

Concurrency Theory

Lecture 1: Motivation & Introduction

Dr. Stephan Mennicke

Institute for Theoretical Computer Science Knowledge-Based Systems Group

April 7, 2025

Organization

Sessions

- Mondays DS4 (13.00–14.30), APB E005
- Tuesdays DS3 (11.10–12.40), APB E005
- **exception:** tomorrow (April 8)

Non-Sessions

- April 21 & 22 (*Easter week*)
- June 9 & 10 (Pentecost week)

Webpage

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2025)

Lecture Notes

Slides will be published online.

planned as *lectures* planned as *exercise* also planned as lecture

Goals of the Course

- 1. Basic notions of **concurrency theory**
 - computation = *interaction*
 - (global) states vs. *processes*
- 2. Process semantics = **bisimilarity**
 - comparative semantics
 - congruence results
- 3. Process control
 - process calculi (here, Milner's CCS)
 - Petri nets
- 4. Advanced **proof tools**
 - coinductive proofs the bisimulation proof method
 - weak simulation undecidability, even for non-Turing-complete models
 - exploiting well-quasi orderings deciding *non-halting* in infinite state spaces
 - inductive counting on steroids how far can Petri nets count?

(Non-)Prerequisites

- No particular prior course needed
- Basic knowledge in *Theoretical Computer Science* helpful (e.g., computation, Turing machines, a bit of complexity theory)
- General mathematical skills

Example Skill

Let A be a set. We call $\mathcal{R} \subseteq A \times A$ an equivalence relation if

1. \mathcal{R} is reflexive,

$$\forall a \in A : (a, a) \in \mathcal{R}$$

2. \mathcal{R} is symmetric, and

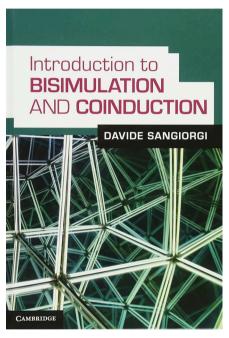
$$\forall a,b \in A: (a,b) \in \mathcal{R} \to (b,a) \in \mathcal{R}$$

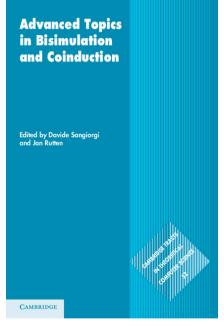
3. \mathcal{R} is transitive.

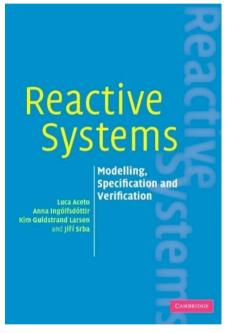
$$\forall a,b,c \in A: (a,b) \in \mathcal{R} \land (b,c) \in \mathcal{R} \rightarrow (a,c) \in \mathcal{R}$$

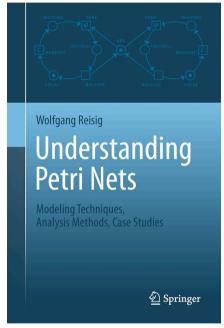
If \mathcal{R} is binary, we write $a \mathcal{R} b$ for $(a, b) \in \mathcal{R}$.

Reading List









[1] [2] [3]

Three People

The Core Model of Concurrency Theory

What is a Process

Example. The vending machine has

- a slot for consuming coins (\in) ;
- two buttons, one for picking coffee () and one for tea ();
- one compartment for providing beverages ().
- What kind of description is this?
- Who **interacts** with the vending machine?
- When can interaction take place?
- How can interaction take place?

Example. The vending machine accepts a coin (\mathbb{C}) and offers either coffee (\mathbb{C}) or (\mathbb{C}) . Depending on the choice, a beverage (\mathbb{C}) is returned.

What is a Process

Example. The vending machine accepts a coin (\mathbb{E}) and offers either coffee (\mathbb{E}) or (\mathbb{E}) . Depending on the choice, a beverage (\mathbb{F}) is returned.

Open Questions

- 1. Do we always have to insert € first?
- 2. Can we freely choose between so and ??
- 3. Does the machine return to its initial state once a 🥡 is returned?

