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Previously . . .
• PROLOG-based logic programming focuses on theorem proving.
• LP based on stable model semantics focuses onmodel generation.
• The stable model of a positive program is its least (Herbrand) model.
• The stable models of a normal logic program P are those sets X for which X isthe stable model of the positive program PX (the reduct).
• The well-supportedmodel semantics equals stablemodel semantics.
Example
Logic program {p← ∼q, q← ∼p} has stable models {p} and {q}.
Remember
A stable model is a supported model in which every true atom has well-foundedsupport.
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Overview

Language ExtensionsIntegrity ConstraintsChoice RulesCardinality RulesConditional Literals
ModellingWorkflowA Case Study: Graph ColouringHistory
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Language Extensions
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Basic Language Extensions
Fact
The expressiveness and/or usability of a language can be enhanced by addingnew language constructs.
Questions
• What is the syntax of the new language construct?
• What is the semantics of the new language construct?
• How to implement the new language construct?
Answers
• A way of providing semantics is to furnish a translation removing the newconstructs. (⇝ New constructs are merely “syntactic sugar”.)
• This translation might also be used for implementing the extension.

ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) • Hannes Strass • 5/39

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)


Integrity Constraint
Purpose: Eliminate unwanted solution candidates
Definition
An integrity constraint is of the form

← a1, . . . ,am,∼am+1, . . . ,∼an
where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n.
Example: :- edge(3,7), colour(3,red), colour(7,red).

Example Programs
{ a← ∼b, b← ∼a } {a} {b}
{ a← ∼b, b← ∼a } ∪ { ← a } {b}
{ a← ∼b, b← ∼a } ∪ { ← ∼a } {a}
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Embedding in Normal Rules
Translation
An integrity constraint of the form

← a1, . . . ,am,∼am+1, . . . ,∼an
can be translated into the normal rule

x ← a1, . . . ,am,∼am+1, . . . ,∼an,∼x
where x is a new symbol.
Example Programs

{ a← ∼b, b← ∼a } {a} {b}
{ a← ∼b, b← ∼a } ∪ { x ← a,∼x } {b}
{ a← ∼b, b← ∼a } ∪ { x ← ∼a,∼x } {a}
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Choice Rule
Purpose: Provide choices over subsets of atoms
Definition
A choice rule is of the form

{a1, . . . ,am} ← am+1, . . . ,an,∼an+1, . . . ,∼ao
where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning: If the body is satisfied by the stable model,any subset of {a1, . . . ,am} can be included in the stable model.
Example: { buy(pizza); buy(wine); buy(corn) } :- at(grocery).

Example Program
{ {a} ← b, b← } {b} {a,b}
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Embedding in Normal Rules
Translation
A choice rule of the form

{a1, . . . ,am} ← am+1, . . . ,an,∼an+1, . . . ,∼ao
can be translated into 2m + 1 normal rules

x ← am+1, . . . ,an,∼an+1, . . . ,∼ao
a1 ← x,∼x1 . . . am ← x,∼xm
x1 ← ∼a1 . . . xm ← ∼am

by introducing new atoms x, x1, . . . , xm.
Example Program

{ {a} ← b, b← } {b} {a,b} x ← b
a ← x,∼x1
x1 ← ∼a

∪ { b← } {b, x, x1} {a,b, x}
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Cardinality Rule
Purpose: Control (lower) cardinality of subsets of literals
Definition
A cardinality rule is the form

a0 ← l { a1, . . . ,am,∼am+1, . . . ,∼an }
where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;and l is a non-negative integer called lower bound.
Informal meaning: The head belongs to the stable model, if at least
l positive/negative body literals are in/excluded in the stable model.
Example: pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

Example Program
{ a← 1 {b, c}, b← } {a,b}

ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) • Hannes Strass • 10/39

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)


Embedding in Normal Rules
Translation
A cardinality rule of the form

a0 ← l { a1, . . . ,am,∼am+1, . . . ,∼an }
is translated into the normal rule a0 ← x(1, l) and for 0 ≤ k ≤ l the rules

x(i, k+1) ← x(i + 1, k),ai
x(i, k) ← x(i + 1, k) for 1 ≤ i ≤ m

x(j, k+1) ← x(j + 1, k),∼aj
x(j, k) ← x(j + 1, k) form + 1 ≤ j ≤ n

x(n + 1, 0) ←

Idea: The atom x(i, j) represents that at least j of the literals having an equal orgreater index than i are in a stable model.
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An Example
• Program { a← 1 {b, c}, b← } has the stable model {a,b}.
• Translating the cardinality rule yields the rules

a ← x(1, 1)
x(1, 2) ← x(2, 1),b
x(1, 1) ← x(2, 1)
x(2, 2) ← x(3, 1), c
x(2, 1) ← x(3, 1)
x(1, 1) ← x(2, 0),b
x(1, 0) ← x(2, 0)
x(2, 1) ← x(3, 0), c
x(2, 0) ← x(3, 0)
x(3, 0) ←

