
Some Remarks on Human Reasoning, Logic Programs and
Connectionist Systems

Steffen Hölldobler
International Center for Computational Logic

Technische Universität Dresden
Dresden, Germany

sh@iccl.tu-dresden.de

Abstract

In this short paper I discuss two immediate consequence operators for three-valued logic pro-
grams given by Fitting [7] and Stenning and van Lambalgen [17]. A connectionst model generator
using recurrent networks with feed-forward core is specified for the latter one. If applied to human
reasoning problems the approaches leads to inferences which are in line with experimental data.

1 Logic Programs and Three-Valued Interpretations

A (program) clause is an expression of the form A← B1 ∧ . . .∧Bn, n ≥ 1, where A is an atom and
each Bi, 1 ≤ i ≤ n, is either a literal, > or ⊥. A is called head and B1 ∧ . . .∧Bn body of the program
clause. > is a valid formula, whereas⊥ is an unsatisfiable one. One should observe that the body of each
clause is non-empty. A clause of the form A←> is called positive fact. A clause of the form A←⊥ is
called negative fact. A (logic) program is a finite set of clauses. Two examples are P1 = {p← q} and
P2 = {p← q,q←⊥}.

We consider Kleene’s three-valued logic with values true (>), false (⊥) and undefined (u) [14] as
well as the following truth tables for the operators negation (¬), conjunction (∧) and disjunction (∨):

¬
> ⊥
⊥ >
u u

∧ > ⊥ u
> > ⊥ u
⊥ ⊥ ⊥ ⊥
u u ⊥ u

∨ > ⊥ u
> > > >
⊥ > ⊥ u
u > u u

Interpretations are conveniently represented by pairs of atoms I = 〈I>, I⊥〉 with I>∩ I⊥ = /0. Each atom
occurring in I> is mapped to true, each atom occurring in I⊥ is mapped to false, and atoms occurring
neither in I> nor in I⊥ are mapped to undefined.

In [7], Fitting has defined an immediate consequence operator ΦF,P(I) = 〈J>,J⊥〉, where J> = {A |
A← Body ∈P and I(Body) = >} and J⊥ = {A | for all A← Body ∈P : I(Body) = ⊥}. Iterating the
operator starting with the empty interpretation yields the least supported model of a given program, if
such a model exists. For example, lfp(ΦF,P1) = 〈 /0,{p,q}〉= lfp(ΦF,P2).

This results is in line with the closed-world [15] or completion semantics [4] of two-valued logic
programs. In P1 we have no information concerning q and, hence, we assume that q is mapped to false.
Because all what we know about p in P1 is p← q, we turn it into p↔ q. Finally, because q is mapped
to false, p must be mapped to false as well. In P2, we know that q←⊥ and, thus, we close it to obtain
q↔⊥ and obtain the same result as in P1.

However, in the presence of a third truth value, we have another choice. In P1, knowing nothing
about q we may assume that q is mapped to undefined. Now, if we consider p↔ q as before, then p will
have to be mapped to undefined as well.

This observation has motivated Stenning and van Lambalgen in [17] to define a different immediate
consequence operator: ΦSvL,P(I) = 〈J>,J⊥〉, where J> = {A | A← Body ∈P and I(Body) = >} and
J⊥ = {A | there exists A← Body ∈P and for all A← Body ∈P : I(Body) = ⊥}. Iterating this oper-
ator starting with the empty interpretation yields lfp(ΦSvL,P1) = 〈 /0, /0〉 and lfp(ΦSvL,P2) = 〈 /0,{p,q}〉 as
intended.

1

sh@iccl.tu-dresden.de


Some Remarks on Human Reasoning, Logic Programs and Connectionist Systems Hölldobler

2 The Core Method

In [10] a connectionist model generator for propositional logic programs using recurrent networks with
feed-forward core was presented. It was later called the core method [2]. The core method has been
extended and applied to a variety of programs including modal (see e.g. [5]) and first-order logic pro-
grams [1]. It is based on the idea that feed-forward connectionist networks can approximate almost all
functions arbitrarily well [12, 9] and, hence, they can also approximate – and in some cases compute –
the immediate consequence operators associated with logic programs. Moreover, if such an operator is
a contraction mapping on a complete metric space, then Banach’s contraction mapping theorem ensures
that a unique fixpoint exists such that the sequence constructed from applying the operator iteratively to
any element of the metric space converges to the fixed point [8]. Turning the feed-forward core into a
recurrent network allows to compute or approximate the least model of a logic program [11].