Resolution

- mathematically precise description of **processes** and their **behavior**
- **behavior** is described by what we can observe by *interacting* with a **process**
- *interaction* here: very simple *handshake*

Suggestions?

- 1. (Nondeterministic) Finite Automata
- 2. Tree Transducers
- 3. Turing Machines
- 4. Minsky machines
- 5. Programming Language XYZ
- 6. (formal) grammars
- 7. Petri nets
- 8. ...
- 9. ...
- 10. ...
- 11. ...

in this course: Labeled Transition Systems (LTSs)

Labeled Transition Systems (LTS)

Definition 1 (Labeled Transition System) We call a triple $\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$ a *labeled transition system* (or LTS for short) if Pr is a set of *processes*, Act a set of *actions* such that $\mathsf{Pr} \cap \mathsf{Act} = \emptyset$, and $\longrightarrow \subseteq \mathsf{Pr} \times \mathsf{Act} \times \mathsf{Pr}$ the *labeled transition relation* of \mathcal{T} .

Labeled Transition Systems (LTS)

Definition 1 (Labeled Transition System) We call a triple $\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$ a *labeled transition system* (or LTS for short) if Pr is a set of *processes*, Act a set of *actions* such that $\mathsf{Pr} \cap \mathsf{Act} = \emptyset$, and $\longrightarrow \subseteq \mathsf{Pr} \times \mathsf{Act} \times \mathsf{Pr}$ the *labeled transition relation* of \mathcal{T} .

Processes Pr

- possibly infinite set
- abstract elements are $p, q, r, ..., p_0, p_1, p_2, ...$
- automaton analogy: *states*

Actions Act

- possibly infinite set
- disjoint from Pr
- elements are $a, b, c, ..., \alpha, \beta, \gamma, ...$
- thought of as *irreducible* active components of processes
- automaton analogy: alphabet symbols

LTS Examples

Definition 1 (Labeled Transition System) We call a triple $\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$ a *labeled transition system* (or LTS for short) if Pr is a set of *processes*, Act a set of *actions* such that $\mathsf{Pr} \cap \mathsf{Act} = \emptyset$, and $\longrightarrow \subseteq \mathsf{Pr} \times \mathsf{Act} \times \mathsf{Pr}$ the *labeled transition relation* of \mathcal{T} .

Example.
$$(\{p,q,r\},\{a,b,c\},\{(p,a,q),(p,a,p),(q,b,p),(q,c,r)\})$$

Example.

$$(\{p,q,r_1,r_2\},\{\textcircled{s},\textcircled{s},\textcircled{s},\textcircled{s},\textcircled{s},\{(p,\textbf{Q},q),(q,\textcircled{s},r_1),(q,\textcircled{s},r_2),(r_1,\textcircled{s},p),(r_2,\textcircled{s},p)\})$$

Example.
$$(\mathbb{N} \times \mathbb{N}, \{a\}, \{(\langle 0, 0 \rangle, a, \langle 0, n \rangle) \mid n \in \mathbb{N}\} \cup \{(\langle m, n \rangle, a, \langle m + 1, n \rangle) \mid m < n\})$$

Definition 1 (Labeled Transition System) We call a triple $\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$ a labeled transition system (or LTS for short) if Pr is a set of processes, Act a set of actions such that $Pr \cap Act = \emptyset$, and $\longrightarrow \subseteq Pr \times Act \times Pr$ the *labeled transition relation* of \mathcal{T} .

- write $p \xrightarrow{a} q$ for $(p, a, q) \in \longrightarrow$ write $p \xrightarrow{a}$ if there is a $q \in \Pr$ such that $p \xrightarrow{a} q$
- write $p \stackrel{a}{\longrightarrow}$ if there is no $q \in \Pr$ such that $p \stackrel{a}{\longrightarrow} a$

Definition 1 (Labeled Transition System) We call a triple $\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$ a *labeled transition system* (or LTS for short) if Pr is a set of *processes*, Act a set of *actions* such that $\mathsf{Pr} \cap \mathsf{Act} = \emptyset$, and $\longrightarrow \subseteq \mathsf{Pr} \times \mathsf{Act} \times \mathsf{Pr}$ the *labeled transition relation* of \mathcal{T} .

