
Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

3. Vorlesung: WHILE und LOOP

Sebastian Rudolph

Folien:© Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 14. April 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch


Was bisher geschah . . .

Grundbegriffe, die wir verstehen und erklären können:
DTM, NTM, Entscheider, Aufzähler, berechenbar/entscheidbar, semi-entscheidbar,
unentscheidbar, Church-Turing-These

Das Unentscheidbare:

• „An algorithm is a finite answer to an infinite number of questions.“
(Stephen Kleene)

• Aber: Es gibt mehr Möglichkeiten, unendlich viele Fragen zu beantworten, als es
Algorithmen geben kann. (Cantor)

Weitere wichtige Ergebnisse:

• DTM und NTM haben die gleiche Ausdrucksstärke

• Zusammenhang Aufzähler↔ Semi-Entscheidbarkeit

• Die Busy-Beaver-Funktion ist nicht berechenbar (sie wächst schneller als alle
berechenbaren Funktionen).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 2 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 3 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Von TMs zu Programmiersprachen

Turingmaschinen als Berechnungsmodell

• Pro: Einfache, kurze Beschreibung (eine Folie)
{ Beweise oft ebenfalls einfach und kurz

• Kontra: Umständliche Programmierung
{ einfache Algorithmen erfordern tausende Einzelschritte

Programmiersprachen als Berechnungsmodell

• Pro: Einfache, bequeme Programmierung
{ Großer Befehlssatz + Bibliotheken für Standardaufgaben

• Kontra: Umständliche Beschreibung
(z.B. Beschreibung von C++ [ISO/IEC 14882] hat 776 Seiten)
{ Eigenschaften oft unklar; Beweise sehr umständlich

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 4 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Von TMs zu Programmiersprachen

Turingmaschinen als Berechnungsmodell

• Pro: Einfache, kurze Beschreibung (eine Folie)
{ Beweise oft ebenfalls einfach und kurz

• Kontra: Umständliche Programmierung
{ einfache Algorithmen erfordern tausende Einzelschritte

Programmiersprachen als Berechnungsmodell

• Pro: Einfache, bequeme Programmierung
{ Großer Befehlssatz + Bibliotheken für Standardaufgaben

• Kontra: Umständliche Beschreibung
(z.B. Beschreibung von C++ [ISO/IEC 14882] hat 776 Seiten)
{ Eigenschaften oft unklar; Beweise sehr umständlich

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 4 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Programme

Idee: Definiere eine imperative Programmiersprache, die dennoch sehr einfach ist.

Features:

• Variablen x0, x1, x2, . . . oder auch x, y, variablenName, . . .
alle vom Typ “natürliche Zahl”

• Wertezuweisungen der Form

x := y + 42 und x := y - 23

für beliebige natürliche Zahlen und Variablennamen

• “For-Schleifen”: LOOP x DO . . . END

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 5 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Programme: Syntax

Die Programmiersprache LOOP basiert auf einer unendlichen Menge V von Variablen
und der Menge N der natürlichen Zahlen. LOOP-Programme sind induktiv definiert:

• Die Ausdrücke
x := y + n und x := y - n (Wertzuweisung)

sind LOOP-Programme für alle x, y ∈ V und n ∈ N.

• Wenn P1 und P2 LOOP-Programme sind, dann ist

P1; P2 (Hintereinanderausführung)

ein LOOP-Programm.

• Wenn P ein LOOP-Programm ist, dann ist

LOOP x DO P END (Schleife)

ein LOOP-Programm für jede Variable x ∈ V.

Vereinfachung: Wir erlauben, „;“ in Programmen durch Zeilenumbrüche zu ersetzen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 6 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Das folgende LOOP-Programm addiert zum Wert von y genau x-mal die Zahl 2:

LOOP x DO
y := y + 2

END

Dies entspricht also der Zuweisung y := y + (2 * x), die wir in LOOP nicht direkt
schreiben können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 7 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Das folgende LOOP-Programm addiert zum Wert von y genau x-mal die Zahl 2:

LOOP x DO
y := y + 2

END

Dies entspricht also der Zuweisung y := y + (2 * x), die wir in LOOP nicht direkt
schreiben können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 7 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Programme: Semantik (1)

Funktionsweise eines LOOP-Programms P:

• Eingabe: Eine Liste von k natürlichen Zahlen
(Anmerkung: k wird nicht durch das Programm festgelegt.)

• Ausgabe: Eine natürliche Zahl

P berechnet also eine totale Funktion Nk → N, für beliebige k

Initialisierung für Eingabe n1, . . . , nk:

• LOOP speichert für jede Variable eine natürliche Zahl als Wert

• Den Variablen x1, . . . , xk werden anfangs die Werte n1, . . . , nk zugewiesen

• Allen anderen Variablen wird der Anfangswert 0 zugewiesen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 8 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Programme: Semantik (1)

Funktionsweise eines LOOP-Programms P:

• Eingabe: Eine Liste von k natürlichen Zahlen
(Anmerkung: k wird nicht durch das Programm festgelegt.)

• Ausgabe: Eine natürliche Zahl

P berechnet also eine totale Funktion Nk → N, für beliebige k

Initialisierung für Eingabe n1, . . . , nk:

• LOOP speichert für jede Variable eine natürliche Zahl als Wert

• Den Variablen x1, . . . , xk werden anfangs die Werte n1, . . . , nk zugewiesen

• Allen anderen Variablen wird der Anfangswert 0 zugewiesen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 8 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Programme: Semantik (2)

Nach der Initialisierung wird das LOOP-Programm abgearbeitet:

• x := y + n:
Der Variable x wird als neuer Wert die Summe des (alten) Wertes für y und der
Zahl n zugewiesen.