Kalinke has applied the core method to logic programs under the three-valued semantics presented
in Section 1 [13]. In particular, her feed-forward cores compute ΦF,P for any given program P . Seda
and Lane showed that the core method can be extended to many-valued logic programs [16]. Restricted
to three valued logic programs considered here, their cores also compute ΦF,P . In the sequel, these
approaches are modified in order to compute ΦSvL,P .

Given a logic program P , the following algorithm translates P into a feed-forward core. Let m be
the number of propositional variables occurring in P . Without loss of generality, we may assume that
the variables are denoted by natural numbers from [1,m]. Let ω ∈ R+.

1. The input and output layer is a vector of binary threshold units of length 2m representing interpre-
tations. The 2i− 1-st unit in the layers, denoted by i>, is active iff the i-th variable is mapped to
true. The 2i-th unit in the layers, denoted by i⊥, is active iff the i-th variable is mapped to false.
Both, the 2i−1-st and the 2i-th unit, are passive iff the i-th variable is mapped to undefined. The
case where both, the 2i−1-st and the 2i-th unit, are active is not allowed.

The threshold of each unit occurring in the input layer is set to ω

2 . The threshold of each 2i−1-st
unit occurring in the output layer is set to ω

2 . The threshold of each 2i-th unit occurring in the
output layer is set to max {ω

2 , l− ω

2 }, where l is the number of clauses with head i in P .

In addition, two units representing > and ⊥ are added to the input layer. The threshold of these
units is set to −ω

2 .

2. For each clause of the form A← B1∧ . . .∧Bk occurring in P , do the following.

(a) Add two binary threshold units h> and h⊥ to the hidden layer.

(b) Connect h> to the unit A> in the output layer. Connect h⊥ to the unit A⊥ in the output layer.

(c) For each B j, 1≤ j ≤ k, do the following.

i. If B j is an atom, then connect the units B>j and B⊥j in the input layer to h> and h⊥,
respectively.

ii. If B j is the literal ¬B, then connect the units B⊥ and B> in the input layer to h> and h⊥,
respectively.

iii. If B j is >, then connect the unit > in the input layer to h>.
iv. If B j is ⊥, then connect the unit ⊥ in the input layer to h⊥.

(d) Set the threshold of h> to l− ω

2 , where l is the number of clauses with head A in P . Set the
threshold of h⊥ to ω

2 .

3. Set the weights associated with all connections to ω .

2



Some Remarks on Human Reasoning, Logic Programs and Connectionist Systems Hölldobler

1
2

1
2

1
2

1
2

1
2

1
2−1

2 −1
2

> e ¬e l ¬l ab ¬ab ⊥

ω

2
ω

2
ω

2
ω

2
ω

2
ω

2

e ¬e l ¬l ab ¬ab

ω

2
ω

2

6 6

�
��

3ω

2
ω

2

�
��
�*

�
��
�*

@
@I

PP
PP

PPi

6 6

ω

2
ω

2

6 6

@
@I

−1
2 −1

2

ω

2
ω

2

ω

2
ω

2

1
2

1
2

3ω

2

ω

2

1
2

Figure 1: The stable state of the feed-forward core for P3, where active units are shown in grey and
passive units in white.

Theorem 1. For each program P , one can construct a core of binary threshold units which computes
ΦSvL,P .

Moreover, if we connect each unit in the output layer to its corresponding unit in the input layer
with weight 1, then the network converges to a stable state which corresponds to the least fixed point of
ΦSvL,P if such a fixed point exists. The construction and the behavior of the networks is illustrated in the
following section.

3 Human Reasoning

In this section I will discuss some examples taken from [3]. These examples were used by Byrne to
show that classical logic cannot approprately model human reasoning. Stenning and van Lambalgen
argue that a three-valued logic programs under a completion semantics can well model human reasoning
[17]. Moreover, as we will see, the core method presented in Section 2 serves as a connectionist model
generator in these cases.

