Dresden P Computational
o University of G.EI’ Logicl::) ~ Group
Technology ¢
Hannes Strass (based on slides by Martin Gebser & Torsten Schaub (CC-BY 3.0))

Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

ASP: Language Extensions and Modelling

Lecture 11, 5th Jan 2026 // Foundations of Logic Programming, WS 2025/26

https://github.com/potassco-asp-course/course
https://creativecommons.org/licenses/by/3.0/deed.en_US
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Previously ...

* PROLOG-based logic programming focuses on theorem proving.
* LP based on stable model semantics focuses on model generation.
+ The stable model of a positive program is its least (Herbrand) model.

+ The stable models of a normal logic program P are those sets X for which X is
the stable model of the positive program PX (the reduct).

* The well-supported model semantics equals stable model semantics.

Example

Logic program {p « ~q, g « ~p} has stable models {p} and {q}.

Remember

A stable model is a supported model in which every true atom has well-founded
support.

"Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass + 2/39 éﬁ; Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Overview

Language Extensions
Integrity Constraints
Choice Rules
Cardinality Rules
Conditional Literals

Modelling
Workflow
A Case Study: Graph Colouring
History

& "Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass *+ 3/39 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Language Extensions

Ic ,Computaﬁonul
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass *+ 4/39 ‘ﬂ?) Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Basic Language Extensions

Fact

The expressiveness and/or usability of a language can be enhanced by adding
new language constructs.

Questions

+ What is the syntax of the new language construct?
+ What is the semantics of the new language construct?
* How to implement the new language construct?

Answers

+ A way of providing semantics is to furnish a translation removing the new
constructs. (~» New constructs are merely “syntactic sugar”.)

+ This translation might also be used for implementing the extension.

Ic "Computaiionul
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass *+ 5/39 ‘ﬂ% Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Integrity Constraint

Purpose: Eliminate unwanted solution candidates

Definition
An integrity constraint is of the form

‘_a’lro--:amr"'amﬂro--:"‘an

where 0 < m < nand each ajis anatomfor1 <i<n.

Example: :- edge(3,7), colour(3,red), colour(7,red).

Example Programs

{a«~b, b ~a} {a} {b}
{a—~b, be—~a}U{—a} {b}
{a—~b, be—~a}lU{«~a} {a}

 Computational
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 6/39 éﬁ; Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Embedding in Normal Rules

Translation
An integrity constraint of the form

<~ d,...,0m, ~Om+1,...,~0np
can be translated into the normal rule
X< Q1,...,0m, ~Am+1, . .., ~0n, ~X
where x is a new symbol.

Example Programs

{a—~b, be—~a} {a} {b}
{a«—~b, be—~a}lU{x<a~x} {b}
{a«—~b, be—~a}U{x« ~a,~x} {a}

"Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass *+ 7/39 é@i‘p Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Choice Rule

Purpose: Provide choices over subsets of atoms

Definition
A choice rule is of the form

{ahlam} — am+1,---,anrNan+1:---rNao
where 0 < m < n <oandeachag;isanatomfor1<i<o

Informal meaning: If the body is satisfied by the stable model,
any subset of {a1,...,am} can be included in the stable model.

Example: { buy(pizza); buy(wine); buy(corn) } :- at(grocery).

Example Program

{{a} < b, b} {b} {a,b}
 Computational
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass *+ 8/39 éﬁ; Logig.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Embedding in Normal Rules

Translation
A choice rule of the form

{a1,....,0m} < Qms1,...,Qn, ~0ps1, ..., ~0o
can be translated into 2m + 1 normal rules

X < am+1,~-:an,Nan+1:---,Nao
a1 — X,~X1 ... Qm <« X,~Xm
X1 <« ~0 ... Xm <« ~Qm

by introducing new atoms x, X1, ..., Xm.

Example Program
{{a} =b, b} {6} {a b}

~X1 pU{ b} {b,x,x1} {a,b,x}

 Computational
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 9/39 é@i‘) Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Cardinality Rule

Purpose: Control (lower) cardinality of subsets of literals

Definition
A cardinality rule is the form
do < I{ar,...,0m, ~Ume1, ..., ~0n }

where 0 < m < nand each g;is an atomfor1 <i<n;
and /is a non-negative integer called lower bound.

Informal meaning: The head belongs to the stable model, if at least
| positive/negative body literals are in/excluded in the stable model.

