FLUENT with free vari-
ables among ~x.
Readers may be curious as to why the predicate Poss car-

ries two time arguments instead of just one: Poss(a, s, t)
is to be read as “action a is possible starting at time s and
ending at time t.” The formulas γ+

A and γ−A enumerate the
positive and negative effects of the action, respectively. This
definition of effect axioms is a restricted version of the orig-
inal definition of (Thielscher 2009)—it only allows for de-
terministic actions with unconditional effects.

A few words on notation and naming conventions: lower-
case letters will denote object-level variables, we usually use
f for sort FLUENT, a for sort ACTION, and s, t for sort TIME.
Capital letters and words will denote object level functions
of all sorts. Lower-case Greek letters will serve as meta-
level variables for fluent and action terms. Capital Greek
letters denote formulas or sets of formulas. As usual, s ≤ t
abbreviates s < t ∨ s = t. Formulas with occurrences of
free variables are assumed universally prenex-quantified.

Next, we formalize the concept of an (action) domain ax-
iomatization with its notion of time and action laws.
Definition 2. A (UAC) domain axiomatization consists of a
finite set of foundational axioms Ω (that define the underly-
ing time structure), a set Π of precondition axioms (1), and
a set Υ of effect axioms (2); the latter two for all functions
into sort ACTION.

A domain axiomatization is progressing, if
• Ω |= (∃s : TIME)(∀t : TIME)s ≤ t and
• Ω ∪Π |= Poss(a, s, t) ⊃ s < t .

A domain axiomatization is sequential, if it is progressing
and

Ω ∪Π |= Poss(a, s, t) ∧ Poss(a′, s′, t′) ⊃
(t < t′ ⊃ t ≤ s′) ∧ (t = t′ ⊃ (a = a′ ∧ s = s′))

That is, a domain axiomatization is progressing if there
exists a least time point and time always increases when ap-
plying an action. A sequential domain axiomatization fur-
thermore requires that no two actions overlap.

Lastly, we formalize the intuition of a time point that is
reachable via a finite sequence of actions.
Definition 3. Let Σ be a domain axiomatization. A time
point τ is finitely reachable in Σ iff Σ |= Reach(τ), where
the predicate Reach : TIME is macro-defined by

Reach(r) def= (∀R)((∀s)(Init(s) ⊃ R(s))
∧ (∀a, s, t)(R(s) ∧ Poss(a, s, t) ⊃ R(t)) ⊃ R(r))

Init(t) def= ¬(∃s)s < t

Note that these macros allow us to perform induction on
reachable time points as follows: to show that a certain prop-
erty Ψ[s] holds for all reachable time points, we show that
all minimal time points satisfy the property and that it is pre-
served by action application to reachable time points.

The examples of this paper will employ situations as their
underlying time structure, so we briefly recall the corre-
sponding foundational axioms from (Pirri and Reiter 1999):

¬(s < S0) (3)

s < Do(a, s′) ≡ s ≤ s′ (4)

Do(a, s) = Do(a′, s′) ≡ (a = a′ ∧ s = s′) (5)

(∀P)((P (S0) ∧ (P (s) ⊃ P (Do(a, s)))) ⊃ P (s′)) (6)

The above axioms shall henceforth be referred to as Ωsit.
Whenever we use them as underlying time structure, we
stipulate that for each action function A with right hand
side πA[s] of precondition axiom (1), we have πA[s] ≡
π′A[s] ∧ t = Do(A(~x), s) for some π′A.

Since we are mainly interested in the projection problem,
our domain axiomatizations will usually include a set Σ0 of
state formulas in S0 that characterize the initial situation.

To illustrate the intended usage of the introduced notions,
we make use of a variant of a well-known example already
mentioned earlier: the Yale Shooting scenario (Hanks and
McDermott 1987).
Example 1. Consider the domain axiomatization Σ =
Ωsit ∪ Π ∪ Υ ∪ Σ0. The precondition axioms say that the
action Shoot is possible if the gun is loaded and the actions
Load and Wait are always possible.

Π = {Poss(Shoot, s, t) ≡
(Holds(Loaded, s) ∧ t = Do(Shoot, s)),

Poss(Load, s, t) ≡ t = Do(Load, s),
Poss(Wait, s, t) ≡ t = Do(Wait, s)}

With these preconditions and foundational axioms (3)–(6),
the domain axiomatization is sequential. The effect of shoot-
ing is that the turkey ceases to be alive, loading the gun
causes it to be loaded, and waiting does not have any ef-
fect. All effect axioms in Υ are of the form (2), we state
only the γ± different from the empty disjunction.