Consider the following sentences: If Marian has an essay to write, she will study late in the library.
She has an essay to write. In [3] 96% of all subjects conclude that Marian will study late in the library.
The two sentences can be represented by the program P3 = {l ← e∧¬ab, e← >, ab← ⊥}. The
first sentence is interpreted as a licence for a conditional and the atom ab is used to cover all additional
preconditions that we may be unaware of. As we know of no such preconditions, the rule ab←⊥ is
added. The corresponding network as well as its stable state are shown in Figure 1. From lfp(ΦSvL,P3) =
〈{l,e},{ab}〉 follows that Marian will study late in the library.

Suppose now that the antecedent is denied: If Marian has an essay to write, she will study late in
the library. She does not have an essay to write. In [3] 46% of subjects conclude that Marian will
not study late in the library. These subject err with respect to classical logic. But they do not err with
respect to the non-classical logic considered here. The two sentences can be represented by the program
P4 = {l← e∧¬ab, e←⊥,ab←⊥}. The corresponding network as well as its stable state are shown
in Figure 2. From lfp(ΦSvL,P4) = 〈 /0,{ab,e, l}〉 follows that Marian will not study late in the library.

Now consider an alternative argument: If Marian has an essay to write, she will study late in the li-
brary. She does not have an essay to write. If she has textbooks to read, she will study late in the library.
In [3] 4% of subjects conclude that Marian will not study late in the library. These sentences can be
represented by P6 = {l← e∧¬ab1, e←⊥, ab1←⊥, l← t ∧¬ab2,ab2←⊥}. Due to lack of space I
leave the construction of the network to the interested reader. From lfp(ΦSvL,P6) = 〈 /0,{ab1,ab2,e}〉

3



Some Remarks on Human Reasoning, Logic Programs and Connectionist Systems Hölldobler

1
2

1
2

1
2

1
2

1
2

1
2−1

2 −1
2

> ⊥e ¬e l ¬l ab ¬ab

ω

2
ω

2
ω

2
ω

2
ω

2
ω

2

e ¬e l ¬l ab ¬ab

3ω

2
ω

2

�
��
�*

�
��
�*

@
@I

PP
PP

PPi

6 6

ω

2
ω

2

6 6

@@
@@I

ω

2
ω

2

6 6

@
@I

−1
2 −1

2

ω

2
ω

2

−ω

2 −ω

2

1
2

1
2

ω

2

ω

2

1
2

Figure 2: The stable state of feed-forward core for P4.

follows that it is unknown whether Marian will study late in the library. One should observe that
lfp(ΦF,P6) = 〈 /0,{ab1,ab2,e, t, l}〉 and, consequently, one would conclude that Marian will not study
late in the library. Thus, Fitting’s operator leads to a wrong answer with respect to human reasoning,
whereas Stenning and van Lambalgen’s operator does not.

As final example consider the presence of an additional argument: If Marian has an essay to write,
she will study late in the library. She has an essay to write. If the library stays open, she will study
late in the library. In [3] 38% of subjects conclude that Marian will study late in the library. These
sentences can be represented by P7 = {l← e∧¬ab1, e←>, l← o∧¬ab2, ab1←¬o, ab2←¬e,}.
As argued in [17] the third sentence gives rise to an additinal argument for studying in the library, viz.
that the library is open. Likewise, there must be a reason for going to the library like, for example,
writing an essay. The corresponding network as well as its stable state are shown in Figure 3. From
lfp(ΦSvL,P7) = 〈{e},{ab2}〉 follows that it is unknown whether Marian will study late in the library.

4 Conclusion

In the paper I have shown that the core method can be adapted to implement Stenning and van Lambal-
gen’s immediate consequence operator for three-valued logic programs. This results in a connectionist
model generator, whose stable models allow inferences which are in line with experimental data gathered
in human reasoning experiments.

Much remains to be done. The threshold units may be replaced by sigmoidal ones such that the
immediate consequence operator can be learned following the approach first presented in [6].

Stenning and van Lambalgen also discuss human reasoning problems which can be modelled using
abduction [17]. It is unclear how a connectionst system implementing abduction would look like.

We should study ΦSvL,P from a logic programming point of view.
This could lead to a much understanding of the relationship between Computational Logic, Connec-

tionism and Cognitive Science.

