
COMPLEXITY THEORY
Lecture 28: Polynomial-Time Approximation Schemes

Sergei Obiedkov

Knowledge-Based Systems

TU Dresden, 27 Jan 2026

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2025)
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en


Approximation Factor

Definition 28.1: Constant-factor approximation c > 1

In minimization problems: the solution cost ≤ c · the optimal solution cost

In maximization problems: the solution cost ≥ 1
c · the optimal solution cost

Approximations in polynomial time

Vertex Cover: 2-approximation

Weighted Vertex Cover: 2-approximation

Metric TSP: 3/2-approximation

Low-Diameter Clustering: 2-approximation

General TSP: no constant-factor approximation unless P = NP

Clique: no constant-factor approximation unless P = NP

Independent Set: no constant-factor approximation unless P = NP

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 2 of 10



NP-completeness of Knapsack

Knapsack

Input: A set I := {1, . . . , n} of items,
each of integral value vi and weight wi for 1 ≤ i ≤ n;
target value t; and weight limit ℓ

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t and

∑
i∈T wi ≤ ℓ?

Theorem 8.8: Knapsack is NP-complete.

Proof:

(1) Knapsack ∈ NP: Take T to be the certificate.

(2) Knapsack is NP-hard: Subset Sum ≤p Knapsack

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 3 of 10



NP-completeness of Knapsack

Knapsack

Input: A set I := {1, . . . , n} of items,
each of integral value vi and weight wi for 1 ≤ i ≤ n;
target value t; and weight limit ℓ

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t and

∑
i∈T wi ≤ ℓ?

Theorem 8.8: Knapsack is NP-complete.

Proof:

(1) Knapsack ∈ NP: Take T to be the certificate.

(2) Knapsack is NP-hard: Subset Sum ≤p Knapsack

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 3 of 10



Knapsack: Maximization Version

Knapsack

Input: A set I := {1, . . . , n} of items,
each of integral value vi and weight wi for 1 ≤ i ≤ n;
and weight limit ℓ. Assume wi ≤ ℓ for all i.

Problem: Find T ⊆ I such that∑
i∈T wi ≤ ℓ and

∑
i∈S vi is maximal

Example 28.2:

item i 1 2 3 4

value vi 13 10 6 5

weight wi 12 3 14 9

• What is an optimal solution for ℓ = 20?

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 4 of 10



Knapsack: Maximization Version

Knapsack

Input: A set I := {1, . . . , n} of items,
each of integral value vi and weight wi for 1 ≤ i ≤ n;
and weight limit ℓ. Assume wi ≤ ℓ for all i.

Problem: Find T ⊆ I such that∑
i∈T wi ≤ ℓ and

∑
i∈S vi is maximal

Example 28.2:

item i 1 2 3 4

value vi 13 10 6 5

weight wi 12 3 14 9

• What is an optimal solution for ℓ = 20?

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 4 of 10



A Pseudo-Polynomial Algorithm for Knapsack

Knapsack can be solved in time O(nℓ) using dynamic programming

Initialisation:

• Create an (ℓ + 1) × (n + 1) matrix M

• Set M(w, 0) := 0 for all 1 ≤ w ≤ ℓ and M(0, i) := 0 for all 1 ≤ i ≤ n

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting
from the first i items with weight limit w:

For i = 0, 1, . . . , n − 1, set M(w, i + 1) as

M(w, i + 1) := max
{
M(w, i), M(w − wi+1, i) + vi+1

}
Here, if w − wi+1 < 0, we always take M(w, i).

Solution: Take the items contributing to the value in cell M(ℓ, n).

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 5 of 10



A Pseudo-Polynomial Algorithm for Knapsack

Knapsack can be solved in time O(nℓ) using dynamic programming

Initialisation:

• Create an (ℓ + 1) × (n + 1) matrix M

• Set M(w, 0) := 0 for all 1 ≤ w ≤ ℓ and M(0, i) := 0 for all 1 ≤ i ≤ n

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting
from the first i items with weight limit w:

For i = 0, 1, . . . , n − 1, set M(w, i + 1) as

M(w, i + 1) := max
{
M(w, i), M(w − wi+1, i) + vi+1

}
Here, if w − wi+1 < 0, we always take M(w, i).