γ−Shoot = (f = Alive)

γ+
Load = (f = Loaded)

Finally, we state that the turkey is alive in the initial situation
S0.

Σ0 = {Holds(Alive, S0)}

We can now employ logical entailment to answer the
question whether the turkey is still alive after apply-
ing the actions Load, Wait, and Shoot, respectively.
With the notation Do([a1, . . . , an], s) as abbreviation for
Do(an, Do(. . . , Do(a1, s) . . .)), it is easy to see that

Σ |= ¬Holds(Alive, Do([Load,Wait,Shoot], S0).

Default Logic
Introduced in the seminal paper (Reiter 1980), Default Logic
has become one of the most important formalisms for non-
monotonic reasoning. The semantics for supernormal de-
faults used here is taken from (Brewka and Eiter 1999),
which is itself an enhancement of a notion developed in
(Brewka 1989)1. Here, a default rule always comes with-
out a prerequisite, and justification and consequence always
coincide. A default rule can thus also be seen as a hypothe-
sis that we are willing to assume, but prepared to give up in
case of contradiction. A default theory then adds a set of for-
mulas, the indefeasible knowledge, that we are not willing to
give up for any reason.

Definition 4. A supernormal default rule, or, for short, de-
fault, is a closed first-order formula. Any formulas with oc-
currences of free variables are taken as representatives of
their ground instances.

For a set of closed formulas S, we say the default δ is
active in S if both δ /∈ S and ¬δ /∈ S.

A (supernormal) default theory is a pair (W,D), where
W is a set of sentences and D a set of default rules.

An extension for a default theory can be seen as a way
of assuming as many defaults as possible without creating
inconsistencies. It should be noted that, although the defini-
tion differs, our extensions are extensions in Reiter’s (1980)
sense.

Definition 5. Let (W,D) be a default theory where all de-
fault rules are supernormal and ≺≺ be a total order on D.
Define E0 := Th(W) and for all i > 0,

Ei+1 =

Ei if no default is active in Ei
Th(Ei ∪ {δ}) otherwise, where δ is the ≺≺ -

minimal default active in Ei.

Then the set E :=
⋃
i>0Ei is called the extension gener-

ated by ≺≺. A set of formulas E is a preferred extension for
(W,D) if there exists a total order ≺≺ that generates E. The
set of all preferred extensions for a default theory (W,D) is
denoted by Ex(W,D).

1Readers familiar with these works will note that they are con-
cerned with prioritized default logics while we do not use priorities
at all. We however use the more general definition because we
intend to incorporate prioritized defaults into our framework later
on.

Extensions need not be unique: if there are two contra-
dicting defaults δ and ¬δ, either both or none of them are
active in Th(W). Applying one of them makes the other
inactive, thus they give rise to two different extensions.

Based on extensions, one can define skeptical and credu-
lous conclusions for default theories: skeptical conclusions
are formulas that are contained in every extension, credu-
lous conclusions are those that are contained in at least one
extension.
Definition 6. Let (W,D) be a supernormal default theory
and Ψ be a first-order formula.

W |≈skeptD Ψ
def≡ Ψ ∈

⋂
E∈Ex(W,D)

E

W |≈credD Ψ
def≡ Ψ ∈

⋃
E∈Ex(W,D)

E

In the present work, we will primarily be concerned with
skeptical reasoning.

Action Domains with Static Defaults
We now combine the hitherto introduced concepts into the
notion of a domain axiomatization with defaults. It is essen-
tially a default theory where the set containing the indefeasi-
ble knowledge is a domain axiomatization. The defaults are
of a restricted form since we allow only static defaults about
states.
Definition 7. A domain axiomatization with defaults is
a pair (Σ,D[s]), where Σ is a UAC domain axiomatiza-
tion and D[s] is a set of supernormal defaults of the form
Holds(ϕ, s) or ¬Holds(ϕ, s) for a fluent ϕ.