• x := y - n:
Der Variable x wird als neuer Wert die Differenz des (alten) Wertes für y und der
Zahl n zugewiesen, falls diese größer als 0 ist;
ansonsten wird x der Wert 0 zugewiesen.

• P1; P2:
Erst wird P1 abgearbeitet, dann P2.

• LOOP x DO P END:
P wird genau n-mal ausgeführt, für den Zahlenwert n, der x anfangs zugewiesen ist.
(Die Anzahl der Schleifendurchläufe bleibt also gleich, wenn P den Wert von x ändert.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 9 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programms:

• Das Ergebnis der Abarbeitung ist der Wert der Variable x0 nach dem Beenden der
Berechnung.

Satz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Beweis: Gemäß der Definition von LOOP-Programmen per struktureller Induktion.

Induktionsanfang: Die Behauptung gilt sicherlich für Wertzuweisungen.

Weitere Fälle (Induktionsschritte):

• P1; P2:
Wenn P1 und P2 nach endlich vielen Schritten terminieren, dann auch P1; P2.

• LOOP x DO P END:
Für jede mögliche Zuweisung von x wird P endlich oft wiederholt; wenn P in
endlich vielen Schritten terminiert, dann also auch die Schleife. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 10 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programms:

• Das Ergebnis der Abarbeitung ist der Wert der Variable x0 nach dem Beenden der
Berechnung.

Satz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Beweis: Gemäß der Definition von LOOP-Programmen per struktureller Induktion.

Induktionsanfang: Die Behauptung gilt sicherlich für Wertzuweisungen.

Weitere Fälle (Induktionsschritte):

• P1; P2:
Wenn P1 und P2 nach endlich vielen Schritten terminieren, dann auch P1; P2.

• LOOP x DO P END:
Für jede mögliche Zuweisung von x wird P endlich oft wiederholt; wenn P in
endlich vielen Schritten terminiert, dann also auch die Schleife. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 10 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programms:

• Das Ergebnis der Abarbeitung ist der Wert der Variable x0 nach dem Beenden der
Berechnung.

Satz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Beweis: Gemäß der Definition von LOOP-Programmen per struktureller Induktion.

Induktionsanfang: Die Behauptung gilt sicherlich für Wertzuweisungen.

Weitere Fälle (Induktionsschritte):

• P1; P2:
Wenn P1 und P2 nach endlich vielen Schritten terminieren, dann auch P1; P2.

• LOOP x DO P END:
Für jede mögliche Zuweisung von x wird P endlich oft wiederholt; wenn P in
endlich vielen Schritten terminiert, dann also auch die Schleife. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 10 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
• Eingabe: Eine Liste von k natürlichen Zahlen (k wird nicht durch das Programm festgelegt.)
• Ausgabe: Eine natürliche Zahl (Der Wert von x0 nach Abarbeitung des Programms.)

P berechnet also für jedes k ∈ N eine totale Funktion f : Nk → N.

Quiz: Wir betrachten folgendes LOOP-Programm:

x0 := x0 + 1

LOOP x1 DO x0 := x0 + 1 END
LOOP x2 DO x0 := x0 - 2 END

Welche der gelisteten Funktionen berechnet das Programm?

• f1 : {⟨⟩} → N mit f1(⟨⟩) = 1

✓

• f2 : N→ N mit f2(n1) = 1 + n1

✓

• f3 : N × N→ Z mit f3(n1, n2) = 1 + n1 − 2n2

✗

• f4 : N × N→ N mit f4(n1, n2) = max {1 + n1 − 2n2, 0}

✓

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
• Eingabe: Eine Liste von k natürlichen Zahlen (k wird nicht durch das Programm festgelegt.)
• Ausgabe: Eine natürliche Zahl (Der Wert von x0 nach Abarbeitung des Programms.)

P berechnet also für jedes k ∈ N eine totale Funktion f : Nk → N.

Quiz: Wir betrachten folgendes LOOP-Programm:

x0 := x0 + 1

LOOP x1 DO x0 := x0 + 1 END
LOOP x2 DO x0 := x0 - 2 END

Welche der gelisteten Funktionen berechnet das Programm?

• f1 : {⟨⟩} → N mit f1(⟨⟩) = 1 ✓

• f2 : N→ N mit f2(n1) = 1 + n1

✓

• f3 : N × N→ Z mit f3(n1, n2) = 1 + n1 − 2n2

✗

• f4 : N × N→ N mit f4(n1, n2) = max {1 + n1 − 2n2, 0}

✓

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
• Eingabe: Eine Liste von k natürlichen Zahlen (k wird nicht durch das Programm festgelegt.)
• Ausgabe: Eine natürliche Zahl (Der Wert von x0 nach Abarbeitung des Programms.)

P berechnet also für jedes k ∈ N eine totale Funktion f : Nk → N.

Quiz: Wir betrachten folgendes LOOP-Programm:

x0 := x0 + 1

LOOP x1 DO x0 := x0 + 1 END
LOOP x2 DO x0 := x0 - 2 END

Welche der gelisteten Funktionen berechnet das Programm?

• f1 : {⟨⟩} → N mit f1(⟨⟩) = 1 ✓

• f2 : N→ N mit f2(n1) = 1 + n1 ✓

• f3 : N × N→ Z mit f3(n1, n2) = 1 + n1 − 2n2

✗

• f4 : N × N→ N mit f4(n1, n2) = max {1 + n1 − 2n2, 0}

✓

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
• Eingabe: Eine Liste von k natürlichen Zahlen (k wird nicht durch das Programm festgelegt.)
• Ausgabe: Eine natürliche Zahl (Der Wert von x0 nach Abarbeitung des Programms.)