Solution: Take the items contributing to the value in cell M(ℓ, n).

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 5 of 10



Another Pseudo-Polynomial Algorithm for Knapsack

Knapsack can be solved in time O(n2v∗), where v∗ = maxi∈I vi, using dynamic
programming

Initialisation:

• Create an (V + 1) × (n + 1) matrix M, where V =
∑

i∈I vi = O(nv∗)
• Set M(v, 0) := 0 for all 1 ≤ v ≤ V and M(0, i) := 0 for all 1 ≤ i ≤ n

Computation: Assign further M(v, i) to be the smallest capacity needed to obtain a value
≥ v by selecting from the first i items:

For i = 0, 1, . . . , n − 1, set M(v, i + 1) as +∞ if
∑i+1

j=1 vi < v and as

M(v, i + 1) := min
{
M(v, i), M(max{0, v − vi+1}, i) + wi+1

}
otherwise.

Solution: Select the maximal v for which M(v, n) ≤ ℓ and take the items contributing to
the value in the cell M(v, n).

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 6 of 10



Another Pseudo-Polynomial Algorithm for Knapsack

Knapsack can be solved in time O(n2v∗), where v∗ = maxi∈I vi, using dynamic
programming

Initialisation:

• Create an (V + 1) × (n + 1) matrix M, where V =
∑

i∈I vi = O(nv∗)
• Set M(v, 0) := 0 for all 1 ≤ v ≤ V and M(0, i) := 0 for all 1 ≤ i ≤ n

Computation: Assign further M(v, i) to be the smallest capacity needed to obtain a value
≥ v by selecting from the first i items:

For i = 0, 1, . . . , n − 1, set M(v, i + 1) as +∞ if
∑i+1

j=1 vi < v and as

M(v, i + 1) := min
{
M(v, i), M(max{0, v − vi+1}, i) + wi+1

}
otherwise.

Solution: Select the maximal v for which M(v, n) ≤ ℓ and take the items contributing to
the value in the cell M(v, n).

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 6 of 10



Approximate Algorithm for Knapsack

Goal: Transform the pseudo-polynomial exact algorithm into a polynomial approxi-
mate algorithm.

• For 0 < ε ≤ 1, we want to obtain a (1 + ε)-approximation with an algorithm whose
running time polynomially depends on the input size and on 1/ε.

Idea: Use fewer values for rows.
• For example, choose some b and keep only every bth possible value.
• Alternatively, replace all vi by ⌈vi/b⌉ and run the algorithm as is.
• If b = εv∗/2n, then the algorithm runs in time

O
(

n2v∗

b

)
= O

(
n2v∗ · 2n
εv∗

)
= O

(
1
ε

n3
)
.

• The solution returned by the algorithm is feasible: it has weight ≤ ℓ.
• How valuable is it?

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 7 of 10



Approximate Algorithm for Knapsack

Goal: Transform the pseudo-polynomial exact algorithm into a polynomial approxi-
mate algorithm.

• For 0 < ε ≤ 1, we want to obtain a (1 + ε)-approximation with an algorithm whose
running time polynomially depends on the input size and on 1/ε.

Idea: Use fewer values for rows.

• For example, choose some b and keep only every bth possible value.
• Alternatively, replace all vi by ⌈vi/b⌉ and run the algorithm as is.
• If b = εv∗/2n, then the algorithm runs in time

O
(

n2v∗

b

)
= O

(
n2v∗ · 2n
εv∗

)
= O

(
1
ε

n3
)
.

• The solution returned by the algorithm is feasible: it has weight ≤ ℓ.
• How valuable is it?

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 7 of 10



Approximate Algorithm for Knapsack

Goal: Transform the pseudo-polynomial exact algorithm into a polynomial approxi-
mate algorithm.

• For 0 < ε ≤ 1, we want to obtain a (1 + ε)-approximation with an algorithm whose
running time polynomially depends on the input size and on 1/ε.

