TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Ktnstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

3. Vorlesung: WHILE und LOOP

Sebastian Rudolph

Folien: © Markus Krotzsch, https://iccl.inf.tu-dresden.de/web/TheolLog2017, CC BY 3.0 DE

TU Dresden, 14. April 2025


https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Was bisher geschah ...

Grundbegriffe, die wir verstehen und erklaren kénnen:
DTM, NTM, Entscheider, Aufzéhler, berechenbar/entscheidbar, semi-entscheidbar,
unentscheidbar, Church-Turing-These

Das Unentscheidbare:

* _An algorithm is a finite answer to an infinite number of questions.*
(Stephen Kleene)

® Aber: Es gibt mehr Méglichkeiten, unendlich viele Fragen zu beantworten, als es
Algorithmen geben kann. (Cantor)

Weitere wichtige Ergebnisse:
® DTM und NTM haben die gleiche Ausdrucksstérke
e Zusammenhang Aufzéhler & Semi-Entscheidbarkeit
* Die Busy-Beaver-Funktion ist nicht berechenbar (sie wachst schneller als alle
berechenbaren Funktionen).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 2 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 3 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von TMs zu Programmiersprachen

Turingmaschinen als Berechnungsmodell

® Pro: Einfache, kurze Beschreibung (eine Folie)
~> Beweise oft ebenfalls einfach und kurz

e Kontra: Umstandliche Programmierung
~> einfache Algorithmen erfordern tausende Einzelschritte

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3

Folie 4 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Von TMs zu Programmiersprachen

Turingmaschinen als Berechnungsmodell

® Pro: Einfache, kurze Beschreibung (eine Folie)
~> Beweise oft ebenfalls einfach und kurz

e Kontra: Umstandliche Programmierung
~> einfache Algorithmen erfordern tausende Einzelschritte

Programmiersprachen als Berechnungsmodell

® Pro: Einfache, bequeme Programmierung
~» GroBBer Befehlssatz + Bibliotheken fiir Standardaufgaben

e Kontra: Umstandliche Beschreibung
(z.B. Beschreibung von C++ [ISO/IEC 14882] hat 776 Seiten)
~> Eigenschaften oft unklar; Beweise sehr umsténdlich

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3

Folie 4 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Programme

Idee: Definiere eine imperative Programmiersprache, die dennoch sehr einfach ist.

Features:

e Variablen xg, X1, X3, ... oder auch x, y, variablenName, ...
alle vom Typ “natirliche Zahl”

® Wertezuweisungen der Form
X 1=y + 42 und x =y - 23
fir beliebige natirliche Zahlen und Variablennamen
e “For-Schleifen”: LOOP x DO ... END

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 5 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Programme: Syntax

Die Programmiersprache LOOP basiert auf einer unendlichen Menge V von Variablen
und der Menge N der naturlichen Zahlen. LOOP-Programme sind induktiv definiert:

® Die Ausdricke
X:=y+n und xX:=y-n (Wertzuweisung)

sind LOOP-Programme fiir alle x,y € V und n € N.
® Wenn P; und P, LOOP-Programme sind, dann ist
Py; P, (Hintereinanderausfiihrung)
ein LOOP-Programm.
® Wenn P ein LOOP-Programm ist, dann ist
LOOP x DO P END (Schleife)
ein LOOP-Programm fir jede Variable x € V.

Vereinfachung: Wir erlauben, ,,;“ in Programmen durch Zeilenumbriiche zu ersetzen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 6 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Das folgende LOOP-Programm addiert zum Wert von y genau x-mal die Zahl 2:

LOOP x DO
yi=y+2
END

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 7 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Das folgende LOOP-Programm addiert zum Wert von y genau x-mal die Zahl 2:

LOOP x DO
yi=y+2
END

Dies entspricht also der Zuweisungy := y + (2 * x), die wir in LOOP nicht direkt
schreiben kénnen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 7 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Programme: Semantik (1)

Funktionsweise eines LOOP-Programms P:

® Eingabe: Eine Liste von k natlrlichen Zahlen
(Anmerkung: k& wird nicht durch das Programm festgelegt.)

® Ausgabe: Eine natlrliche Zahl
P berechnet also eine totale Funktion N¥ — N, fiir beliebige &

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 8 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Programme: Semantik (1)

Funktionsweise eines LOOP-Programms P:

® Eingabe: Eine Liste von k natlrlichen Zahlen
(Anmerkung: k& wird nicht durch das Programm festgelegt.)