Definition 2 An LTS $\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$ is **image-finite** if for each $p \in \mathsf{Pr}$ and $a \in \mathsf{Act}$, the set $\left\{ p' \in \mathsf{Pr} \,\middle|\, p \stackrel{a}{\longrightarrow} p' \right\}$ is finite. **finite-state** if it has a finite number of states.

Definition 2 An LTS
$$\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$$
 is **image-finite** if for each $p \in \mathsf{Pr}$ and $a \in \mathsf{Act}$, the set $\left\{ p' \in \mathsf{Pr} \,\middle|\, p \stackrel{a}{\longrightarrow} p' \right\}$ is finite. **finite-state** if it has a finite number of states.

Example. Have
$$(\{p,q,r\},\{a,b,c\},\longrightarrow)$$
 such that $p \xrightarrow{a} q, p \xrightarrow{a} p, q \xrightarrow{b} p$, and $q \xrightarrow{c} r$

finite-state and finitely branching

Exercise. Show that finite-state implies finitely branching if the set of actions is finite.

Definition 2 An LTS $\mathcal{T} = (\Pr, \mathsf{Act}, \longrightarrow)$ is **image-finite** if for each $p \in \Pr$ and $a \in \mathsf{Act}$, the set $\left\{p' \in \Pr \middle| p \stackrel{a}{\longrightarrow} p'\right\}$ is finite. **finite-state** if it has a finite number of states.

Example. Have $(\{p,q,r_1,r_2\},\{\ensuremath{\bullet}\ ,\ensuremath{\bullet}\ ,\ensuremath{\bullet}\},\ensuremath{\longrightarrow}\)$ such that $p\stackrel{\ensuremath{\in}}{\longrightarrow} q,q\stackrel{\ensuremath{\bullet}}{\longrightarrow} r_1,q\stackrel{\ensuremath{\bullet}}{\longrightarrow} r_2$, and $r_i\stackrel{\ensuremath{\bullet}}{\longrightarrow} p$ (i=1,2).

Definition 2 An LTS $\mathcal{T} = (\Pr, \mathsf{Act}, \longrightarrow)$ is **image-finite** if for each $p \in \Pr$ and $a \in \mathsf{Act}$, the set $\left\{p' \in \Pr \middle| p \stackrel{a}{\longrightarrow} p'\right\}$ is finite. **finite-state** if it has a finite number of states.

Example. Have
$$(\mathbb{N} \times \mathbb{N}, \{a\}, \longrightarrow)$$
 with
$$\longrightarrow := \{ (\langle 0, 0 \rangle, a, \langle 0, n \rangle) \, | \, n \in \mathbb{N} \} \cup \{ (\langle m, n \rangle, a, \langle m+1, n \rangle) \, | \, m < n \}$$
 image-finite

Yet Another Well-Known Class

Definition 2 An LTS $\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$ is **image-finite** if for each $p \in \mathsf{Pr}$ and $a \in \mathsf{Act}$, the set $\left\{ p' \in \mathsf{Pr} \,\middle|\, p \xrightarrow{a} p' \right\}$ is finite. **finitely branching** if it is image-finite and the set $\left\{ \mu \in \mathsf{Act} \,\middle|\, p \xrightarrow{\mu} \right\}$ is finite. **finite-state** if it has a finite number of states.

Definition 3 An LTS \mathcal{T} is *deterministic* if for all processes $p \in \mathsf{Pr}$ and all $a \in \mathsf{Act}$, $p \xrightarrow{a} p'$ and $p \xrightarrow{a} p''$ implies p' = p''.

Exercise. Show that deterministic implies image-finite.

Relations to Graph Theory

Despite the fact, that we usually deal with graphs as *finite* objects, LTSs show certain commonalities with graphs: graph nodes vs. processes; (labeled) edges vs. transitions

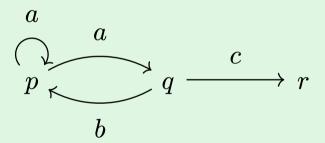
Definition 4 A process graph is a directed, rooted, edge-labeled, and possibly infinite graph G = (V, r, E) such that V is its set of nodes, $r \in V$ is called the root of G $(\mathsf{root}(G) := r)$, and $E \subseteq V \times \mathsf{Act} \times V$ is its directed and labeled edge relation.