P berechnet also für jedes k ∈ N eine totale Funktion f : Nk → N.

Quiz: Wir betrachten folgendes LOOP-Programm:

x0 := x0 + 1

LOOP x1 DO x0 := x0 + 1 END
LOOP x2 DO x0 := x0 - 2 END

Welche der gelisteten Funktionen berechnet das Programm?

• f1 : {⟨⟩} → N mit f1(⟨⟩) = 1 ✓

• f2 : N→ N mit f2(n1) = 1 + n1 ✓

• f3 : N × N→ Z mit f3(n1, n2) = 1 + n1 − 2n2 ✗

• f4 : N × N→ N mit f4(n1, n2) = max {1 + n1 − 2n2, 0}

✓

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
• Eingabe: Eine Liste von k natürlichen Zahlen (k wird nicht durch das Programm festgelegt.)
• Ausgabe: Eine natürliche Zahl (Der Wert von x0 nach Abarbeitung des Programms.)

P berechnet also für jedes k ∈ N eine totale Funktion f : Nk → N.

Quiz: Wir betrachten folgendes LOOP-Programm:

x0 := x0 + 1

LOOP x1 DO x0 := x0 + 1 END
LOOP x2 DO x0 := x0 - 2 END

Welche der gelisteten Funktionen berechnet das Programm?

• f1 : {⟨⟩} → N mit f1(⟨⟩) = 1 ✓

• f2 : N→ N mit f2(n1) = 1 + n1 ✓

• f3 : N × N→ Z mit f3(n1, n2) = 1 + n1 − 2n2 ✗

• f4 : N × N→ N mit f4(n1, n2) = max {1 + n1 − 2n2, 0} ✓

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung mit einer beliebigen konstanten Zahl: “x := n”:

x := 0

x := x + n

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 12 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung mit einer beliebigen konstanten Zahl: “x := n”:

x := 0

x := x + n

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 12 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung mit einer beliebigen konstanten Zahl: “x := n”:

x := 0

x := x + n

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 12 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung mit einer beliebigen konstanten Zahl: “x := n”:

x := 0

x := x + n

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 12 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung mit einer beliebigen konstanten Zahl: “x := n”:

x := 0

x := x + n

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 12 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung mit einer beliebigen konstanten Zahl: “x := n”:

x := 0

x := x + n

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 12 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung: “x := y + z”:

x := y

LOOP z DO
x := x + 1

END

Fallunterscheidung: “IF x != 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 13 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung: “x := y + z”:

x := y

LOOP z DO
x := x + 1

END

Fallunterscheidung: “IF x != 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 13 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung: “x := y + z”:

x := y

LOOP z DO
x := x + 1

END

Fallunterscheidung: “IF x != 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 13 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung: “x := y + z”:

x := y

LOOP z DO
x := x + 1

END

Fallunterscheidung: “IF x != 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 13 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Berechenbare Funktionen

Eine Funktion f : Nk → N heißt genau dann LOOP-berechenbar, wenn es ein LOOP-
Programm gibt, das die Funktion berechnet.

Beispiel: Die folgenden Funktionen sind LOOP-berechenbar:

• Addition: ⟨x, y⟩ 7→ x + y (gerade gezeigt)

• Multiplikation: ⟨x, y⟩ 7→ x · y (siehe Übung)

• Potenz: ⟨x, y⟩ 7→ xy (entsteht aus · wie · aus +)

• und viele andere . . . (max, min, div, mod, usw.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 14 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-Berechenbare Funktionen

Eine Funktion f : Nk → N heißt genau dann LOOP-berechenbar, wenn es ein LOOP-
Programm gibt, das die Funktion berechnet.

Beispiel: Die folgenden Funktionen sind LOOP-berechenbar:

• Addition: ⟨x, y⟩ 7→ x + y (gerade gezeigt)

• Multiplikation: ⟨x, y⟩ 7→ x · y (siehe Übung)

• Potenz: ⟨x, y⟩ 7→ xy (entsteht aus · wie · aus +)

• und viele andere . . . (max, min, div, mod, usw.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 14 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP jenseits von N

LOOP kann auch das x-te Bit der Binärkodierung von y berechnen. Dadurch kann man
in LOOP (auf umständliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binär

(2) Evaluiere die Binärkodierung als natürliche Zahl und verwende diese als Eingabe

(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Beispiele für LOOP-berechenbare Funktionen:

• das Wortproblem regulärer, kontextfreier und kontextsensitiver Sprachen

• alle Probleme in NP, z.B. Erfüllbarkeit aussagenlogischer Formeln

• praktisch alle „gängigen“ Algorithmen (Sortieren, Suchen, Optimieren, . . . )

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 15 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP jenseits von N

LOOP kann auch das x-te Bit der Binärkodierung von y berechnen. Dadurch kann man
in LOOP (auf umständliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binär

(2) Evaluiere die Binärkodierung als natürliche Zahl und verwende diese als Eingabe

(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Beispiele für LOOP-berechenbare Funktionen:

• das Wortproblem regulärer, kontextfreier und kontextsensitiver Sprachen

• alle Probleme in NP, z.B. Erfüllbarkeit aussagenlogischer Formeln

• praktisch alle „gängigen“ Algorithmen (Sortieren, Suchen, Optimieren, . . . )

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 15 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP jenseits von N

LOOP kann auch das x-te Bit der Binärkodierung von y berechnen. Dadurch kann man
in LOOP (auf umständliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binär

(2) Evaluiere die Binärkodierung als natürliche Zahl und verwende diese als Eingabe

(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Beispiele für LOOP-berechenbare Funktionen:

• das Wortproblem regulärer, kontextfreier und kontextsensitiver Sprachen

• alle Probleme in NP, z.B. Erfüllbarkeit aussagenlogischer Formeln

• praktisch alle „gängigen“ Algorithmen (Sortieren, Suchen, Optimieren, . . . )

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 15 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Die Grenzen von LOOP

Satz: Es gibt berechenbare Funktionen, die nicht LOOP-berechenbar sind.