® Ausgabe: Eine natlrliche Zahl
P berechnet also eine totale Funktion N¥ — N, fiir beliebige &

Initialisierung fur Eingabe n,, ... n;:
® LOOP speichert fiir jede Variable eine natlrliche Zahl als Wert
® Den Variablen x;, ..., xx werden anfangs die Werte ny, ..., n;, zugewiesen

e Allen anderen Variablen wird der Anfangswert 0 zugewiesen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 8 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Programme: Semantik (2)

Nach der Initialisierung wird das LOOP-Programm abgearbeitet:

® X =Yy + n
Der Variable x wird als neuer Wert die Summe des (alten) Wertes fir y und der
Zahl n zugewiesen.

® X =y - n
Der Variable x wird als neuer Wert die Differenz des (alten) Wertes flr y und der
Zahl n zugewiesen, falls diese gréBer als 0 ist;
ansonsten wird x der Wert 0 zugewiesen.

® P; P
Erst wird P, abgearbeitet, dann P;.

e LOOP x DO P END:
P wird genau n-mal ausgefuhrt, fir den Zahlenwert n, der x anfangs zugewiesen ist.
(Die Anzahl der Schleifendurchlaufe bleibt also gleich, wenn P den Wert von x andert.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 9 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programmes:

® Das Ergebnis der Abarbeitung ist der Wert der Variable x¢ nach dem Beenden der
Berechnung.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 10 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programmes:

® Das Ergebnis der Abarbeitung ist der Wert der Variable x¢ nach dem Beenden der
Berechnung.

Satz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 10 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programmes:

® Das Ergebnis der Abarbeitung ist der Wert der Variable x¢ nach dem Beenden der
Berechnung.

Satz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Beweis: Gemaf der Definition von LOOP-Programmen per struktureller Induktion.

Induktionsanfang: Die Behauptung gilt sicherlich fir Wertzuweisungen.

Weitere Félle (Induktionsschritte):
® P; P
Wenn P; und P, nach endlich vielen Schritten terminieren, dann auch Py ; P,.
e LOOP x DO P END:

Far jede mdgliche Zuweisung von x wird P endlich oft wiederholt; wenn P in
endlich vielen Schritten terminiert, dann also auch die Schleife. O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 10 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
® Eingabe: Eine Liste von k natlrlichen Zahlen (k wird nicht durch das Programm festgelegt.)
® Ausgabe: Eine natlrliche Zahl (Der Wert von x¢ nach Abarbeitung des Programms.)

P berechnet also fiir jedes k € N eine totale Funktion f : N¥ — N,

Quiz: Wir betrachten folgendes LOOP-Programm:
Xg = Xg + 1
LOOP x; DO x¢ :=x¢ + 1 END
LOOP x, DO x4 := X9 - 2 END
Welche der gelisteten Funktionen berechnet das Programm?
® fi O} > Nmit fi(() = 1
® £ :N - NmMmitfHhwm)=1+n
® 5 NXN - Zmitf3(n;,n) =1+n; —2ny
O f4 :NXN-—->N mitf4(n1,n2) =max {1 + n; — 2n,, 0}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
® Eingabe: Eine Liste von k natlrlichen Zahlen (k wird nicht durch das Programm festgelegt.)
® Ausgabe: Eine natlrliche Zahl (Der Wert von x¢ nach Abarbeitung des Programms.)

P berechnet also fiir jedes k € N eine totale Funktion f : N¥ — N,

Quiz: Wir betrachten folgendes LOOP-Programm:
Xg = Xg + 1
LOOP x; DO x¢ :=x¢ + 1 END
LOOP x, DO x4 := X9 - 2 END
Welche der gelisteten Funktionen berechnet das Programm?
® fi O} > Nmit fi(() = 1 v
® £ :N - NmMmitfHhwm)=1+n
® 5 NXN - Zmitf3(n;,n) =1+n; —2ny
O f4 :NXN-—->N mitf4(n1,n2) =max {1 + n; — 2n,, 0}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
® Eingabe: Eine Liste von k natlrlichen Zahlen (k wird nicht durch das Programm festgelegt.)
® Ausgabe: Eine natlrliche Zahl (Der Wert von x¢ nach Abarbeitung des Programms.)

P berechnet also fiir jedes k € N eine totale Funktion f : N¥ — N,

Quiz: Wir betrachten folgendes LOOP-Programm:
Xg = Xg + 1
LOOP x; DO x¢ :=x¢ + 1 END
LOOP x, DO x4 := X9 - 2 END
Welche der gelisteten Funktionen berechnet das Programm?
® fi O} > Nmit fi(() = 1
® £ :N - NmMmitfHhwm)=1+n v
® 5 NXN - Zmitf3(n;,n) =1+n; —2ny
O f4 :NXN-—->N mitf4(n1,n2) =max {1 + n; — 2n,, 0}

AN

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
® Eingabe: Eine Liste von k natlrlichen Zahlen (k wird nicht durch das Programm festgelegt.)
® Ausgabe: Eine natlrliche Zahl (Der Wert von x¢ nach Abarbeitung des Programms.)