By D[σ] we denote the set of defaults in D[s] where s has
been instantiated by the term σ.
Example 1 (continued). We add a fluent Broken that indi-
cates if the gun does not function properly. Shooting is now
only possible if the gun is loaded and not broken:

Poss(Shoot, s, t) ≡
(Holds(Loaded, s) ∧ ¬Holds(Broken, s)
∧ t = Do(Shoot, s))

Unless there is information to the contrary, it should be as-
sumed that the gun has no defects. This is expressed by the
following default rule:

D[s] = {¬Holds(Broken, s)}
Without the default assumption, it cannot be concluded that
the action Shoot is possible after performing Load and Wait
since it cannot be inferred that the gun is not broken. Using
the abbreviations S1 = Do(Load, S0), S2 = Do(Wait, S1),
and S3 = Do(Shoot, S2), we illustrate how the non-
monotonic entailment relation defined earlier enables us to
use the default rule to draw the desired conclusion:

Σ |≈skeptD[S0]
¬Holds(Broken, S2),

Σ |≈skeptD[S0]
Poss(Shoot, S2, S3), and

Σ |≈skeptD[S0]
¬Holds(Alive, S3).

The default conclusion that the gun works correctly, drawn
in S0, carries over to S2 and allows to conclude applicability
of Shoot in S2 and its effects on S3.

In the example just seen, default reasoning could be re-
stricted to the initial situation. As it turns out, this is suf-
ficient for the type of action domain considered here: ef-
fect axiom (2) never “removes” information about fluents
and thus never makes more defaults active after executing
an action. This observation is formalized by the following
lemma. It essentially says that to reason about a time point
in which an action ends, it makes no difference whether we
apply the defaults to the resulting time point or to the time
point when the action starts. This holds of course only due
to the restricted nature of effect axiom (2).
Lemma 1. Let (Σ,D[s]) be a domain axiomatization with
defaults, α be a ground action such that Σ |= Poss(α, σ, τ)
for some σ, τ : TIME, and let Ψ[τ] be a state formula in τ .
Then

Σ |≈skeptD[σ] Ψ[τ] iff Σ |≈skeptD[τ] Ψ[τ]

Proof. (Sketch.) The proof uses structural induction on Ψ[τ]
with Ψ[τ] = Holds(ϕ, τ) being the only interesting case.
The result is immediate if Σ is inconsistent, so for the fol-
lowing assume that Σ is consistent. If ϕ is amongst the pos-
itive effects of α, then Σ |= Holds(ϕ, τ) and we are done.
If ϕ is no positive effect of α, the conclusion Holds(ϕ, τ)
relies on a default Holds(ϕ, s) ∈ D[s] and ϕ cannot be a
negative effect of α (since the conclusion would be impos-
sible otherwise). Since ϕ is not changed by α, we have that
Holds(ϕ, σ) ∈ E iff Holds(ϕ, τ) ∈ E for any extension E
for (Σ,D[σ]) or (Σ,D[τ]).

We next introduce a helpful regression operator which is
inspired by the one from (Reiter 1991). It uses the structure
of the effect axioms to reduce reasoning about a time point
that is the result of applying an action to reasoning about the
time point in which the action started.
Definition 8. The operator Rα maps, for a given action α,
a state formula in τ into a state formula in σ as follows.

Rα(Holds(ϕ, τ)) def=

(γ+
α {f 7→ ϕ} ∨ (Holds(ϕ, σ) ∧ ¬γ−α {f 7→ ϕ}))

The operator does not change atomic formulas other than
Holds statements, and distributes over the first order con-
nectives in the obvious way.

Now whenever an action α is possible and its effect axiom
is available, a state formula in the resulting time point and
its regression are indeed equivalent.
Proposition 2. Let α be a ground term of sort ACTION and
S be a consistent set of closed formulas that contains an
effect axiom (2) for action α and where S |= Poss(α, σ, τ)
for some σ, τ : TIME and let Ψ[s] be a state formula. Then

S |= Ψ[τ] ≡ Rα(Ψ)[σ]

Proof. By structural induction on Ψ. The only interesting
case is Ψ = Holds(ϕ, τ) for some fluent ϕ. Let I be a
model for S.

I |= Holds(ϕ, τ)
iff I |= (γ+

α {f 7→ ϕ} ∨ (Holds(ϕ, σ) ∧ ¬γ−α {f 7→ ϕ}))
(since I |= Poss(α, σ, τ) and
I is a model for α’s effect axiom)

iff I |=Rα(Holds(ϕ, τ)) (by definition)

The next theorem says that all local conclusions about
a finitely reachable time point σ (that is, all conclusions
about σ using defaults from D[σ]) are exactly the conclu-
sions about σ that we can draw by instantiating the defaults
only with the least time point.
Theorem 3. Let (Σ,D[s]) be a progressing domain axiom-
atization with defaults, λ its least time point, σ : TIME be
finitely reachable, and Ψ[σ] be a state formula. Then

Σ |≈skeptD[σ] Ψ[σ] iff Σ |≈skeptD[λ] Ψ[σ]

Proof. By induction on σ. The base case is trivial. For the
induction step, assume that Σ |= Poss(α, σ, τ).