References

[1] S. Bader, P. Hitzler, S. Hölldobler, and A. Witzel. A fully connectionist model generator for covered first-
order logic programs. In Manuela M. Veloso, editor, Proceedings of the Twentieth International Joint Con-
ference on Artificial Intelligence, pages 666–671, Menlo Park CA, January 2007. AAAI Press.

4



Some Remarks on Human Reasoning, Logic Programs and Connectionist Systems Hölldobler

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2−1

2 −1
2

> ⊥e ¬e l ¬l ab1¬ab1 o ¬o ab2¬ab2

ω

2
ω

2
ω

2
3ω

2
ω

2
ω

2
ω

2
ω

2
ω

2
ω

2

e ¬e l ¬l ab1¬ab1 o ¬o ab2¬ab2

ω

2
ω

2

6 6

�
��

3ω

2
ω

2

�
��
�*

�
��
�*

@
@I

PP
PP

PPi

6 6

3ω

2
ω

2

6 6
@
@I

PP
PP

PPi

XX
XXX

XXXy

XX
XXX

XXXy

ω

2
ω

2

@
@I

PP
PP

PPi

6 6

ω

2
ω

2

��
�� ��

���:

��
���

���
�:

6 6

−1
2 −1

2

ω

2

ω

2

1
2

ω

2

ω

2

1
2

Figure 3: The stable state of feed-forward core for P7.

[2] S. Bader and S. Hölldobler. The core method: Connectionist model generation. In Proceedings of the 16th
International Conference on Artificial Neural Networks (ICANN), volume 4132 of Lecture Notes in Computer
Science, pages 1–13. Springer, 2006.

[3] R.M.J. Byrne. Suppressing valid inferences with conditionals. Cognition, 31:61–83, 1989.
[4] K. L. Clark. Negation as failure. In Gallaire and Nicolas, editors, Workshop Logic and Databases, CERT,

Toulouse, France, 1977.
[5] A.S. d’Avila Garcez, K. Broda, and D.M. Gabbay. Neural-Symbolic Learning Systems: Foundations and

Applications. Springer, 2002.
[6] A.S. d’Avila Garcez, G. Zaverucha, and L.A.V. de Carvalho. Logic programming and inductive learning in

artificial neural networks. In Ch. Herrmann, F. Reine, and A. Strohmaier, editors, Knowledge Representation
in Neural Networks, pages 33–46, Berlin, 1997. Logos Verlag.

[7] M. Fitting. Kleene–Kripke semantics for logic programs. Journal of Logic Programming, 2(4):295–312,
1985.

[8] M. Fitting. Metric methods – three examples and a theorem. Journal of Logic Programming, 21(3):113–127,
1994.

[9] K.-I. Funahashi. On the approximate realization of continuous mappings by neural networks. Neural Net-
works, 2:183–192, 1989.

[10] S. Hölldobler and Y. Kalinke. Towards a massively parallel computational model for logic programming. In
Proceedings of the ECAI94 Workshop on Combining Symbolic and Connectionist Processing, pages 68–77.
ECCAI, 1994.

[11] S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of logic programs by recurrent
neural networks. Applied Intelligence, 11:45–59, 1999.

[12] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators.
Neural Networks, 2:359–366, 1989.

[13] Y. Kalinke. Ein massiv paralleles Berechnungsmodell für normale logische Programme. Master’s thesis, TU
Dresden, Fakultät Informatik, 1994. (in German).

[14] S. C. Kleene. Introduction to Metamathematics. North-Holland, 1951.
[15] R. Reiter. On closed world data bases. In H. Gallaire and J. M. Nicolas, editors, Workshop Logic and

Databases, CERT, Toulouse, France, 1977.
[16] A.K. Seda and M. Lane. Some aspects of the integration of connectionist and logic-based systems. In

Proceedings of the Third International Conference on Information, pages 297–300, International Information
Institute, Tokyo, Japan, 2004.

[17] K. Stenning and M. van Lambalgen. Human Reasoning and Cognitive Science. MIT Press, 2008.

5


	Logic Programs and Three-Valued Interpretations
	The Core Method
	Human Reasoning
	Conclusion