P berechnet also fiir jedes k € N eine totale Funktion f : N¥ — N,

Quiz: Wir betrachten folgendes LOOP-Programm:
Xg = Xg + 1
LOOP x; DO x¢ :=x¢ + 1 END
LOOP x, DO x4 := X9 - 2 END
Welche der gelisteten Funktionen berechnet das Programm?
® fi O} > Nmit fi(() = 1
® £ :N - NmMmitfHhwm)=1+n
® 5 NXN - Zmitf3(n;,n) =1+n; —2ny X
O f4 :NXN-—->N mitf4(n1,n2) =max {1 + n; — 2n,, 0}

N SN

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: LOOP-Programm

Funktionsweise eines LOOP-Programms P:
® Eingabe: Eine Liste von k natlrlichen Zahlen (k wird nicht durch das Programm festgelegt.)
® Ausgabe: Eine natlrliche Zahl (Der Wert von x¢ nach Abarbeitung des Programms.)

P berechnet also fiir jedes k € N eine totale Funktion f : N¥ — N,

Quiz: Wir betrachten folgendes LOOP-Programm:

Xg = Xg + 1
LOOP x; DO x¢ := x¢ + 1 END
LOOP x, DO x4 := X9 - 2 END

Welche der gelisteten Funktionen berechnet das Programm?
® fi :{Q} > N mit /1)) = 1
® £ :N - NmMmitfHhwm)=1+n
® 5 NXN - Zmitf3(n;,n) =1+n; —2ny
® f, : NXN — N mit f4(n,n;) = max {1 + n; — 2n,,0}

N %X N SN

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 11 von 33



https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung mit Variable: “x := y”:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 12 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung mit Variable: “x := y”:

X:=y+0

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 12 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung mit Variable: “x := y”:

X:=y+0

Wertzuweisung mit 0: “x := 0”:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 12 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros

definieren.

Wertzuweisung mit Variable: “x := y”:

X:=y+0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x:=x-1
END

Sebastian Rudolph, TU Dresden

Theoretische Informatik und Logik, VL 3

Folie 12 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros

definieren.

Wertzuweisung mit Variable: “x := y”:

X:=y+0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x:=x-1
END

Wertzuweisung mit einer beliebigen konstanten Zahl: “

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3

Folie 12 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros

definieren.

Wertzuweisung mit Variable: “x := y”:

X:=y+0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x:=x-1
END

Wertzuweisung mit einer beliebigen konstanten Zahl: “

x:=0
X:=X+n

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3

Folie 12 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

”.

Wertzuweisung: “x =y + z”:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 13 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros

definieren.
Wertzuweisung: “x

X =y
LOOP z DO
X:=x+1
END

Sebastian Rudolph, TU Dresden

”

=y + z%

Theoretische Informatik und Logik, VL 3

Folie 13 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

”

Wertzuweisung: “x =y + z”:

X =y
LOOP z DO
X:=x+1
END

Fallunterscheidung: “IF x != 0 THEN P END”:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 13 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.

Wertzuweisung: “x =y + z”:

X =y
LOOP z DO
X:=x+1
END

Fallunterscheidung: “IF x != 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 13 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Berechenbare Funktionen

Eine Funktion f : N¥ — N heiBt genau dann LOOP-berechenbar, wenn es ein LOOP-
Programm gibt, das die Funktion berechnet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 14 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-Berechenbare Funktionen

Eine Funktion f : N¥ — N heiBt genau dann LOOP-berechenbar, wenn es ein LOOP-
Programm gibt, das die Funktion berechnet.

Beispiel: Die folgenden Funktionen sind LOOP-berechenbar:
e Addition: (x,y) — x +y (gerade gezeigt)
Multiplikation: (x, y) — x - y (sieche Ubung)

Potenz: (x,y) — x¥ (entsteht aus - wie - aus +)

und viele andere ... (max, min, div, mod, usw.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 14 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP jenseits von N

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 15 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP jenseits von N

LOOP kann auch das x-te Bit der Binarkodierung von y berechnen. Dadurch kann man
in LOOP (auf umstandliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binar
(2) Evaluiere die Binarkodierung als natirliche Zahl und verwende diese als Eingabe
(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 15 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP jenseits von N

LOOP kann auch das x-te Bit der Binarkodierung von y berechnen. Dadurch kann man
in LOOP (auf umstandliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binar
(2) Evaluiere die Binarkodierung als natirliche Zahl und verwende diese als Eingabe
(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Beispiele fur LOOP-berechenbare Funktionen:
® das Wortproblem regularer, kontextfreier und kontextsensitiver Sprachen
® alle Probleme in NP, z.B. Erflllbarkeit aussagenlogischer Formeln
® praktisch alle ,gangigen“ Algorithmen (Sortieren, Suchen, Optimieren, ...)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 15 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Grenzen von LOOP

Satz: Es gibt berechenbare Funktionen, die nicht LOOP-berechenbar sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 16 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Grenzen von LOOP

Satz: Es gibt berechenbare Funktionen, die nicht LOOP-berechenbar sind.