Definition 5 For LTS (Pr, Act, \longrightarrow) and process $p \in Pr$, define G(p) := (V, p, E) by

- 1. V is the smallest set such that
 - $p \in V$ and
- if $q \in V$ and $q \xrightarrow{a} r$, then $r \in V$;

 2. $E := \left\{ (q, b, r) \middle| q, r \in V \text{ and } q \xrightarrow{b} r \right\}$

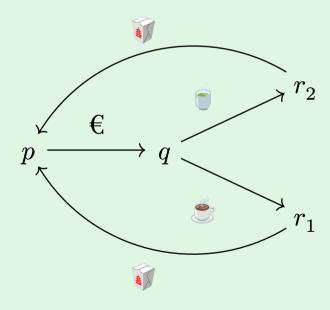
Example. Have $(\{p,q,r\},\{a,b,c\},\longrightarrow)$ such that $p \xrightarrow{a} q, p \xrightarrow{a} p, q \xrightarrow{b} p$, and $q \xrightarrow{c} r$ G(p):



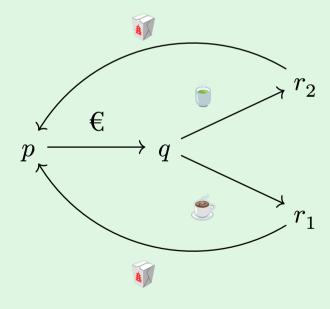
G(r):

r

Example. Have $(\{p,q,r_1,r_2\},\{\buildrel ,\buildrel ,\buildrel$



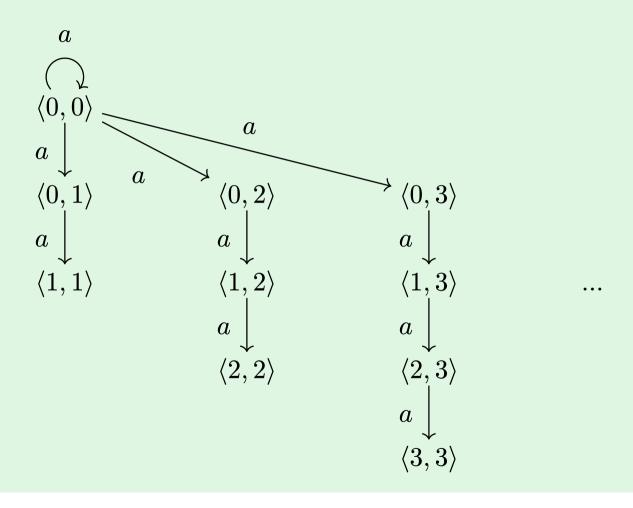
Example. Have $(\{p,q,r_1,r_2\},\{\ensuremath{\triangleright}\ ,\ensuremath{\triangleright}\ ,\ensuremath{\triangleright}\ ,\ensuremath{\triangleright})$ such that $p\overset{\ensuremath{\in}}{\longrightarrow} q,q\overset{\ensuremath{\triangleright}}{\longrightarrow} r_1,q\overset{\ensuremath{\triangleright}}{\longrightarrow} r_2$, and $r_i\overset{\ensuremath{\cap}}{\longrightarrow} p$ (i=1,2).



Example. Have $(\mathbb{N} \times \mathbb{N}, \{a\}, \longrightarrow)$ with

$$\longrightarrow := \{ (\langle 0, 0 \rangle, a, \langle 0, n \rangle) \mid n \in \mathbb{N} \} \cup \{ (\langle m, n \rangle, a, \langle m + 1, n \rangle) \mid m < n \}$$

 $G(\langle 0,0\rangle)$:



Process Equivalence 1.0: Process Graph Isomorphisms

Definition 4 A process graph is a directed, rooted, edge-labeled, and possibly infinite graph G = (V, r, E) such that V is its set of nodes, $r \in V$ is called the root of G (rootG := r), and $E \subseteq V \times \mathsf{Act} \times V$ is its directed and labeled edge relation.