b ←

having stable model {a,b, x(3, 0), x(2, 0), x(1, 0), x(1, 1)}.
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Cardinality Rules with Upper Bounds
Translation
A rule of the form

a0 ← l { a1, . . . ,am,∼am+1, . . . ,∼an } u
where 0 ≤ m ≤ n, each ai is an atom for 1 ≤ i ≤ n,and l and u are non-negative integers
is translated into

a0 ← x,∼y
x ← l { a1, . . . ,am,∼am+1, . . . ,∼an }
y ← u+1 { a1, . . . ,am,∼am+1, . . . ,∼an }

where x and y are new symbols.
The expression in the body of the cardinality rule is referred to as a cardinalityconstraint with lower and upper bound l and u.
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Cardinality Constraints as Heads
Translation
A rule of the form

l {a1, . . . ,am,∼am+1, . . . ,∼an} u← an+1, . . . ,ao,∼ao+1, . . . ,∼ap
where 0 ≤ m ≤ n ≤ o ≤ p, each ai is an atom for 1 ≤ i ≤ p,and l and u are non-negative integers
is translated into

x ← an+1, . . . ,ao,∼ao+1, . . . ,∼ap
{a1, . . . ,am} ← x

y ← l {a1, . . . ,am, ,∼am+1, . . . ,∼an} u
← x,∼y

where x and y are new symbols.
Example: 1 {colour(2,red); colour(2,green); colour(2,blue)} 1.
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Conditional Literals
Definition
A conditional literal is of the form

K : L1, . . . , Lnwhere K and Li are literals for 0 ≤ i ≤ n.
Informal meaning: A (non-ground) conditional literal can be regarded as thecollection of elements in the set {K | L1, . . . , Ln}.Note: The expansion of this collection is context dependent.
Example
Assume ‘p(1..3). q(2).’, then ‘r(X):p(X),notq(X)’ yields r(1) and r(3).
The constraint :- r(X) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.

is instantiated to :- r(1), r(3), 1 { r(1); r(3) }.
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Quiz: Programs with New Constructs

Quiz
Consider the following answer set program P: . . .
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Modelling
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Modelling

Problem

Logic Program

Solution

Stable Models?
-

6

Modelling Interpreting

Solving
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Guiding principle

Elaboration Tolerance (McCarthy, 1998)
“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform Problem Representation
For solving a problem instance I of a problem class C,
• I is represented as a set of facts PI,
• C is represented as a set of rules PC, and
• PC can be used to solve all problem instances in C
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ASP workflow

Problem

LogicProgram Grounder Solver StableModels

Solution

- - -

?

6

Modelling Interpreting

Solving
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ASP workflow: Problem

Problem

LogicProgram Grounder Solver StableModels
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A Case Study: Graph Colouring

Problem instance:
A graph consisting of nodes and edges:
• facts using predicates node/1 and edge/2

• facts using predicate colour/1
Problem class:
Assign each node one colour such that no two nodesconnected by an edge have the same colour.
In other words:
1. Each node has one colour
2. Two connected nodes must not have the same colour

1 2

3

4

5
6
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ASP Workflow: Problem Representation

Problem

Logic
Program Grounder Solver StableModels

Solution

- - -

?
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Graph Colouring
node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

colour(r). colour(b). colour(g).



Problem
instance graph.lp

1 { assign(N,C) : colour(C) } 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

}
Problem
encoding colour.lp
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ASP Workflow: Grounding

Problem

LogicProgram Grounder Solver StableModels

Solution

- - -

?

6

Modelling Interpreting

Solving
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Graph Colouring: Grounding
$ clingo –text graph.lp colour.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).
edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).
edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

colour(r). colour(b). colour(g).

1{assign(1,r);assign(1,b);assign(1,g)}1. 1{assign(4,r);assign(4,b);assign(4,g)}1.
1{assign(2,r);assign(2,b);assign(2,g)}1. 1{assign(5,r);assign(5,b);assign(5,g)}1.
1{assign(3,r);assign(3,b);assign(3,g)}1. 1{assign(6,r);assign(6,b);assign(6,g)}1.