Σ |≈skeptD[τ] Ψ[τ]

iff Σ |≈skeptD[σ] Ψ[τ] (Lemma 1)

iff Σ |≈skeptD[σ] Rα(Ψ)[σ] (Proposition 2)

iff Σ |≈skeptD[λ] Rα(Ψ)[σ] (induction hypothesis)

iff Σ |≈skeptD[λ] Ψ[τ] (Proposition 2)

It thus remains to show that local defaults are indeed ex-
haustive with respect to local conclusions. The next lemma
takes a step into this direction: it states that action appli-
cation does not increase default knowledge about past time
points.
Lemma 4. Let (Σ,D[s]) be a domain axiomatization with
defaults, α be a ground action such that Σ |= Poss(α, σ, τ)
for some σ, τ : TIME, and let Ψ[ρ] be a state formula in
ρ : TIME where ρ ≤ σ. Then

Σ |≈skeptD[τ] Ψ[ρ] implies Σ |≈skeptD[σ] Ψ[ρ]

Proof. (Sketch.) We prove the contrapositive. Let Σ 6|≈skeptD[σ]

Ψ[ρ]. Then there is an extension E for (Σ,D[σ]) where
Ψ[ρ] /∈ E. We generate an extension F for (Σ,D[τ]) as
follows. Set the ordering ≺≺ on D[τ]such that defaults from
D[τ] ∩ E get higher priority than the ones from D[τ] \ E.
None of the latter gets applied during generation of F :
roughly, if δ[τ] /∈ E although there is a default δ[s] ∈ D[s],
then ¬δ[τ] ∈ E. This can be due to either (1) a contradicting
action effect or (2) a contradicting default ¬δ[s] ∈ D[s]. In
case (1), ¬δ[τ] ∈ Th(Σ) and δ[τ] is inapplicable. For (2),
α does not affect ¬δ[σ], thus ¬δ[τ] is applicable in Th(Σ)
and by construction applied in F , which makes δ[τ] inap-
plicable. Now there exists an E′ ⊆ D[τ] ∩ E such that
F = Th(Σ ∪ E′), thus any model for E is a model for F .
Hence, Ψ[ρ] /∈ F and Σ 6|≈skeptD[τ] Ψ[ρ].

The converse of the lemma does not hold, since an action
effect might preclude a default conclusion about the past.
The following theorem now says that no sequence of future
actions whatsoever can have an impact on conclusions about
the present.

Theorem 5. Let (Σ,D[s]) be a progressing domain axiom-
atization with defaults, let Ψ[s] be a state formula, σ ≤ τ be
time points, and σ be finitely reachable. Then

Σ |≈skeptD[τ] Ψ[σ] implies Σ |≈skeptD[σ] Ψ[σ]

Proof. If τ is not finitely reachable, we have Σ |= Ψ[σ]
and the claim is immediate, so let τ be finitely reachable.
We use induction on τ . The base case, τ = σ, is obvious.
For the induction step, Σ |= Poss(α, τ, τ ′) and Σ |≈skeptD[τ ′]

Ψ[σ] imply Σ |≈skeptD[τ] Ψ[σ] by Lemma 4. The induction

hypothesis then yields Σ |≈skeptD[σ] Ψ[σ].

The final theorem, our main result, now combines Theo-
rems 3 and 5.
Theorem 6. Let (Σ,D[s]) be a progressing domain axiom-
atization with defaults, λ be its least time point, Ψ[s] be a
state formula, and σ ≤ τ be terms of sort TIME where σ is
finitely reachable. Then

Σ |≈skeptD[τ] Ψ[σ] implies Σ |≈skeptD[λ] Ψ[σ]

Proof. Σ |≈skeptD[τ] Ψ[σ] implies Σ |≈skeptD[σ] Ψ[σ] by Theorem

5. By Theorem 3, this is the case iff Σ |≈skeptD[λ] Ψ[σ].

Generalizations with Undesired Side Effects
In this section, we show some generalizations of the thus far
introduced notion of a domain axiomatization with defaults
and show how these generalizations clash with our intuitive
notion of relevance. The first subsection generalizes the de-
fault hypotheses used, and the second subsection generalizes
the effect axioms.