Das ist weniger überraschend, als es vielleicht klingt:

Beweis:

• Ein LOOP-Programm terminiert immer.

• Daher ist jede LOOP-berechenbare Funktion total.

• Es gibt aber auch nicht-totale Funktionen, die berechenbar sind.
(Z.B. die “partiellste” Funktion, die nirgends definiert ist.) □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 16 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Die Grenzen von LOOP

Satz: Es gibt berechenbare Funktionen, die nicht LOOP-berechenbar sind.

Das ist weniger überraschend, als es vielleicht klingt:

Beweis:

• Ein LOOP-Programm terminiert immer.

• Daher ist jede LOOP-berechenbare Funktion total.

• Es gibt aber auch nicht-totale Funktionen, die berechenbar sind.
(Z.B. die “partiellste” Funktion, die nirgends definiert ist.) □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 16 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-berechenbar , berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist überraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden können – quasi ein erster Versuch der Definition von Berechenbarkeit.
Hilbert definierte LOOP-Berechenbarkeit etwas anders, mit Hilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:

• Gabriel Sudan (1927)

• Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 17 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-berechenbar , berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist überraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden können – quasi ein erster Versuch der Definition von Berechenbarkeit.
Hilbert definierte LOOP-Berechenbarkeit etwas anders, mit Hilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:

• Gabriel Sudan (1927)

• Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 17 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-berechenbar , berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist überraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden können – quasi ein erster Versuch der Definition von Berechenbarkeit.
Hilbert definierte LOOP-Berechenbarkeit etwas anders, mit Hilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:

• Gabriel Sudan (1927)

• Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 17 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


LOOP-berechenbar , berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist überraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden können – quasi ein erster Versuch der Definition von Berechenbarkeit.
Hilbert definierte LOOP-Berechenbarkeit etwas anders, mit Hilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:

• Gabriel Sudan (1927)

• Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 17 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Fleißige Biber für LOOP

Die Länge eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.

Dazu nehmen wir an:

• Zahlen werden in ihrer Dezimalkodierung geschrieben

• Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x123 als
Schreibweise für x123 an)

• Wir betrachten ; als ein Zeichen (Zeilenumbrüche werden dagegen nicht gezählt)

Die Funktion ΣLOOP : N→ N liefert für jede Zahl ℓ die größte Zahl ΣLOOP(ℓ), die von
einem LOOP-Programm der Länge ≤ ℓ für eine leere Eingabe (alle Variablen sind 0)
ausgegeben wird. Dabei sei ΣLOOP(ℓ) = 0 falls es kein Programm der Länge ≤ ℓ gibt.

Beobachtung: ΣLOOP ist wohldefiniert:

• Die Zahl der LOOP-Programme mit maximaler Länge ℓ ist endlich.

• Unter diesen Programmen gibt es eine maximale Ausgabe.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 18 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Fleißige Biber für LOOP

Die Länge eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.

Dazu nehmen wir an:

• Zahlen werden in ihrer Dezimalkodierung geschrieben

• Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x123 als
Schreibweise für x123 an)

• Wir betrachten ; als ein Zeichen (Zeilenumbrüche werden dagegen nicht gezählt)

Die Funktion ΣLOOP : N→ N liefert für jede Zahl ℓ die größte Zahl ΣLOOP(ℓ), die von
einem LOOP-Programm der Länge ≤ ℓ für eine leere Eingabe (alle Variablen sind 0)
ausgegeben wird. Dabei sei ΣLOOP(ℓ) = 0 falls es kein Programm der Länge ≤ ℓ gibt.

Beobachtung: ΣLOOP ist wohldefiniert:

• Die Zahl der LOOP-Programme mit maximaler Länge ℓ ist endlich.

• Unter diesen Programmen gibt es eine maximale Ausgabe.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 18 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Fleißige Biber für LOOP

Die Länge eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.

Dazu nehmen wir an:

• Zahlen werden in ihrer Dezimalkodierung geschrieben

• Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x123 als
Schreibweise für x123 an)

• Wir betrachten ; als ein Zeichen (Zeilenumbrüche werden dagegen nicht gezählt)

Die Funktion ΣLOOP : N→ N liefert für jede Zahl ℓ die größte Zahl ΣLOOP(ℓ), die von
einem LOOP-Programm der Länge ≤ ℓ für eine leere Eingabe (alle Variablen sind 0)
ausgegeben wird. Dabei sei ΣLOOP(ℓ) = 0 falls es kein Programm der Länge ≤ ℓ gibt.

Beobachtung: ΣLOOP ist wohldefiniert:

• Die Zahl der LOOP-Programme mit maximaler Länge ℓ ist endlich.

• Unter diesen Programmen gibt es eine maximale Ausgabe.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 18 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiele

Beispiel: Die LOOP-Anweisung x0 := y + 9 ist das „fleißigste“ Programm für ℓ = 7,
d.h. es bezeugt ΣLOOP(7) = 9.

Für ℓ = 8 gilt dementsprechend bereits ΣLOOP(8) = 99.

Für ℓ < 7 gibt es keine Zuweisung, die x0 ändert, d.h., ΣLOOP(ℓ) = 0.