Das ist weniger Uberraschend, als es vielleicht klingt:
Beweis:

® Ein LOOP-Programm terminiert immer.

® Dabher ist jede LOOP-berechenbare Funktion total.

® Es gibt aber auch nicht-totale Funktionen, die berechenbar sind.
(Z.B. die “partiellste” Funktion, die nirgends definiert ist.) O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 16 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-berechenbar # berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 17 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-berechenbar # berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist Gberraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden kénnen — quasi ein erster Versuch der Definition von Berechenbarkeit.

Hilbert definierte LOOP-Berechenbarkeit etwas anders, mit Hilfe sogenannter primitiv rekursiver Funktionen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 17 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-berechenbar # berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist Gberraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden kénnen — quasi ein erster Versuch der Definition von Berechenbarkeit.

Hilbert definierte LOOP-Berechenbarkeit etwas anders, mit Hilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:
® Gabriel Sudan (1927)
® Wilhelm Ackermann (1928)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 17 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LOOP-berechenbar # berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist Gberraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden kénnen — quasi ein erster Versuch der Definition von Berechenbarkeit.

Hilbert definierte LOOP-Berechenbarkeit etwas anders, mit Hilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:
® Gabriel Sudan (1927)
® Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . ..

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 17 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

FleiBBige Biber fur LOOP

Die Lange eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.

Dazu nehmen wir an:
® Zahlen werden in ihrer Dezimalkodierung geschrieben

® Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x;,3 als
Schreibweise fir x123 an)

® Wir betrachten ; als ein Zeichen (Zeilenumbriiche werden dagegen nicht gezahlt)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 18 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Flei3ige Biber fur LOOP

Die Lange eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.

Dazu nehmen wir an:
® Zahlen werden in ihrer Dezimalkodierung geschrieben

® Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x;,3 als
Schreibweise fir x123 an)

® Wir betrachten ; als ein Zeichen (Zeilenumbriiche werden dagegen nicht gezahlt)

Die Funktion X, oop : N — N liefert fUr jede Zahl ¢ die groBte Zahl X oop(£), die von
einem LOOP-Programm der Lange < ¢ fiur eine leere Eingabe (alle Variablen sind 0)
ausgegeben wird. Dabei sei X oop(£) = 0 falls es kein Programm der Lange < ¢ gibt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 18 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Flei3ige Biber fur LOOP

Die Lange eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.

Dazu nehmen wir an:
® Zahlen werden in ihrer Dezimalkodierung geschrieben

® Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x;,3 als
Schreibweise fir x123 an)

® Wir betrachten ; als ein Zeichen (Zeilenumbriiche werden dagegen nicht gezahlt)

Die Funktion X, oop : N — N liefert fUr jede Zahl ¢ die groBte Zahl X oop(£), die von
einem LOOP-Programm der Lange < ¢ fiur eine leere Eingabe (alle Variablen sind 0)
ausgegeben wird. Dabei sei X oop(£) = 0 falls es kein Programm der Lange < ¢ gibt.

Beobachtung: X, oop ist wohldefiniert:
® Die Zahl der LOOP-Programme mit maximaler Lange ¢ ist endlich.
® Unter diesen Programmen gibt es eine maximale Ausgabe.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 18 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Beispiel: Die LOOP-Anweisung x¢ :=y + 9 ist das ,fleiBigste“ Programm fir ¢ = 7,
d.h. es bezeugt X, oop(7) = 9.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 19 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Beispiel: Die LOOP-Anweisung x¢ :=y + 9 ist das ,fleiBigste“ Programm fir ¢ = 7,
d.h. es bezeugt X, oop(7) = 9.

Fir ¢ = 8 gilt dementsprechend bereits X oop(8) = 99.

Flr ¢ < 7 gibt es keine Zuweisung, die x¢ andert, d.h., X oop(¢) = 0.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 19 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Beispiel: Die LOOP-Anweisung x¢ :=y + 9 ist das ,fleiBigste“ Programm fir ¢ = 7,
d.h. es bezeugt X, oop(7) = 9.

Fir ¢ = 8 gilt dementsprechend bereits X oop(8) = 99.

Flr ¢ < 7 gibt es keine Zuweisung, die x¢ andert, d.h., X oop(¢) = 0.