Unrestricted Supernormal Defaults
Concluding atomic propositions about the world is not al-
ways enough. Sometimes we wish to express defaults of
the form “in general, x are y”, for example, “in general, pa-
per airplanes fly2.” Surely, we could instantiate a default
Holds(Flies(x), s) by all objects x which are known to be
paper airplanes. But this is by no means elaboration toler-
ant (McCarthy 1998) and furthermore does not account for
previously unknown paper airplanes. We would much rather
have a default rule
Holds(PaperAirplane(x), s) ⊃ Holds(Flies(x), s) (7)

which is still supernormal and will let us draw the desired
conclusion whenever there is no contradicting information.
But, unfortunately, allowing disjunctive defaults has unintu-
itive side effects:
Example 2. Imagine an action Fold(x) that transforms a
sheet of paper x into a paper airplane:

Poss(Fold(x), s, t) ≡ Holds(SheetOfPaper(x), s)
∧ t = Do(Fold(x), s)

γ+
Fold = (f = PaperAirplane(x))

γ−Fold = (f = SheetOfPaper(x))
2Yes, paper airplanes. Birds are not the only objects that should

fly by default.

Let the domain axiomatization be Σ = Ωsit ∪ Π ∪
Υ ∪ Σ0 where Π contains the precondition axiom above,
Υ contains effect axiom (2) with γ+

Fold and γ−Fold stated
above, and the initial situation is characterized by Σ0 =
{Holds(SheetOfPaper(T), S0)}. The set of defaults D[s]
contains the single default rule (7). Now after folding
T into a paper airplane (using the abbreviation S1 =
Do(Fold(T), S0)), we can indeed make the desired conclu-
sion that it flies:

Σ |≈skeptD[S1]
Holds(Flies(T), S1)

So far, so good. But there is another conclusion that we can
draw in S1 and that refers to the past:

Σ |≈skeptD[S1]
Holds(Flies(T), S0)

Spelled out, the sheet of paper already flew before it was
folded! Moreover, this conclusion about the initial situation
could not be drawn in the initial situation itself without uti-
lizing a future situation:

Σ 6|≈skeptD[S0]
Holds(Flies(T), S0)

This line of argument could be read as: “If I folded the sheet
of paper into a paper airplane, it would fly. Therefore, it
flies.” This is counterfactual reasoning gone awry. So what
happened?

The problem stems from effect axiom (2) and its incor-
porated solution to the frame problem: since Flies(T) holds
after Fold(T) but was not a positive effect of the action, ac-
cording to the effect axiom it must have held beforehand.
This example shows that disjunctive defaults can have unin-
tended effects in the presence of actions: they are, locally in-
stantiated, not exhaustive with respect to local conclusions.
A proposition similar to Theorem 5 can thus not be made
when using default rules with disjunctions.

Conditional Effects
Let us get back to defaults that are Holds statements or
negations thereof, but instead increase the expressiveness
of the action domain by allowing conditional effects (also
called alternative results (Sandewall 1994)). They are mod-
elled as a case distinction on the right hand side of the effect
axiom. For each case, the actual formula expressing the ef-
fects is identical to (2).

Definition 9. An effect axiom with conditional effects is of
the form

Poss(A(~x), s, t) ⊃
∨

1≤i≤k

(Φi[s] ∧Υi[s, t]) (8)

where k ≥ 1, and for each 1 ≤ i ≤ k,

Υi[s, t] = (∀f)(Holds(f, t) ≡
(γ+
i ∨ (Holds(f, s) ∧ ¬γ−i))) (9)

γ+ =
∨

0≤j≤n+
i

f = ϕij and γ− =
∨

0≤j≤n−i

f = ψij

and the ϕij and ψij are terms of sort FLUENT with free vari-
ables among ~x. The Φi[s] are state formulas in s that define
the conditions for case i to apply. They are mutually exclu-
sive and the disjunction of them is a tautology—the actions
are thus still deterministic.

Conditional effects allow us to further “inspect” a state
and base effects upon state properties. This was not possible
with effect axiom (2) where all effects were unconditional
and the only possibility to inspect the starting state of an
action was by precondition axioms.
Example 3. We slightly modify Example 1: the action
Shoot is now always possible but breaks an unloaded gun
(that works as expected if loaded and not broken).