Example: pass(c42) :- 2 { pass(al); pass(a2); pass(a3) }.

Example Program

{a<1{b,c}, b} {a, b}

 Computational
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 10/39 éﬁ; Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Embedding in Normal Rules

Translation

A cardinality rule of the form
ag <1 {a1,....0m, ~Am+1,...,~0n }
is translated into the normal rule ag < x(1,/) and for 0 < k </ the rules

x(i, k+1) «— x(i+1,k),q
x(i, k) <« x(i+1,k) for1 <i<m
X(j, k+1) — x(j+1,k), ~q;
x(, k) <« x(j+1,k) form+1<j<n
x(n+1,0) <«

Idea: The atom x(/,j) represents that at least j of the literals having an equal or
greater index than / are in a stable model.

& "Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 11/39 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

An Example

* Program {a < 1{b,c}, b < } hasthe stable model {a, b}.

+ Translating the cardinality rule yields the rules

a
x(1,2)
x(1,1)
x(2,2)
x(2,1)
x(1,1)
x(1,0)
x(2,1)
Xx(2,0)
x(3,0)

rTrrrTTTTIOTT

x(1,1)
x(2,1), b
x(2,1)
Xx(3,1),¢
x(3, 1)
x(2,0),b
x(2,0)
Xx(3,0), ¢
X(3,0)

b «

having stable model {a, b, x(3, 0), x(2, 0), x(1, 0), x(1, 1)}.

@EE?Computaﬁoncl

CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 12/39 &=Y Logic . Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Cardinality Rules with Upper Bounds

Translation

A rule of the form
ao<—!{a1,....0m ~0m+1,...,~0p } U
where 0 < m < n, each g; is an atom for 1 <j < n,
and / and u are non-negative integers
is translated into

Qo < X~y
x « I{oy,...,0m ~0ms1, ..., ~0n }
y <« utlt{aq,....0m ~Qm+1,...,~0p }

where x and y are new symbols.

The expression in the body of the cardinality rule is referred to as a cardinality
constraint with lower and upper bound / and u.

& "Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 13/39 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Cardinality Constraints as Heads

Translation

A rule of the form

[{a1,....0m, ~Qm+1, ..., ~0n} U < Ap+1, ..., 0o, ~0or1, - .., ~0p
where0 <m<n<o<p,eachag;isanatomfor1<i<p,
and / and u are non-negative integers

is translated into

X <« 0n+1,...,GO,NGO+1,...,~GP
{a1,....0m} < x
y « o, ...,am,, ~Qm+1, ..., ~0pn} U
«— X,N_y

where x and y are new symbols.

Example: 1 {colour(2,red); colour(2,green); colour(2,blue)} 1.

& "Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 14/39 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Conditional Literals

A conditional literal is of the form
K:Lq, ... Lp

where K and L; are literals for 0 < i < n.

Informal meaning: A (non-ground) conditional literal can be regarded as the
collection of elements in the set {K | L1, ...,Ln}.

Note: The expansion of this collection is context dependent.

Example

Assume ‘p(1..3). q(2)., then‘r(X) : p(X), notq(X)"yields r(1) and r(3).
The constraint :- r(x) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.
is instantiated to :- r(1), r(3), 1 { r(1); r(3) }.

 Computational
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 15/39 éﬁ; Logig.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Quiz: Programs with New Constructs

Consider the following answer set program P: ...

 Computational
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 16/39 fﬁ?’ Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Modelling

A ;)) e tational
L TUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 17/39 é@i‘) Lé’;?f?.%&'ﬂ;

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Modelling

Problem Solution
Modelling Interpreting
Logic Program Stable Models
Solving

& "Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 18/39 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Guiding principle

Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform Problem Representation

For solving a problem instance I of a problem class C,
+ | isrepresented as a set of facts P,

« Cisrepresented as a set of rules P¢, and

* Pc can be used to solve all problem instances in C

"Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 19/39 éﬁ; Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP workflow

Problem

Grounder Solver
Program
Solving
OTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) * Hannes Strass *

Solution

Interpreting

Stable

Models

& "Computaﬁoncl
21139 ‘ﬁ" Logic + Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP workflow: Problem

Problem

Program Grounder Solver
Solving
OTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) * Hannes Strass *

Solution

Interpreting

Stable

Models

& "Computaﬁoncl
22/39 &EI' Logic + Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

A Case Study: Graph Colouring

A graph consisting of nodes and edges:
+ facts using predicates node/1 and edge/2
+ facts using predicate colour/1

Assign each node one colour such that no two nodes
connected by an edge have the same colour.