Bonusaufgabe: Gibt es eine Zahl ¢, bei der X, oop(£) durch ein Programm berechnet
wird, welches die Zahl X, oop(¢) nicht als Konstante im Quelltext enthalt? Wie kénnte
das entsprechende Programm aussehen?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 19 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 20 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:
(1) ZLoop ist berechenbar.
(2) XLoop ist nicht LOOP-berechenbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 20 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:
(1) ZLoop ist berechenbar.
(2) XLoop ist nicht LOOP-berechenbar.

Behauptung (1) ist leicht zu zeigen:
® Es gibt endlich viele LOOP-Programme der Lange < <.
® Man kann alle davon durchlaufen und auf einem Computer simulieren.
® Die Simulation liefert immer nach endlich vielen Schritten ein Ergebnis.
® Das Maximum aller Ergebnisse ist der Wert von X, oop(?).

(Anmerkung: Wir verwenden hier einen intuitiven Berechnungsbegriff und Church-Turing.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 20 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:
(1) X_oop ist berechenbar.
(2) XLoop ist nicht LOOP-berechenbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) X_oop ist berechenbar.

(2) XLoop ist nicht LOOP-berechenbar.
Behauptung (2) zeigen wir per Widerspruch:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) X_oop ist berechenbar.

(2) XLoop ist nicht LOOP-berechenbar.
Behauptung (2) zeigen wir per Widerspruch:

® Angenommen X, oop ist LOOP-berechenbar durch Programm Py.
Sei k die Lange von Py.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) X_oop ist berechenbar.

(2) XLoop ist nicht LOOP-berechenbar.
Behauptung (2) zeigen wir per Widerspruch:

® Angenommen X, oop ist LOOP-berechenbar durch Programm Py.
Sei k die Lange von Py.

® Wir wahlen eine Zahl m mit m > k + 17 + log,,(m + 1) (immer mdglich)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) X_oop ist berechenbar.

(2) XLoop ist nicht LOOP-berechenbar.
Behauptung (2) zeigen wir per Widerspruch:

® Angenommen X, oop ist LOOP-berechenbar durch Programm Py.
Sei k die Lange von Py.

® Wir wahlen eine Zahl m mit m > k + 17 + log,,(m + 1) (immer mdglich)
® Sei P, das Programm x; := x; + m (Lange: 7 + [log;,(m + 1)])

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) X_oop ist berechenbar.

(2) XLoop ist nicht LOOP-berechenbar.
Behauptung (2) zeigen wir per Widerspruch:

® Angenommen X, oop ist LOOP-berechenbar durch Programm Py.
Sei k die Lange von Py.

® Wir wahlen eine Zahl m mit m > k + 17 + log,,(m + 1) (immer mdglich)
® Sei P, das Programm x; := x; + m (Lange: 7 + [log;,(m + 1)])
® Sei P,, das Programm x¢ := x¢ + 1 (Lange:8)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) X_oop ist berechenbar.

(2) XLoop ist nicht LOOP-berechenbar.
Behauptung (2) zeigen wir per Widerspruch:

® Angenommen X, oop ist LOOP-berechenbar durch Programm Py.
Sei k die Lange von Py.

Wir wéhlen eine Zahl m mit m > k + 17 + log,,(m + 1) (immer mdglich)

Sei P, das Programm x; := x; + m (Lange: 7 + [log,,(m + 1)])

Sei P, das Programm x¢ := x¢ + 1 (Lange: 8)
Wir definieren P = P,,; Px; P,..

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) X_oop ist berechenbar.

(2) XLoop ist nicht LOOP-berechenbar.
Behauptung (2) zeigen wir per Widerspruch:

® Angenommen X, oop ist LOOP-berechenbar durch Programm Py.
Sei k die Lange von Py.

Wir wéhlen eine Zahl m mit m > k + 17 + log,,(m + 1) (immer mdglich)

Sei P, das Programm x; := x; + m (Lange: 7 + [log,,(m + 1)])

Sei P, das Programm x¢ := x¢ + 1 (Lange: 8)

Wir definieren P = P,,; Px; P,..
Die Lange von Pist £ = k + 17 + [log,,(m + 1)1, damit gilt £ < m.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:
(1) X_oop ist berechenbar.
(2) XLoop ist nicht LOOP-berechenbar.
Behauptung (2) zeigen wir per Widerspruch:
® Angenommen X, oop ist LOOP-berechenbar durch Programm Py.
Sei k die Lange von Py.
® Wir wahlen eine Zahl m mit m > k + 17 + log,,(m + 1) (immer mdglich)
® Sei P, das Programm x; := x; + m (Lange: 7 + [log;,(m + 1)])
® Sei P,, das Programm x¢ := x¢ + 1 (Lange:8)
® Wir definieren P = P,,; Py ; P4..
Die Lange von Pist £ = k + 17 + [log,,(m + 1)1, damit gilt £ < m.
Aber P, ausgefiihrt auf der leeren Eingabe, gibt die Zahl £ pop(m) + 1 aus.
Widerspruch. o

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 21 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 22 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was fehlt?