Bonusaufgabe: Gibt es eine Zahl ℓ, bei der ΣLOOP(ℓ) durch ein Programm berechnet
wird, welches die Zahl ΣLOOP(ℓ) nicht als Konstante im Quelltext enthält? Wie könnte
das entsprechende Programm aussehen?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 19 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiele

Beispiel: Die LOOP-Anweisung x0 := y + 9 ist das „fleißigste“ Programm für ℓ = 7,
d.h. es bezeugt ΣLOOP(7) = 9.

Für ℓ = 8 gilt dementsprechend bereits ΣLOOP(8) = 99.

Für ℓ < 7 gibt es keine Zuweisung, die x0 ändert, d.h., ΣLOOP(ℓ) = 0.

Bonusaufgabe: Gibt es eine Zahl ℓ, bei der ΣLOOP(ℓ) durch ein Programm berechnet
wird, welches die Zahl ΣLOOP(ℓ) nicht als Konstante im Quelltext enthält? Wie könnte
das entsprechende Programm aussehen?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 19 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiele

Beispiel: Die LOOP-Anweisung x0 := y + 9 ist das „fleißigste“ Programm für ℓ = 7,
d.h. es bezeugt ΣLOOP(7) = 9.

Für ℓ = 8 gilt dementsprechend bereits ΣLOOP(8) = 99.

Für ℓ < 7 gibt es keine Zuweisung, die x0 ändert, d.h., ΣLOOP(ℓ) = 0.

Bonusaufgabe: Gibt es eine Zahl ℓ, bei der ΣLOOP(ℓ) durch ein Programm berechnet
wird, welches die Zahl ΣLOOP(ℓ) nicht als Konstante im Quelltext enthält? Wie könnte
das entsprechende Programm aussehen?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 19 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (1) ist leicht zu zeigen:

• Es gibt endlich viele LOOP-Programme der Länge ≤ ℓ.

• Man kann alle davon durchlaufen und auf einem Computer simulieren.

• Die Simulation liefert immer nach endlich vielen Schritten ein Ergebnis.

• Das Maximum aller Ergebnisse ist der Wert von ΣLOOP(ℓ).

(Anmerkung: Wir verwenden hier einen intuitiven Berechnungsbegriff und Church-Turing.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 20 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (1) ist leicht zu zeigen:

• Es gibt endlich viele LOOP-Programme der Länge ≤ ℓ.

• Man kann alle davon durchlaufen und auf einem Computer simulieren.

• Die Simulation liefert immer nach endlich vielen Schritten ein Ergebnis.

• Das Maximum aller Ergebnisse ist der Wert von ΣLOOP(ℓ).

(Anmerkung: Wir verwenden hier einen intuitiven Berechnungsbegriff und Church-Turing.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 20 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (1) ist leicht zu zeigen:

• Es gibt endlich viele LOOP-Programme der Länge ≤ ℓ.

• Man kann alle davon durchlaufen und auf einem Computer simulieren.

• Die Simulation liefert immer nach endlich vielen Schritten ein Ergebnis.

• Das Maximum aller Ergebnisse ist der Wert von ΣLOOP(ℓ).

(Anmerkung: Wir verwenden hier einen intuitiven Berechnungsbegriff und Church-Turing.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 20 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ.
Sei k die Länge von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10(m + 1) (immer möglich)

• Sei Pm das Programm x1 := x1 + m (Länge: 7 + ⌈log10(m + 1)⌉)
• Sei P++ das Programm x0 := x0 + 1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist ℓ = k + 17 + ⌈log10(m + 1)⌉, damit gilt ℓ ≤ m.
Aber P, ausgeführt auf der leeren Eingabe, gibt die Zahl ΣLOOP(m) + 1 aus.
Widerspruch. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ.
Sei k die Länge von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10(m + 1) (immer möglich)

• Sei Pm das Programm x1 := x1 + m (Länge: 7 + ⌈log10(m + 1)⌉)
• Sei P++ das Programm x0 := x0 + 1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist ℓ = k + 17 + ⌈log10(m + 1)⌉, damit gilt ℓ ≤ m.
Aber P, ausgeführt auf der leeren Eingabe, gibt die Zahl ΣLOOP(m) + 1 aus.
Widerspruch. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ.
Sei k die Länge von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10(m + 1) (immer möglich)

• Sei Pm das Programm x1 := x1 + m (Länge: 7 + ⌈log10(m + 1)⌉)
• Sei P++ das Programm x0 := x0 + 1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist ℓ = k + 17 + ⌈log10(m + 1)⌉, damit gilt ℓ ≤ m.
Aber P, ausgeführt auf der leeren Eingabe, gibt die Zahl ΣLOOP(m) + 1 aus.
Widerspruch. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ.
Sei k die Länge von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10(m + 1) (immer möglich)

• Sei Pm das Programm x1 := x1 + m (Länge: 7 + ⌈log10(m + 1)⌉)
• Sei P++ das Programm x0 := x0 + 1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist ℓ = k + 17 + ⌈log10(m + 1)⌉, damit gilt ℓ ≤ m.
Aber P, ausgeführt auf der leeren Eingabe, gibt die Zahl ΣLOOP(m) + 1 aus.
Widerspruch. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ.
Sei k die Länge von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10(m + 1) (immer möglich)

• Sei Pm das Programm x1 := x1 + m (Länge: 7 + ⌈log10(m + 1)⌉)

• Sei P++ das Programm x0 := x0 + 1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist ℓ = k + 17 + ⌈log10(m + 1)⌉, damit gilt ℓ ≤ m.
Aber P, ausgeführt auf der leeren Eingabe, gibt die Zahl ΣLOOP(m) + 1 aus.
Widerspruch. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ.
Sei k die Länge von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10(m + 1) (immer möglich)

• Sei Pm das Programm x1 := x1 + m (Länge: 7 + ⌈log10(m + 1)⌉)
• Sei P++ das Programm x0 := x0 + 1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist ℓ = k + 17 + ⌈log10(m + 1)⌉, damit gilt ℓ ≤ m.
Aber P, ausgeführt auf der leeren Eingabe, gibt die Zahl ΣLOOP(m) + 1 aus.
Widerspruch. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ.
Sei k die Länge von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10(m + 1) (immer möglich)

• Sei Pm das Programm x1 := x1 + m (Länge: 7 + ⌈log10(m + 1)⌉)
• Sei P++ das Programm x0 := x0 + 1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.

