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Motivation Context-aware systems use data collected at runtime to recognize
predefined situations and trigger adaptations; e.g., an operating system may use
sensors to recognize that a video application is out of user focus, and then adapt
application parameters to optimize the energy consumption. Using ontology-
based data access [12, 19], the situations can be encoded into queries that are
answered over an ABox containing the sensor data. In the TBox, we can encode
background knowledge about the domain. For example, if the user has been
working with another application on a second screen for a longer period, then
we may assume that he does not need the video to be displayed in the highest
resolution.

In this paper, we focus on the lightweight DL EL. We can state static knowl-
edge about applications (VideoApplication(app1)), dynamic knowledge about the
current context (NotWatchingVideo(user1)), as well as background knowledge like

VideoApplication u ∃hasUser.NotWatchingVideo v ∃hasState.OutOfFocus,

saying that a video application whose user is currently not watching the video
is out of user focus. Given such a knowledge base, we can use the conjunctive
query (CQ) ψ(x) := ∃y.hasState(x, y)∧OutOfFocus(y) to identify applications x
that can potentially be assigned a lower priority. More complex situations typi-
cally depend also on the behavior of the environment in the past—the operating
system should not switch configurations every time the user is not watching for
one second, but only after this has been the case for a longer period.

For that reason, we investigate temporal conjunctive queries (TCQs), origi-
nally proposed in [3, 4]. They combine conjunctive queries via the operators of
the propositional linear temporal logic LTL [14,18]. We can use the TCQ(
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)
to obtain all applications that were out of user focus during the three previous
(#−) moments of observation, were prioritized by the operating system at some
point in time, and the priority has not (¬) changed since (S) then. The semantics
of TCQs is based on temporal knowledge bases (TKBs), which, in addition to the
TBox (which is assumed to hold globally, i.e., at every point in time), contains
a sequence of ABoxes A0,A1, . . . ,An, representing the data collected at specific
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points in time. We designate with n the most recent time of observation (the
current time point), at which the situation recognition is performed. We also
investigate the related temporalized formalism EL-LTL, in which axioms, i.e.,
assertions or GCIs, are combined using LTL-operators.

Related Work The axioms in a TKB do not explicitly refer to time, but are
written in a classical (atemporal) DL; only the query is temporalized. In contrast,
[1,2,13,17] extend classical DLs by temporal operators that occur within concepts
and axioms. However, most of these logics yield high reasoning complexities, even
if the underlying atemporal DL is tractable. Lower complexities are obtained by
considerably restricting either the temporal operators or the underlying DL.

Regarding temporal properties formulated over atemporal DLs, ALC-LTL,
a variant of EL-LTL over the more expressive DL ALC, was first considered
in [6]. This was the basis for introducing TCQs over ALC-TKBs in [3], which
was extended to SHQ in [4]. However, reasoning in ALC is not tractable, and
context-aware systems often need to deal with large quantities of data and adapt
fast. TCQs over several lightweight logics have been regarded in [7], but only
over a fragment of LTL without negation. In [1], the complexity of LTL over
axioms of several members of the DL-Lite family of DLs has been investigated.
However, nothing is known about TCQs over these logics.

Results We investigate the combined and data complexity of the TCQ en-
tailment problem over TKBs formulated in EL. Moreover, we determine the
complexity of satisfiability of EL-LTL-formulae, and additionally consider the
special case where only global GCIs are allowed [6]. As usual, we consider rigid
concepts and roles, whose interpretation does not change over time. In this re-
gard, we distinguish three different settings, depending on whether concepts or
roles (or both) are allowed to be rigid. Since rigid concepts can be simulated by
rigid roles [6], only three cases need to be considered: (i) no symbols are allowed
to be rigid, (ii) only rigid concepts are allowed, and (iii) both concepts and roles
can be rigid. Tables 1 and 2 summarize our results and provide a comparison
to related work. The only previously known results that directly apply here are
P-hardness of CQ entailment in EL w.r.t. data complexity [11] and PSpace-
hardness of LTL [20]. Hence, we needed to prove three additional complexity
lower bounds.

With a single exception, the complexity of TCQ entailment in EL turns out to
be lower than that in ALC (and SHQ) [4]. Regarding satisfiability in EL-LTL,
Table 2 shows that rigid symbols lead to an increase in complexity that does
not affect DL-Litekrom-LTL [1], and even matches the complexity of ALC-LTL
and SHOQ-LTL in case (ii) [6, 15]. Thus, we partially confirm and refute the
conjecture of [6] that EL-LTL is as hard as ALC-LTL. In the following, we shortly
describe some of the ideas behind them. More details can be found in [8–10].

The upper bounds are obtained by a combination of techniques that were
developed for ALC-LTL [6] and refined for TCQs over SHQ-TKBs [4], methods
for checking LTL-satisfiability [4,20,21], and algorithms for atemporal reasoning



Table 1. The complexity of TCQ entailment. All results except the one for the data
complexity of case (iii) from [4] are tight.

Data Complexity Combined Complexity
(i) (ii) (iii) (i) (ii) (iii)

EL P co-NP co-NP PSpace PSpace co-NExpTime
ALC/SHQ [4] co-NP co-NP ExpTime ExpTime co-NExpTime 2-ExpTime

Table 2. The complexity of satisfiability in LTL over DL axioms.

Global GCIs
(i) (ii) (iii) (i) (ii) (iii)

DL-Litekrom [1] PSpace PSpace PSpace PSpace PSpace PSpace
EL PSpace NExpTime NExpTime PSpace PSpace PSpace

ALC [6] ExpTime NExpTime 2-ExpTime ExpTime ExpTime 2-ExpTime

in EL [5,16]. However, considerable work was necessary to obtain tight complexity
bounds in all cases we considered. The main approach is to separate the temporal
operators from the CQs (or axioms), which leaves us to solve a variant of the
satisfiability problem for LTL (in P w.r.t. data complexity and in PSpace w.r.t.
combined complexity), as well as the following problem for the DL part.

Definition 1. Let K = 〈T , (Ai)0≤i≤n〉 be a TKB and α1, . . . , αm be CQs.1 A set
S = {X1, . . . , Xk} ⊆ 2{α1,...,αm} is r-satisfiable w.r.t. a mapping ι : {0, . . . , n} →
{1, . . . , k} and K if there are interpretations J1, . . . ,Jk and I0, . . . , In such that

– they share the same domain and interpret all rigid symbols in the same way;
– each Ji is a model of T and χi :=

∧
Xi ∧

∧
{¬αj | αj /∈ Xi}; and

– each Ii is a model of 〈T ,Ai〉 and χι(i).

Individually, the satisfiability of the conjunctions χi can be tested in P w.r.t. data
complexity and in PSpace w.r.t. combined complexity. However, the problem is
to ensure the first condition, namely that all rigid names are interpreted in the
same way by all relevant interpretations.

In case (i), this restriction is obviously irrelevant. For case (iii), one can an-
swer an exponentially large UCQ over an exponentially large atemporal knowl-
edge base instead to obtain the upper bounds. The most difficult cases were
case (ii) for the combined complexity of TCQ entailment, and the case of global
GCIs in EL-LTL, where we needed to obtain PSpace upper bounds in the pres-
ence of rigid names. For these cases, we proved that it suffices to guess additional
data of polynomial size that can be added to the knowledge bases in order to
separate the satisfiability tests in Definition 1. These tests can then be integrated
into a PSpace-Turing machine for LTL-satisfiability [20] without increasing the
complexity.
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