Frage: Wieso ist LOOP zu schwach?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 23 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was fehlt?

Frage: Wieso ist LOOP zu schwach?

Intuitive Antwort: LOOP-Programme terminieren immer (zu vorhersehbar).

~» Wir brauchen ein weniger vorhersehbares Programmkonstrukt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 23 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE-Programme: Syntax und Semantik

Die Programmiersprache WHILE basiert wie LOOP auf Variablen V und natirlichen
Zahlen N. Man erhalt die Definition von WHILE-Programmen, indem man die induktive
Definition von LOOP-Programmen um folgenden Punkt erweitert:

® Wenn P ein WHILE-Programm ist, dann ist
WHILE x != ® DO P END

ein WHILE-Programm, fiir jede Variable x € V.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 24 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE-Programme: Syntax und Semantik

Die Programmiersprache WHILE basiert wie LOOP auf Variablen V und natirlichen
Zahlen N. Man erhélt die Definition von WHILE-Programmen, indem man die induktive
Definition von LOOP-Programmen um folgenden Punkt erweitert:

e Wenn P ein WHILE-Programm ist, dann ist
WHILE x !'= 0 DO P END

ein WHILE-Programm, fiir jede Variable x € V.

Semantik von WHILE x != 0 DO P END:

P wird ausgefiihrt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x
jeweils vor jeder Ausflhrung von P gepruft wird.

(Die Ausfuhrung héngt also davon ab, wie P den Wert von x &ndert.)

Ansonsten werden WHILE-Programme wie LOOP-Programme ausgewertet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 24 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE: Beobachtungen

Es ist méglich, dass ein WHILE-Programm nicht terminiert, z.B.

x:=1
WHILE x != ® DO

yi=y+2
END

Sebastian Rudolph, TU Dresden

Theoretische Informatik und Logik, VL 3

Folie 25 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE: Beobachtungen

Es ist méglich, dass ein WHILE-Programm nicht terminiert, z.B.

x:=1
WHILE x != 0 DO

yi=y+2
END

Wir kdnnen LOOP x DO P END (fur ein ,frisches” z) ersetzen durch:

zZ =X
WHILE z != 0 DO
P
z:=z-1
END

Also sind LOOP-Schleifen eigentlich nicht mehr nétig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3

Folie 25 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: WHILE-Programm

Semantik von WHILE x !'= @ DO P END:

P wird ausgefiihrt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x jeweils vor jeder
Ausflhrung von P geprift wird.

(Die Ausflihrung hangt also davon ab, wie P den Wert von x andert.)

Quiz: Wir betrachten folgendes WHILE-Programm:

Xg = X1
WHILE x, != 0 DO

yi=x;-1

IF y != 0 THEN x; := x; - 2 END
END

Welche der gelisteten Funktionen berechnet das Programm?
® fi:N - Nmit fi(n;) =m
® £, : N — N mit f2(n;) = ny, falls n; # 1, sonst undefiniert
® f;: N — N mit f3(n;) = ny, falls n; gerade, sonst undefiniert

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 26 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: WHILE-Programm

Semantik von WHILE x !'= @ DO P END:

P wird ausgefiihrt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x jeweils vor jeder
Ausflhrung von P geprift wird.

(Die Ausflihrung hangt also davon ab, wie P den Wert von x andert.)

Quiz: Wir betrachten folgendes WHILE-Programm:

Xg = X1
WHILE x, != 0 DO

yi=x;-1

IF y != 0 THEN x; := x; - 2 END
END

Welche der gelisteten Funktionen berechnet das Programm?
® fi:N - Nmit fi(n;) =m X
® £, : N — N mit f2(n;) = ny, falls n; # 1, sonst undefiniert
® f;: N — N mit f3(n;) = ny, falls n; gerade, sonst undefiniert

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 26 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: WHILE-Programm

Semantik von WHILE x !'= @ DO P END:

P wird ausgefiihrt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x jeweils vor jeder
Ausflhrung von P geprift wird.

(Die Ausflihrung hangt also davon ab, wie P den Wert von x andert.)