Idea: Use fewer values for rows.
• For example, choose some b and keep only every bth possible value.

• Alternatively, replace all vi by ⌈vi/b⌉ and run the algorithm as is.
• If b = εv∗/2n, then the algorithm runs in time

O
(

n2v∗

b

)
= O

(
n2v∗ · 2n
εv∗

)
= O

(
1
ε

n3
)
.

• The solution returned by the algorithm is feasible: it has weight ≤ ℓ.
• How valuable is it?

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 7 of 10



Approximate Algorithm for Knapsack

Goal: Transform the pseudo-polynomial exact algorithm into a polynomial approxi-
mate algorithm.

• For 0 < ε ≤ 1, we want to obtain a (1 + ε)-approximation with an algorithm whose
running time polynomially depends on the input size and on 1/ε.

Idea: Use fewer values for rows.
• For example, choose some b and keep only every bth possible value.
• Alternatively, replace all vi by ⌈vi/b⌉ and run the algorithm as is.

• If b = εv∗/2n, then the algorithm runs in time

O
(

n2v∗

b

)
= O

(
n2v∗ · 2n
εv∗

)
= O

(
1
ε

n3
)
.

• The solution returned by the algorithm is feasible: it has weight ≤ ℓ.
• How valuable is it?

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 7 of 10



Approximate Algorithm for Knapsack

Goal: Transform the pseudo-polynomial exact algorithm into a polynomial approxi-
mate algorithm.

• For 0 < ε ≤ 1, we want to obtain a (1 + ε)-approximation with an algorithm whose
running time polynomially depends on the input size and on 1/ε.

Idea: Use fewer values for rows.
• For example, choose some b and keep only every bth possible value.
• Alternatively, replace all vi by ⌈vi/b⌉ and run the algorithm as is.
• If b = εv∗/2n, then the algorithm runs in time

O
(

n2v∗

b

)
= O

(
n2v∗ · 2n
εv∗

)
= O

(
1
ε

n3
)
.

• The solution returned by the algorithm is feasible: it has weight ≤ ℓ.
• How valuable is it?

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 7 of 10



Approximate Algorithm for Knapsack

Goal: Transform the pseudo-polynomial exact algorithm into a polynomial approxi-
mate algorithm.

• For 0 < ε ≤ 1, we want to obtain a (1 + ε)-approximation with an algorithm whose
running time polynomially depends on the input size and on 1/ε.

Idea: Use fewer values for rows.
• For example, choose some b and keep only every bth possible value.
• Alternatively, replace all vi by ⌈vi/b⌉ and run the algorithm as is.
• If b = εv∗/2n, then the algorithm runs in time

O
(

n2v∗

b

)
= O

(
n2v∗ · 2n
εv∗

)
= O

(
1
ε

n3
)
.

• The solution returned by the algorithm is feasible: it has weight ≤ ℓ.
• How valuable is it?

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 7 of 10



Approximate Algorithm for Knapsack

Approximate algorithm: Replace every vi by v̂i = ⌈vi/b⌉, where b = εv∗/2n, and
run the second pseudo-polynomial algorithm for Knapsack.

Theorem 28.3: The approximate algorithm finds a (1 + ε)-approximate solution.

Proof: Let S ⊆ I be our solution and let S∗ ⊆ I be an optimal solution.∑
i∈S∗

v̂i ≤
∑
i∈S

v̂i since S is optimal for the modified values

∑
i∈S∗

vi ≤
∑
i∈S∗

v̂ib ≤
∑
i∈S

v̂ib ≤
∑
i∈S

(vi + b) ≤ nb +
∑
i∈S

vi

Assume vj = v∗. Then, vj = 2nb/ε = v̂jb and
∑

i∈S v̂ib ≥ v̂jb = vj = 2nb/ε.∑
i∈S

vi ≥
∑
i∈S

v̂ib − nb ≥ 2nb/ε − nb = (2/ε − 1)nb ⇒ nb ≤
∑

i∈S vi

2/ε − 1
≤

∑
i∈S vi

1/ε∑
i∈S∗

vi ≤ nb +
∑
i∈S

vi ≤ ε
∑
i∈S

vi +
∑
i∈S

vi = (1 + ε)
∑
i∈S

vi

□

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 8 of 10



Approximate Algorithm for Knapsack

Approximate algorithm: Replace every vi by v̂i = ⌈vi/b⌉, where b = εv∗/2n, and
run the second pseudo-polynomial algorithm for Knapsack.