In other words:
1. Each node has one colour
2. Two connected nodes must not have the same colour

Ic "Compukﬂionul
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 23/39 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP Workflow: Problem Representation

¢ TUD

Problem

Modelling

Logic
Program

ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) * Hannes Strass *

’%

Grounder

Solver

Solution

Solving

Stable
Models

24/39

Interpreting

@-?Computaﬁoncl

Gﬁl" Logic -~ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Graph Colouring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). ! PrOblem
edge(4,1). edge(4,2). Instance graph.1p
edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

colour(r). colour(b). colour(g).)

1 { assign(N,C) : colour(C) } 1 :- node(N). } Problem

:- edge(N,M), assign(N,C), assign(M,C). encoding colour.1lp

@-"Compukﬂhoncl

CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 25/39 ‘I.J Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP Workflow: Grounding

¢ TUD

Problem

Modelling

Logic
Program

Solver

ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) * Hannes Strass *

Solving

Solution
Interpreting
Stable
Models
, .
26/39 i S b

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Graph Colouring: Grounding

$ clingo —text graph.lp colour.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).
edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).
edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

colour(r). colour(b). colour(g).

1{assign(1,r);
1{assign(2,r);
1{assign(3,r);

assign(1,b);assign(1,g) }1. 1{assign(4,r);assign(4,b);assign(4,g)}1.
assign(2,b);assign(2,g) }1. 1{assign(5,r);assign(5,b);assign(5,g9)}1.
assign(3,b);assign(3,g) }1. 1{assign(6,r);assign(6,b);assign(6,g) }1.

= Computational

- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).
- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). - assign(6,b), assign(2,b).
:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,9).
;- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).
- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). - assign(6,b), assign(3,b).
- assign(1,g), assign(3,g). :- assign(2,g), assign(5,9). - assign(6,g), assign(3,9).
- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). - assign(6,r), assign(5,r).
- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). - assign(6,b), assign(5,b).
:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,9). :- assign(6,g), assign(5,9).
OTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass « 27/39

G
Gﬁl" Logic -~ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP Workflow: Solving

¢ TUD

Problem

Modelling

Logic
Program

Grounder

ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) * Hannes Strass *

Solver

Solution

Solving

Stable
Models

28/39

Interpreting

& "Computaﬁoncl
G@% Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Graph Colouring: Solving

$ clingo graph.lp colour.lp @

clasp version 2.1.0
Reading from stdin

Solving...
Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)
Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)
Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)
Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)
Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)
Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)
SATISFIABLE
Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 8.00s Unsat: 0.00s)

 Computational
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 29/39 fﬁ?’ Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP Workflow: Stable models

Problem

Program Grounder Solver
Solving
OTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass « 30/39

Solution

Interpreting

Stable
Models

@ Computational
Gﬁ% Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

A Colouring

Answer: 6
node(1) [...] \
assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

 Computational
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 31/39 éﬁ; Logig.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP Workflow: Solutions

Problem

Program Grounder Solver
Solving
OTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) * Hannes Strass *

Solution

Interpreting

Stable

Models

& "Computaﬁoncl
32/39 &EI' Logic + Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Basic Methodology

Methodology
Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester (+ Optimizer)

Ic "Compukﬂionul
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 33/39 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Graph Colouring

node(1..6).

edge(1,2).
edge(2,4).
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

colour(r).

1 {assign(N,C)

edge(1,3).
edge(2,5).
(3,4).
edge(4,2).
(
(

edge

edge(5,4).
edge(6,3).

colour(b).

edge(1,4).
edge(2,6).
edge(3,5).

edge(5,6).
edge(6,5).

colour(g).