Quiz: Wir betrachten folgendes WHILE-Programm:

Xg = X1
WHILE x, != 0 DO

yi=x;-1

IF y != 0 THEN x; := x; - 2 END
END

Welche der gelisteten Funktionen berechnet das Programm?
® fi:N - Nmit fi(n;) =m X
® £, : N — N mit f2(n;) = ny, falls n; # 1, sonst undefiniert X
® f;: N — N mit f3(n;) = ny, falls n; gerade, sonst undefiniert

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 26 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: WHILE-Programm

Semantik von WHILE x !'= @ DO P END:

Ausflhrung von P geprift wird.
(Die Ausflihrung hangt also davon ab, wie P den Wert von x andert.)

P wird ausgefiihrt, solange der aktuelle Wert von x ungleich 0 ist, wobei der Wert von x jeweils vor jeder

Quiz: Wir betrachten folgendes WHILE-Programm:

Xg = X1
WHILE x, != 0 DO

yi=x;-1

IF y != 0 THEN x; := x; - 2 END
END

Welche der gelisteten Funktionen berechnet das Programm?
® fi:N - Nmit fi(n;) =m
® £, : N — N mit f2(n;) = ny, falls n; # 1, sonst undefiniert
® f;: N — N mit f3(n;) = ny, falls n; gerade, sonst undefiniert

3

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3

Folie 26 von 33



https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE-Berechenbare Funktionen

Eine partielle Funktion f : N¥ — N heiBt genau dann WHILE-berechenbar, wenn es ein
WHILE-Programm P gibt, so dass gilt:
® Falls f(ny,...,n;) definiert ist, dann terminiert P bei Eingabe ny, ..., n; mit der
Ausgabe f(ny, ..., n);

e falls f(n,...,n;) nicht definiert ist, dann terminiert P bei Eingabe n;, ..., n; nicht.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 27 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE-Berechenbare Funktionen

Eine partielle Funktion f : N¥ — N heiBt genau dann WHILE-berechenbar, wenn es ein
WHILE-Programm P gibt, so dass gilt:
® Falls f(ny,...,n;) definiert ist, dann terminiert P bei Eingabe ny, ..., n; mit der
Ausgabe f(ni,...,n);

e falls f(n,...,n;) nicht definiert ist, dann terminiert P bei Eingabe n;, ..., n; nicht.

Das wichtigste Ergebnis zu WHILE ist nun das folgende:

Satz: Eine partielle Funktion ist genau dann WHILE-berechenbar, wenn sie Turing-
berechenbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 27 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE —» TM

Behauptung 1: DTMs kénnen WHILE-Programme simulieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE —» TM

Behauptung 1: DTMs kénnen WHILE-Programme simulieren:

* Wir verwenden eine Mehrband-TM, in der es fir jede Variable im simulierten
Programm ein eigenes Band gibt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE —» TM

Behauptung 1: DTMs kénnen WHILE-Programme simulieren:

* Wir verwenden eine Mehrband-TM, in der es fir jede Variable im simulierten
Programm ein eigenes Band gibt.

e Natlrliche Zahlen werden auf den Bandern binar kodiert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE —» TM

Behauptung 1: DTMs kénnen WHILE-Programme simulieren:
* Wir verwenden eine Mehrband-TM, in der es fir jede Variable im simulierten
Programm ein eigenes Band gibt.
® Natlrliche Zahlen werden auf den Bandern binar kodiert.

® DTMs kdnnen leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhéhen.

~> Daraus kann man schon DTMs fir x := y + n erzeugen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE —» TM

Behauptung 1: DTMs kénnen WHILE-Programme simulieren:

* Wir verwenden eine Mehrband-TM, in der es fir jede Variable im simulierten
Programm ein eigenes Band gibt.

e Natlrliche Zahlen werden auf den Bandern binar kodiert.

® DTMs kdnnen leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhéhen.
~> Daraus kann man schon DTMs fir x := y + n erzeugen.

® Die Simulation von x := y - nist analog mdéglich (mit zusatzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE —» TM

Behauptung 1: DTMs kénnen WHILE-Programme simulieren:

* Wir verwenden eine Mehrband-TM, in der es fir jede Variable im simulierten
Programm ein eigenes Band gibt.

e Natlrliche Zahlen werden auf den Bandern binar kodiert.

® DTMs kdnnen leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhéhen.
~> Daraus kann man schon DTMs fir x := y + n erzeugen.

® Die Simulation von x := y - nist analog mdéglich (mit zusatzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

® Sequentielle Programmausfihrung P, ; P, wird direkt im Zustandsgraphen der
DTM umgesetzt (,Hintereinanderhdngen® von TMs).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

WHILE —» TM

Behauptung 1: DTMs kénnen WHILE-Programme simulieren:

Wir verwenden eine Mehrband-TM, in der es fir jede Variable im simulierten
Programm ein eigenes Band gibt.

Natirliche Zahlen werden auf den Bandern binéar kodiert.

DTMs kdnnen leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhéhen.

~> Daraus kann man schon DTMs fir x := y + n erzeugen.