Die Länge von P ist ℓ = k + 17 + ⌈log10(m + 1)⌉, damit gilt ℓ ≤ m.
Aber P, ausgeführt auf der leeren Eingabe, gibt die Zahl ΣLOOP(m) + 1 aus.
Widerspruch. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ.
Sei k die Länge von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10(m + 1) (immer möglich)

• Sei Pm das Programm x1 := x1 + m (Länge: 7 + ⌈log10(m + 1)⌉)
• Sei P++ das Programm x0 := x0 + 1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist ℓ = k + 17 + ⌈log10(m + 1)⌉, damit gilt ℓ ≤ m.

Aber P, ausgeführt auf der leeren Eingabe, gibt die Zahl ΣLOOP(m) + 1 aus.
Widerspruch. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar.

(2) ΣLOOP ist nicht LOOP-berechenbar.

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ.
Sei k die Länge von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10(m + 1) (immer möglich)

• Sei Pm das Programm x1 := x1 + m (Länge: 7 + ⌈log10(m + 1)⌉)
• Sei P++ das Programm x0 := x0 + 1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist ℓ = k + 17 + ⌈log10(m + 1)⌉, damit gilt ℓ ≤ m.
Aber P, ausgeführt auf der leeren Eingabe, gibt die Zahl ΣLOOP(m) + 1 aus.
Widerspruch. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 22 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Was fehlt?

Frage: Wieso ist LOOP zu schwach?

Intuitive Antwort: LOOP-Programme terminieren immer (zu vorhersehbar).

{Wir brauchen ein weniger vorhersehbares Programmkonstrukt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 23 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Was fehlt?

Frage: Wieso ist LOOP zu schwach?

Intuitive Antwort: LOOP-Programme terminieren immer (zu vorhersehbar).

{Wir brauchen ein weniger vorhersehbares Programmkonstrukt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 23 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE-Programme: Syntax und Semantik

Die Programmiersprache WHILE basiert wie LOOP auf Variablen V und natürlichen
Zahlen N. Man erhält die Definition von WHILE-Programmen, indem man die induktive
Definition von LOOP-Programmen um folgenden Punkt erweitert:

• Wenn P ein WHILE-Programm ist, dann ist

WHILE x != 0 DO P END

ein WHILE-Programm, für jede Variable x ∈ V.

Semantik von WHILE x != 0 DO P END:
P wird ausgeführt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x
jeweils vor jeder Ausführung von P geprüft wird.
(Die Ausführung hängt also davon ab, wie P den Wert von x ändert.)

Ansonsten werden WHILE-Programme wie LOOP-Programme ausgewertet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 24 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE-Programme: Syntax und Semantik

Die Programmiersprache WHILE basiert wie LOOP auf Variablen V und natürlichen
Zahlen N. Man erhält die Definition von WHILE-Programmen, indem man die induktive
Definition von LOOP-Programmen um folgenden Punkt erweitert:

• Wenn P ein WHILE-Programm ist, dann ist

WHILE x != 0 DO P END

ein WHILE-Programm, für jede Variable x ∈ V.

Semantik von WHILE x != 0 DO P END:
P wird ausgeführt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x
jeweils vor jeder Ausführung von P geprüft wird.
(Die Ausführung hängt also davon ab, wie P den Wert von x ändert.)

Ansonsten werden WHILE-Programme wie LOOP-Programme ausgewertet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 24 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE: Beobachtungen

Es ist möglich, dass ein WHILE-Programm nicht terminiert, z.B.

x := 1

WHILE x != 0 DO
y := y + 2

END

Wir können LOOP x DO P END (für ein „frisches“ z) ersetzen durch:

z := x

WHILE z != 0 DO
P

z := z - 1

END

Also sind LOOP-Schleifen eigentlich nicht mehr nötig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 25 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE: Beobachtungen

Es ist möglich, dass ein WHILE-Programm nicht terminiert, z.B.

x := 1

WHILE x != 0 DO
y := y + 2

END

Wir können LOOP x DO P END (für ein „frisches“ z) ersetzen durch:

z := x

WHILE z != 0 DO
P

z := z - 1

END

Also sind LOOP-Schleifen eigentlich nicht mehr nötig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 25 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: WHILE-Programm

Semantik von WHILE x != 0 DO P END:

P wird ausgeführt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x jeweils vor jeder
Ausführung von P geprüft wird.

(Die Ausführung hängt also davon ab, wie P den Wert von x ändert.)

Quiz: Wir betrachten folgendes WHILE-Programm:

x0 := x1
WHILE x1 != 0 DO
y := x1 - 1

IF y != 0 THEN x1 := x1 - 2 END
END

Welche der gelisteten Funktionen berechnet das Programm?

• f1 : N→ N mit f1(n1) = n1

✗

• f2 : N→ N mit f2(n1) = n1, falls n1 , 1, sonst undefiniert

✗

• f3 : N→ N mit f3(n1) = n1, falls n1 gerade, sonst undefiniert

✓

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 26 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: WHILE-Programm

Semantik von WHILE x != 0 DO P END:

P wird ausgeführt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x jeweils vor jeder
Ausführung von P geprüft wird.