: colour(C) } 1

:- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

¢ TUD

ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) * Hannes Strass

. Data

Generator

Tester

G Computational

. 34/39 &= Logic = Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

History (1)

+ Early 1970s: definite LPs with unique least models (SLD resolution)
+ Default negation: operational semantics only (SLDNF resolution)
+ 1978 (Clark): Program completion for normal LPs

« 1980 (Reiter): Default Logic for non-monotonic reasoning
(one default theory can have zero or more extensions)

« 1987 (Bidoit & Froidevaux): Semantics for normal LPs via translation to
default logic (effectively first definition of stable model semantics)

+ 1988 (Gelfond & Lifschitz): Stable Model semantics

* 1995 (Marek & Truszczynski): DeReS (Default Reasoning System)
(modelling search problems via default logic; with solver implementation)

* 1996 (Niemela & Simons): first ASP grounder (Iparse) and solver (smodels)
* 1999 (Marek & Truszczynski; Niemeld): ASP paradigm

& "Compukﬂionul
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 35/39 ‘@?’ Logic -+ Group

https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1016/0004-3702(80)90014-4
https://lics.siglog.org/archive/1987/BidoitFroidevaux-MinimalismsubsumesD.html
https://dblp.org/rec/conf/iclp/GelfondL88
https://dblp.org/rec/conf/iclp/CholewinskiMMT95
https://dblp.org/rec/conf/kr/CholewinskiMT96
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6278919
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1023/A:1018930122475
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

History (2)

Michael Gelfond (b. 1945)

* Russian-American mathematician/computer scientist
« PhD in Mathematics from Steklov Institute (1974)

+ emigrated to the US in 1978

+ stable model semantics, KR languages

+ AAAI Fellow

Vladimir Lifschitz (b. 1947)

* Russian-American mathematician/computer scientist
« PhD in Mathematics from Steklov Institute (1971)

+ emigrated to the US in 1976

+ stable model semantics, KR languages

(C) Michael Gelfond

(C) Vladimir Lifschitz

& "Compukﬂionul
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 36/39 ‘@?’ Logic -+ Group

http://redwood.cs.ttu.edu/~mgelfond/IMAGES/gelfond.jpg
https://www.cs.utexas.edu/users/vl/pictures/iclp13tag.jpg
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

History (3)

Victor Witold (Witek) Marek (b. 1943)

+ Polish-American mathematician/computer scientist
* PhD from Warsaw University (1968)
* Non-monotonic reasoning, ASP paradigm

(C) Victor Marek

Mirostaw (Mirek) Truszczynski (b. 1950s?)

+ Polish-American mathematician/computer scientist
* PhD from Warsaw University of Technology (1980)
* Non-monotonic reasoning, ASP paradigm

+ AAAI Fellow (2013), Dov Gabbay Prize (2023)

(C) Mirostaw Truszczynski

& "Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 37/39 ‘@?’ Logic -+ Group

http://www.cs.engr.uky.edu/~marek/photos.dir/vm08.jpg
http://cs.uky.edu/~mirek/Wpracy2013b.jpg
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

History (4)

Ilkka Niemela (b. 1961)

+ Finnish computer scientist
* PhD from Helsinki University of Technology (1993)
* Non-monotonic reasoning, ASP paradigm

+ co-developed (with Patrik Simons) the first ASP
grounder (Iparse) and solver (smodels)

(C) llkka Niemela

+ Marek & Truszczynski (1999):
Stable models and an alternative logic programming paradigm

* Niemela (1999):
Logic programming with stable model semantics as a constraint programming

paradigm

"Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 38/39 é@i‘) Logic -+ Group

https://research.aalto.fi/files-asset/3069003/275546_x_512.jpg?w=160&f=webp
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1023/A:1018930122475
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Conclusion

Summary

+ The language of normal logic programs can be extended by constructs:

- Integrity constraints for eliminating unwanted solution candidates
- Choice rules for choosing subsets of atoms

- Cardinality rules for counting certain present/absent atoms

- Conditional literals for improving conciseness

+ All of them can be translated back into normal logic program rules.

+ The modelling methodology of ASP is generate and test:
Generate solution candidates & Eliminate infeasible ones

Suggested action points:

* Model solving Sudoku puzzles using a ternary predicate num(/,j, k) expressing
that the field in row i and column j of the Sudoku grid contains the number k
(i,j,k € {1,...,9}). Initial hints are given by num/3 facts.

& "Computaﬁoncl
CTUD ASP: Language Extensions and Modelling (Lecture 11, FLP 2025/26) + Hannes Strass * 39/39 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

	Language Extensions
	Integrity Constraints
	Choice Rules
	Cardinality Rules
	Conditional Literals

	Modelling
	Workflow
	A Case Study: Graph Colouring
	History