Die Simulation von x := y - nist analog méglich (mit zusatzlichem Test auf
Gleichheit mit 0 beim Dekrementieren).

Sequentielle Programmausfihrung P, ; P, wird direkt im Zustandsgraphen der
DTM umgesetzt (,Hintereinanderhdngen® von TMs).

While-Schleifen sind durch Zyklen im Zustandsgraphen darstellbar, wobei am
Anfang jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu
kénnen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 28 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TM — WHILE (1)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 29 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TM — WHILE (1)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

® Wir nehmen zur Vereinfachung an, dass das TM-Arbeitsalphabet
I' = {0, 1} ist, und dass die Zustédnde natirliche Zahlen sind.
¢ Eine TM-Konfiguration aas - - - a, g ap41a,42 - - - a, wird dargestellt durch drei
Variablen:
— left hat den Wert, der durch a;a, - - - a, binér kodiert wird (least significant bit
ist dabei a,);
— state hat den Wert g;
— thgir hat den Wert, der durch a; - - - a,.2a,+1 binér kodiert wird (least
significant bit ist also a,+1).
® Diese Kodierung kann leicht auf gréBere Arbeitsalphabete erweitert werden (n-are
statt bindre Kodierung).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 29 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

T™M — WHILE (2)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

* Wie gesagt:
left hat den Wert, der durch a;a; - - - a,, binar kodiert wird

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 30 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

T™M — WHILE (2)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

* Wie gesagt:
left hat den Wert, der durch a;a; - - - a,, binar kodiert wird
* Wir greifen auf (die Binarkodierung von) left wie auf einen Stapel (Keller, Stack) zu:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 30 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TM — WHILE (2)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

* Wie gesagt:
left hat den Wert, der durch a;a; - - - a,, binar kodiert wird
* Wir greifen auf (die Binarkodierung von) left wie auf einen Stapel (Keller, Stack) zu:
— Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 30 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TM — WHILE (2)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

* Wie gesagt:
left hat den Wert, der durch a;a; - - - a,, binar kodiert wird
* Wir greifen auf (die Binarkodierung von) left wie auf einen Stapel (Keller, Stack) zu:
— Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

— Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar
left := left * 2 + top

e Auf thgir kann man genauso zugreifen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 30 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TM — WHILE (3)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

® Wir haben das Band in zwei Stacks kodiert, mit den Zeichen links und rechts
neben dem TM-Kopf an oberster Stelle.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 31 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TM — WHILE (3)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

® Wir haben das Band in zwei Stacks kodiert, mit den Zeichen links und rechts
neben dem TM-Kopf an oberster Stelle.

® Die TM-Simulation erfolgt jetzt in einer WHILE-Schleife:
WHILE halt != 0 DO Pginseischrit END

® Das Programm Peginzeischritt fUhrt einen Schritt aus:
— thgir.pop(Q) liefert das Zeichen an der Leseposition
— Durch eine Folge von If-Bedingungen kann man fir jede Kombination aus

Zustand ¢ (in state) und gelesenem Zeichen eine Behandlung festlegen

— Schreiben von Symbol a durch thgir.push(a)
— Bewegung nach rechts: left.push(thgir.pop(Q)
— Bewegung nach links: thgir.push(left.pop())
— Zustandsanderung durch einfache Zuweisung
— Anhalten durch Zuweisung halt := 0

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 31 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TM — WHILE (3)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

Zusammenfassung:
® Natlrliche Zahlen simulieren Stacks der Bandsymbole links und rechts;
® Berechnungsschritte werden durch einfache Arithmetik implementiert (in LOOP
maoglich);
* ecine WHILE-Schleife arbeitet die einzelnen Schritte ab, bis die TM halt.

Was fehlt noch zum detaillierten Beweis?

® Unsere Stack-Implementierung kann noch nicht mit dem leeren Stack umgehen.
~> Dies erfordert zusétzliche Tests und Sonderfélle (bei einseitig unendlichem
TM-Band asymmetrisch).

® Fir gréBere Arbeitsalphabete kénnten wir statt Binarkodierung eine n-are
Kodierung verwenden. |

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 32 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick

WHILE-Programme kénnen alle berechenbaren Probleme I6sen.
(Dies ist ein weiteres Indiz fir die Church-Turing-These.)

LOOP-Programme kénnen fast alle praktisch relevanten Probleme |6sen, aber nicht alle
berechenbaren Probleme.

Beweistechniken: strukturelle Induktion, Widerspruch durch Selbstbezliglichkeit (Busy
Beaver), TM mit einer While-Schleife und zwei Stacks simulieren

Was erwartet uns als nachstes?
® Relevantere Probleme
® Reduktionen

® Rice

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 3 Folie 33 von 33


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