(Die Ausführung hängt also davon ab, wie P den Wert von x ändert.)

Quiz: Wir betrachten folgendes WHILE-Programm:

x0 := x1
WHILE x1 != 0 DO
y := x1 - 1

IF y != 0 THEN x1 := x1 - 2 END
END

Welche der gelisteten Funktionen berechnet das Programm?

• f1 : N→ N mit f1(n1) = n1 ✗

• f2 : N→ N mit f2(n1) = n1, falls n1 , 1, sonst undefiniert

✗

• f3 : N→ N mit f3(n1) = n1, falls n1 gerade, sonst undefiniert

✓

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 26 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: WHILE-Programm

Semantik von WHILE x != 0 DO P END:

P wird ausgeführt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x jeweils vor jeder
Ausführung von P geprüft wird.

(Die Ausführung hängt also davon ab, wie P den Wert von x ändert.)

Quiz: Wir betrachten folgendes WHILE-Programm:

x0 := x1
WHILE x1 != 0 DO
y := x1 - 1

IF y != 0 THEN x1 := x1 - 2 END
END

Welche der gelisteten Funktionen berechnet das Programm?

• f1 : N→ N mit f1(n1) = n1 ✗

• f2 : N→ N mit f2(n1) = n1, falls n1 , 1, sonst undefiniert ✗

• f3 : N→ N mit f3(n1) = n1, falls n1 gerade, sonst undefiniert

✓

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 26 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: WHILE-Programm

Semantik von WHILE x != 0 DO P END:

P wird ausgeführt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x jeweils vor jeder
Ausführung von P geprüft wird.

(Die Ausführung hängt also davon ab, wie P den Wert von x ändert.)

Quiz: Wir betrachten folgendes WHILE-Programm:

x0 := x1
WHILE x1 != 0 DO
y := x1 - 1

IF y != 0 THEN x1 := x1 - 2 END
END

Welche der gelisteten Funktionen berechnet das Programm?

• f1 : N→ N mit f1(n1) = n1 ✗

• f2 : N→ N mit f2(n1) = n1, falls n1 , 1, sonst undefiniert ✗

• f3 : N→ N mit f3(n1) = n1, falls n1 gerade, sonst undefiniert ✓

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 26 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE-Berechenbare Funktionen

Eine partielle Funktion f : Nk → N heißt genau dann WHILE-berechenbar, wenn es ein
WHILE-Programm P gibt, so dass gilt:

• Falls f (n1, . . . , nk) definiert ist, dann terminiert P bei Eingabe n1, . . . , nk mit der
Ausgabe f (n1, . . . , nk);

• falls f (n1, . . . , nk) nicht definiert ist, dann terminiert P bei Eingabe n1, . . . , nk nicht.

Das wichtigste Ergebnis zu WHILE ist nun das folgende:

Satz: Eine partielle Funktion ist genau dann WHILE-berechenbar, wenn sie Turing-
berechenbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 27 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE-Berechenbare Funktionen

Eine partielle Funktion f : Nk → N heißt genau dann WHILE-berechenbar, wenn es ein
WHILE-Programm P gibt, so dass gilt:

• Falls f (n1, . . . , nk) definiert ist, dann terminiert P bei Eingabe n1, . . . , nk mit der
Ausgabe f (n1, . . . , nk);

• falls f (n1, . . . , nk) nicht definiert ist, dann terminiert P bei Eingabe n1, . . . , nk nicht.

Das wichtigste Ergebnis zu WHILE ist nun das folgende:

Satz: Eine partielle Funktion ist genau dann WHILE-berechenbar, wenn sie Turing-
berechenbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 27 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen.
{ Daraus kann man schon DTMs für x := y + n erzeugen.

• Die Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängen“ von TMs).

• While-Schleifen sind durch Zyklen im Zustandsgraphen darstellbar, wobei am
Anfang jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu
können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen.
{ Daraus kann man schon DTMs für x := y + n erzeugen.

• Die Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängen“ von TMs).

• While-Schleifen sind durch Zyklen im Zustandsgraphen darstellbar, wobei am
Anfang jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu
können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen.
{ Daraus kann man schon DTMs für x := y + n erzeugen.

• Die Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängen“ von TMs).

• While-Schleifen sind durch Zyklen im Zustandsgraphen darstellbar, wobei am
Anfang jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu
können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen.
{ Daraus kann man schon DTMs für x := y + n erzeugen.

• Die Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängen“ von TMs).

• While-Schleifen sind durch Zyklen im Zustandsgraphen darstellbar, wobei am
Anfang jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu
können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen.
{ Daraus kann man schon DTMs für x := y + n erzeugen.

• Die Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängen“ von TMs).

• While-Schleifen sind durch Zyklen im Zustandsgraphen darstellbar, wobei am
Anfang jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu
können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen.
{ Daraus kann man schon DTMs für x := y + n erzeugen.

• Die Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängen“ von TMs).

• While-Schleifen sind durch Zyklen im Zustandsgraphen darstellbar, wobei am
Anfang jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu
können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen.
{ Daraus kann man schon DTMs für x := y + n erzeugen.

• Die Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängen“ von TMs).

• While-Schleifen sind durch Zyklen im Zustandsgraphen darstellbar, wobei am
Anfang jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu
können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TM→WHILE (1)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir nehmen zur Vereinfachung an, dass das TM-Arbeitsalphabet
Γ = {0, 1} ist, und dass die Zustände natürliche Zahlen sind.