Poss(Shoot, s, t) ≡ t = Do(Shoot, s)
Poss(Shoot, s, t) ⊃

(¬Holds(Broken, s) ∧Holds(Loaded, s)) ∧
(∀f)((Holds(f, s) ∧ f 6= Alive) ≡ Holds(f, t))
∨
(Holds(Broken, s) ∨ ¬Holds(Loaded, s)) ∧

(∀f)(Holds(f, s) ∨ f = Broken ≡ Holds(f, t))

With the gun still being not broken by default and S1 =
Do(Shoot, S0), we get the following conclusions: by de-
fault, the gun is not broken, even after shooting:

Σ |≈skeptD[S1]
¬Holds(Broken, S1)

But then, it must have been loaded in the initial situation
(otherwise it would be broken, which it is not):

Σ |≈skeptD[S1]
Holds(Loaded, S0),

although this was not known without utilizing a default
about a situation in the future:

Σ 6|≈skeptD[S0]
Holds(Loaded, S0).

It might appear rather contrived to conclude the value of a
fluent after applying an action that possibly affects it, but the
point of the example should become clear: it is a counterex-
ample for a “conditional effects” version of Theorem 5.

Conclusions and Future Work
The paper investigated the combination of two successful
approaches to the logical formalization of commonsense
reasoning, logics for actions and non-monotonic logics, and
introduced a framework for default reasoning in action for-
malisms. Due to the restricted nature of the employed effect
axioms and defaults, the proposed mechanism behaves in an
intuitive way. It is even enough to apply default assump-
tions only to a single time point, namely the initial situation,
without losing any of the conclusions. The restrictions made
in the definitions were not arbitrary—loosening them results
in counter-intuitive inferences, which has been shown via
illustrative examples.

In the future, we aim at integrating the results into the
concept of Agent Logic Programs (Drescher, Schiffel, and
Thielscher 2009). Agent Logic Programs are definite logic

programs with two special predicates that are evaluated with
respect to an underlying domain axiomatization. We intend
to augment ALPs by a negation-as-failure operator and com-
bine the answer set semantics for general logic programs
(Gelfond and Lifschitz 1991) with a background theory of
action to provide a semantics for the augmented language.

References
Brewka, G., and Eiter, T. 1999. Prioritizing Default Logic:
Abridged Report. In Festschrift on the occasion of Prof.
Dr. W. Bibel’s 60th birthday. Kluwer.
Brewka, G. 1989. Preferred Subtheories: An Extended
Logical Framework for Default Reasoning. In Proceedings
of the Eleventh International Conference on Artificial In-
telligence, 1043–1048.
Drescher, C.; Schiffel, S.; and Thielscher, M. 2009. Agent
Logic Programs. In Proceedings of the Twenty-first Inter-
national Joint Conference on Artificial Intelligence. (Sub-
mitted).
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9:365–385.
Hanks, S., and McDermott, D. 1987. Nonmonotonic Logic
and Temporal Projection. Artificial Intelligence 33(3):379–
412.
Kowalski, R. A., and Sergot, M. J. 1986. A Logic-based
Calculus of Events. New Generation Computing 4(1):67–
95.
McCarthy, J., and Hayes, P. J. 1969. Some Philosophi-
cal Problems from the Standpoint of Artificial Intelligence.
In Machine Intelligence, 463–502. Edinburgh University
Press.
McCarthy, J. 1963. Situations and Actions and Causal
Laws. Stanford Artificial Intelligence Project: Memo 2.
McCarthy, J. 1998. Elaboration Tolerance. In progress.
Pirri, F., and Reiter, R. 1999. Some Contributions to the
Metatheory of the Situation Calculus. Journal of the ACM
46(3):325–361.
Reiter, R. 1980. A Logic for Default Reasoning. Artificial
Intelligence 13:81–132.
Reiter, R. 1991. The Frame Problem in the Situation Cal-
culus: A Simple Solution (Sometimes) and a Completeness
Result for Goal Regression. In Artificial Intelligence and
Mathematical Theory of Computation – Papers in Honor
of John McCarthy, 359–380. Academic Press.
Sandewall, E. 1994. The Range of Applicability for some
Nonmonotonic Logics for Strict Inertia. Journal of Logic
and Computation 4:581–616.
Thielscher, M. 1999. From Situation Calculus to Flu-
ent Calculus: State Update Axioms as a Solution to the
Inferential Frame Problem. Artificial Intelligence 111(1–
2):277–299.
Thielscher, M. 2009. A Unifying Action Calculus. Artifi-
cial Intelligence. To appear.