Theorem 28.3: The approximate algorithm finds a (1 + ε)-approximate solution.

Proof: Let S ⊆ I be our solution and let S∗ ⊆ I be an optimal solution.∑
i∈S∗

v̂i ≤
∑
i∈S

v̂i since S is optimal for the modified values

∑
i∈S∗

vi ≤
∑
i∈S∗

v̂ib ≤
∑
i∈S

v̂ib ≤
∑
i∈S

(vi + b) ≤ nb +
∑
i∈S

vi

Assume vj = v∗. Then, vj = 2nb/ε = v̂jb and
∑

i∈S v̂ib ≥ v̂jb = vj = 2nb/ε.∑
i∈S

vi ≥
∑
i∈S

v̂ib − nb ≥ 2nb/ε − nb = (2/ε − 1)nb ⇒ nb ≤
∑

i∈S vi

2/ε − 1
≤

∑
i∈S vi

1/ε∑
i∈S∗

vi ≤ nb +
∑
i∈S

vi ≤ ε
∑
i∈S

vi +
∑
i∈S

vi = (1 + ε)
∑
i∈S

vi

□

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 8 of 10



Approximate Algorithm for Knapsack

Approximate algorithm: Replace every vi by v̂i = ⌈vi/b⌉, where b = εv∗/2n, and
run the second pseudo-polynomial algorithm for Knapsack.

Theorem 28.3: The approximate algorithm finds a (1 + ε)-approximate solution.

Proof: Let S ⊆ I be our solution and let S∗ ⊆ I be an optimal solution.∑
i∈S∗

v̂i ≤
∑
i∈S

v̂i since S is optimal for the modified values

∑
i∈S∗

vi ≤
∑
i∈S∗

v̂ib ≤
∑
i∈S

v̂ib ≤
∑
i∈S

(vi + b) ≤ nb +
∑
i∈S

vi

Assume vj = v∗. Then, vj = 2nb/ε = v̂jb and
∑

i∈S v̂ib ≥ v̂jb = vj = 2nb/ε.∑
i∈S

vi ≥
∑
i∈S

v̂ib − nb ≥ 2nb/ε − nb = (2/ε − 1)nb ⇒ nb ≤
∑

i∈S vi

2/ε − 1
≤

∑
i∈S vi

1/ε∑
i∈S∗

vi ≤ nb +
∑
i∈S

vi ≤ ε
∑
i∈S

vi +
∑
i∈S

vi = (1 + ε)
∑
i∈S

vi

□

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 8 of 10



Approximate Algorithm for Knapsack

Approximate algorithm: Replace every vi by v̂i = ⌈vi/b⌉, where b = εv∗/2n, and
run the second pseudo-polynomial algorithm for Knapsack.

Theorem 28.3: The approximate algorithm finds a (1 + ε)-approximate solution.

Proof: Let S ⊆ I be our solution and let S∗ ⊆ I be an optimal solution.∑
i∈S∗

v̂i ≤
∑
i∈S

v̂i since S is optimal for the modified values

∑
i∈S∗

vi ≤
∑
i∈S∗

v̂ib ≤
∑
i∈S

v̂ib ≤
∑
i∈S

(vi + b) ≤ nb +
∑
i∈S

vi

Assume vj = v∗. Then, vj = 2nb/ε = v̂jb and
∑

i∈S v̂ib ≥ v̂jb = vj = 2nb/ε.