:- assign(1,r),assign(2,r). :- assign(2,r),assign(4,r). [...] :- assign(6,r),assign(2,r).
:- assign(1,b),assign(2,b). :- assign(2,b),assign(4,b). :- assign(6,b),assign(2,b).
:- assign(1,g),assign(2,g). :- assign(2,g),assign(4,g). :- assign(6,g),assign(2,g).
:- assign(1,r),assign(3,r). :- assign(2,r),assign(5,r). :- assign(6,r),assign(3,r).
:- assign(1,b),assign(3,b). :- assign(2,b),assign(5,b). :- assign(6,b),assign(3,b).
:- assign(1,g),assign(3,g). :- assign(2,g),assign(5,g). :- assign(6,g),assign(3,g).
:- assign(1,r),assign(4,r). :- assign(2,r),assign(6,r). :- assign(6,r),assign(5,r).
:- assign(1,b),assign(4,b). :- assign(2,b),assign(6,b). :- assign(6,b),assign(5,b).
:- assign(1,g),assign(4,g). :- assign(2,g),assign(6,g). :- assign(6,g),assign(5,g).
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ASP Workflow: Solving

Problem

LogicProgram Grounder Solver StableModels

Solution

- - -

?

6

Modelling Interpreting

Solving
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Graph Colouring: Solving
$ clingo graph.lp colour.lp 0

clasp version 2.1.0
Reading from stdin
Solving...
Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)
Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)
Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)
Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)
Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)
Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)
SATISFIABLE

Models : 6
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
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ASP Workflow: Stable models

Problem

LogicProgram Grounder Solver Stable
Models

Solution

- - -

?

6

Modelling Interpreting

Solving
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A Colouring
Answer: 6
node(1) [...] \
assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

1 2

3

4

5

6
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ASP Workflow: Solutions

Problem

LogicProgram Grounder Solver StableModels

Solution

- - -

?

6

Modelling Interpreting

Solving

ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) • Hannes Strass • 32/39

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)


Basic Methodology

Methodology
Generate and Test (or: Guess and Check)
Generator Generate potential stable model candidates(typically through non-deterministic constructs)

Tester Eliminate invalid candidates(typically through integrity constraints)
Nutshell
Logic program = Data + Generator + Tester ( + Optimizer)
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Graph Colouring
node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

colour(r). colour(b). colour(g).


Data

1 {assign(N,C) : colour(C) } 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Generator

Tester
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History (1)
• Early 1970s: definite LPs with unique least models (SLD resolution)
• Default negation: operational semantics only (SLDNF resolution)
• 1978 (Clark): Program completion for normal LPs
• 1980 (Reiter): Default Logic for non-monotonic reasoning(one default theory can have zero or more extensions)
• 1987 (Bidoit & Froidevaux): Semantics for normal LPs via translation todefault logic (effectively first definition of stable model semantics)
• 1988 (Gelfond & Lifschitz): Stable Model semantics
• 1995 (Marek & Truszczyński): DeReS (Default Reasoning System)(modelling search problems via default logic; with solver implementation)
• 1996 (Niemelä & Simons): first ASP grounder (lparse) and solver (smodels)
• 1999 (Marek & Truszczyński; Niemelä): ASP paradigm
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History (2)
Michael Gelfond (b. 1945)
• Russian-American mathematician/computer scientist
• PhD in Mathematics from Steklov Institute (1974)
• emigrated to the US in 1978
• stable model semantics, KR languages
• AAAI Fellow (C)
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Vladimir Lifschitz (b. 1947)
• Russian-American mathematician/computer scientist
• PhD in Mathematics from Steklov Institute (1971)
• emigrated to the US in 1976
• stable model semantics, KR languages
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History (3)
Victor Witold (Witek) Marek (b. 1943)
• Polish-American mathematician/computer scientist
• PhD from Warsaw University (1968)
• Non-monotonic reasoning, ASP paradigm
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Mirosław (Mirek) Truszczyński (b. 1950s?)
• Polish-American mathematician/computer scientist
• PhD from Warsaw University of Technology (1980)
• Non-monotonic reasoning, ASP paradigm
• AAAI Fellow (2013), Dov Gabbay Prize (2023)
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History (4)
Ilkka Niemelä (b. 1961)
• Finnish computer scientist
• PhD from Helsinki University of Technology (1993)
• Non-monotonic reasoning, ASP paradigm
• co-developed (with Patrik Simons) the first ASPgrounder (lparse) and solver (smodels)

(C)
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• Marek & Truszczyński (1999):
Stable models and an alternative logic programming paradigm

• Niemelä (1999):
Logic programming with stable model semantics as a constraint programming
paradigm
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Conclusion
Summary
• The language of normal logic programs can be extended by constructs:

– Integrity constraints for eliminating unwanted solution candidates– Choice rules for choosing subsets of atoms– Cardinality rules for counting certain present/absent atoms– Conditional literals for improving conciseness
• All of them can be translated back into normal logic program rules.
• The modelling methodology of ASP is generate and test:

Generate solution candidates & Eliminate infeasible ones
Suggested action points:
• Model solving Sudoku puzzles using a ternary predicate num(i, j, k) expressingthat the field in row i and column j of the Sudoku grid contains the number k(i, j, k ∈ {1, . . . , 9}). Initial hints are given by num/3 facts.
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