• Eine TM-Konfiguration a1a2 · · · ap q ap+1ap+2 · · · aℓ wird dargestellt durch drei
Variablen:

– left hat den Wert, der durch a1a2 · · · ap binär kodiert wird (least significant bit
ist dabei ap);

– state hat den Wert q;
– thgir hat den Wert, der durch aℓ · · · ap+2ap+1 binär kodiert wird (least

significant bit ist also ap+1).

• Diese Kodierung kann leicht auf größere Arbeitsalphabete erweitert werden (n-äre
statt binäre Kodierung).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 29 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TM→WHILE (1)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir nehmen zur Vereinfachung an, dass das TM-Arbeitsalphabet
Γ = {0, 1} ist, und dass die Zustände natürliche Zahlen sind.

• Eine TM-Konfiguration a1a2 · · · ap q ap+1ap+2 · · · aℓ wird dargestellt durch drei
Variablen:

– left hat den Wert, der durch a1a2 · · · ap binär kodiert wird (least significant bit
ist dabei ap);

– state hat den Wert q;
– thgir hat den Wert, der durch aℓ · · · ap+2ap+1 binär kodiert wird (least

significant bit ist also ap+1).

• Diese Kodierung kann leicht auf größere Arbeitsalphabete erweitert werden (n-äre
statt binäre Kodierung).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 29 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TM→WHILE (2)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wie gesagt:
left hat den Wert, der durch a1a2 · · · ap binär kodiert wird

• Wir greifen auf (die Binärkodierung von) left wie auf einen Stapel (Keller, Stack) zu:
– Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

– Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

left := left * 2 + top

• Auf thgir kann man genauso zugreifen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 30 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TM→WHILE (2)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wie gesagt:
left hat den Wert, der durch a1a2 · · · ap binär kodiert wird

• Wir greifen auf (die Binärkodierung von) left wie auf einen Stapel (Keller, Stack) zu:

– Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

– Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

left := left * 2 + top

• Auf thgir kann man genauso zugreifen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 30 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TM→WHILE (2)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wie gesagt:
left hat den Wert, der durch a1a2 · · · ap binär kodiert wird

• Wir greifen auf (die Binärkodierung von) left wie auf einen Stapel (Keller, Stack) zu:
– Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

– Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

left := left * 2 + top

• Auf thgir kann man genauso zugreifen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 30 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TM→WHILE (2)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wie gesagt:
left hat den Wert, der durch a1a2 · · · ap binär kodiert wird

• Wir greifen auf (die Binärkodierung von) left wie auf einen Stapel (Keller, Stack) zu:
– Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

– Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

left := left * 2 + top

• Auf thgir kann man genauso zugreifen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 30 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TM→WHILE (3)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir haben das Band in zwei Stacks kodiert, mit den Zeichen links und rechts
neben dem TM-Kopf an oberster Stelle.

• Die TM-Simulation erfolgt jetzt in einer WHILE-Schleife:
WHILE halt != 0 DO PEinzelschritt END

• Das Programm PEinzelschritt führt einen Schritt aus:
– thgir.pop() liefert das Zeichen an der Leseposition
– Durch eine Folge von If-Bedingungen kann man für jede Kombination aus

Zustand q (in state) und gelesenem Zeichen eine Behandlung festlegen
– Schreiben von Symbol a durch thgir.push(a)
– Bewegung nach rechts: left.push(thgir.pop())
– Bewegung nach links: thgir.push(left.pop())
– Zustandsänderung durch einfache Zuweisung
– Anhalten durch Zuweisung halt := 0

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 31 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TM→WHILE (3)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir haben das Band in zwei Stacks kodiert, mit den Zeichen links und rechts
neben dem TM-Kopf an oberster Stelle.

• Die TM-Simulation erfolgt jetzt in einer WHILE-Schleife:
WHILE halt != 0 DO PEinzelschritt END

• Das Programm PEinzelschritt führt einen Schritt aus:
– thgir.pop() liefert das Zeichen an der Leseposition
– Durch eine Folge von If-Bedingungen kann man für jede Kombination aus

Zustand q (in state) und gelesenem Zeichen eine Behandlung festlegen
– Schreiben von Symbol a durch thgir.push(a)
– Bewegung nach rechts: left.push(thgir.pop())
– Bewegung nach links: thgir.push(left.pop())
– Zustandsänderung durch einfache Zuweisung
– Anhalten durch Zuweisung halt := 0

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 31 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TM→WHILE (3)

Behauptung 2: WHILE-Programme können DTMs simulieren:

Zusammenfassung:

• Natürliche Zahlen simulieren Stacks der Bandsymbole links und rechts;

• Berechnungsschritte werden durch einfache Arithmetik implementiert (in LOOP
möglich);

• eine WHILE-Schleife arbeitet die einzelnen Schritte ab, bis die TM hält.

Was fehlt noch zum detaillierten Beweis?

• Unsere Stack-Implementierung kann noch nicht mit dem leeren Stack umgehen.
{ Dies erfordert zusätzliche Tests und Sonderfälle (bei einseitig unendlichem
TM-Band asymmetrisch).

• Für größere Arbeitsalphabete könnten wir statt Binärkodierung eine n-äre
Kodierung verwenden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 32 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Zusammenfassung und Ausblick

WHILE-Programme können alle berechenbaren Probleme lösen.
(Dies ist ein weiteres Indiz für die Church-Turing-These.)

LOOP-Programme können fast alle praktisch relevanten Probleme lösen, aber nicht alle
berechenbaren Probleme.

Beweistechniken: strukturelle Induktion, Widerspruch durch Selbstbezüglichkeit (Busy
Beaver), TM mit einer While-Schleife und zwei Stacks simulieren

Was erwartet uns als nächstes?

• Relevantere Probleme

• Reduktionen

• Rice

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 33 von 33

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