∑
i∈S

vi ≥
∑
i∈S

v̂ib − nb ≥ 2nb/ε − nb = (2/ε − 1)nb ⇒ nb ≤
∑

i∈S vi

2/ε − 1
≤

∑
i∈S vi

1/ε∑
i∈S∗

vi ≤ nb +
∑
i∈S

vi ≤ ε
∑
i∈S

vi +
∑
i∈S

vi = (1 + ε)
∑
i∈S

vi

□

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 8 of 10



Approximate Algorithm for Knapsack

Approximate algorithm: Replace every vi by v̂i = ⌈vi/b⌉, where b = εv∗/2n, and
run the second pseudo-polynomial algorithm for Knapsack.

Theorem 28.3: The approximate algorithm finds a (1 + ε)-approximate solution.

Proof: Let S ⊆ I be our solution and let S∗ ⊆ I be an optimal solution.∑
i∈S∗

v̂i ≤
∑
i∈S

v̂i since S is optimal for the modified values

∑
i∈S∗

vi ≤
∑
i∈S∗

v̂ib ≤
∑
i∈S

v̂ib ≤
∑
i∈S

(vi + b) ≤ nb +
∑
i∈S

vi

Assume vj = v∗. Then, vj = 2nb/ε = v̂jb and
∑

i∈S v̂ib ≥ v̂jb = vj = 2nb/ε.∑
i∈S

vi ≥
∑
i∈S

v̂ib − nb ≥ 2nb/ε − nb = (2/ε − 1)nb ⇒ nb ≤
∑

i∈S vi

2/ε − 1
≤

∑
i∈S vi

1/ε

∑
i∈S∗

vi ≤ nb +
∑
i∈S

vi ≤ ε
∑
i∈S

vi +
∑
i∈S

vi = (1 + ε)
∑
i∈S

vi

□

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 8 of 10



Approximate Algorithm for Knapsack

Approximate algorithm: Replace every vi by v̂i = ⌈vi/b⌉, where b = εv∗/2n, and
run the second pseudo-polynomial algorithm for Knapsack.

Theorem 28.3: The approximate algorithm finds a (1 + ε)-approximate solution.

Proof: Let S ⊆ I be our solution and let S∗ ⊆ I be an optimal solution.∑
i∈S∗

v̂i ≤
∑
i∈S

v̂i since S is optimal for the modified values

∑
i∈S∗

vi ≤
∑
i∈S∗

v̂ib ≤
∑
i∈S

v̂ib ≤
∑
i∈S

(vi + b) ≤ nb +
∑
i∈S

vi

Assume vj = v∗. Then, vj = 2nb/ε = v̂jb and
∑

i∈S v̂ib ≥ v̂jb = vj = 2nb/ε.∑
i∈S

vi ≥
∑
i∈S

v̂ib − nb ≥ 2nb/ε − nb = (2/ε − 1)nb ⇒ nb ≤
∑

i∈S vi

2/ε − 1
≤

∑
i∈S vi

1/ε∑
i∈S∗

vi ≤ nb +
∑
i∈S

vi ≤ ε
∑
i∈S

vi +
∑
i∈S

vi = (1 + ε)
∑
i∈S

vi

□
Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 8 of 10



Polynomial-Time Approximation Scheme

Definition 28.4:

• An algorithm A is an approximation scheme for an optimization problem Π if,
on input (I, ε), where I is an instance of Π and ε > 0, it outputs a solution
that is a (1 + ε)-approximation of an optimal solution for I.

• If, for every fixed ε, the running time of A is bounded by a polynomial in the
size of I, then A is a polynomial-time approximation scheme (PTAS) for Π.

• If the running time of A is bounded by a polynomial in the size of I and the
value of 1/ε, then A is a fully polynomial-time approximation scheme
(FPTAS) for Π.

• We have shown that Knapsack has an FPTAS.

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 9 of 10



Summary and Outlook

Some NP-hard problems admit polynomial-time constant-factor approximation
algorithms.

Some others admit a PTAS, making it possible to get as close to an optimal solution as
you want in time that depends polynomially on the size of the input but arbitrarily on the
desired approximation factor.

For some problems, it is possible to obtain an FPTAS, whose running time depends
polynomially on both the input size and the approximation factor.

What’s next?

• Parameterized complexity

• Examinations

Sergei Obiedkov; 27 Jan 2026 Complexity Theory slide 10 of 10


	Polynomial-Time Approximation Schemes