Definition 6 Let $G=(V_G,r_G,E_G)$ and $H=(V_H,r_H,E_H)$ be process graphs. A graph isomorphism between G and H is a bijective function $f:V_G\to V_H$ such that

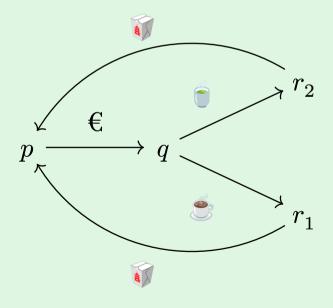
- 1. $f(r_G) = r_H$ and
- 2. $(u, a, v) \in E_G$ if and only if $(f(u), a, f(v)) \in E_H$.

Lemma 7 (Exercise ;)) If f is a graph isomorphism, f^{-1} is a graph isomorphism.

Process Equivalence 1.0: Process Graph Isomorphisms

Definition 8 Two processes $p, q \in Pr$ are *isomorphic*, denoted by $p \leftrightarrow q$, if there is a graph isomorphism between G(p) and G(q).

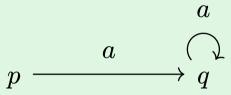
Example.





Do Isomorphisms Capture Behavior?

Example. Consider the following processes p and q



- systematically, p is a **1-time** unfolding of the loop in q
- compare

while
$$(x != 0) x = x - 1; y = y * 2;$$
to

if $(x != 0) \{ x = x - 1; while (x != 0) x = x - 1; \} y = y * 2;$

Process Graphs: Summary

The Good

- allow for graphical representations of LTSs and processes
- inherit useful notions and notations, e.g.,

Definition 9 Let $\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$ be an LTS and $p \in \mathsf{Pr}$. Define the set of all reachable processes $\mathsf{Reach}_{\mathcal{T}}(p)$ by

- 1. $p \in \operatorname{Reach}_{\mathcal{T}}(p)$ and
- 2. if $q \in \operatorname{Reach}_{\mathcal{T}}(p)$ and $q \xrightarrow{a} q'$ for some $a \in \operatorname{\mathsf{Act}}$, then $q' \in \operatorname{Reach}_{\mathcal{T}}(p)$.

Process $q \in \mathsf{Pr}$ is reachable from process $p \in \mathsf{Pr}$ if $q \in \mathsf{Reach}_{\mathcal{T}}(p)$.

The Bad

• natural process graph equivalence (i.e., \leftrightarrow) is too strong

Exercise. What about graph homomorphisms?

Relations to Automata Theory

LTSs and Nondeterministic Finite Automata (NFAs)

LTS

 $(\mathsf{Pr},\mathsf{Act},\longrightarrow)$

possibly infinite called actions

 $\longrightarrow \subset \Pr \times \mathsf{Act} \times \Pr$

some process p of interest

not important at all

possibly infinite

Act

set of symbols

notation

set of states

transitions

where to start?

where to end?

NFA

 $(Q, \Sigma, \delta, Q_0, F)$

LTSs and Nondeterministic Finite Automata (NFAs)

LTS

notation

set of states

set of symbols

transitions

where to start?

where to end?

$$(\mathsf{Pr},\mathsf{Act},\longrightarrow)$$

Pr

possibly infinite

Act

possibly infinite called actions

$$\longrightarrow \subseteq \mathsf{Pr} \times \mathsf{Act} \times \mathsf{Pr}$$

some process p of interest

not important at all

NFA

$$(Q,\Sigma,\delta,Q_0,F)$$

Q

always finite

 \sum

always finite called input alphabet

$$\delta: Q \times \Sigma \to \mathbf{2}^Q$$

any
$$q \in Q_0$$

any
$$q \in F$$

Definition 1 (Labeled Transition System) We call a triple $\mathcal{T} = (\mathsf{Pr}, \mathsf{Act}, \longrightarrow)$ a *labeled transition system* (or LTS for short) if Pr is a set of *processes*, Act a set of *actions* such that $\mathsf{Pr} \cap \mathsf{Act} = \emptyset$, and $\longrightarrow \subseteq \mathsf{Pr} \times \mathsf{Act} \times \mathsf{Pr}$ the *labeled transition relation* of \mathcal{T} .

• (partial) traces are finite sequences of action labels

 $\sigma \in \mathsf{Act}^{\star}$

• write $p \xrightarrow{\varepsilon} p$

- for $p \in \mathsf{Pr}$ and $\varepsilon = \mathsf{empty}$ word
- write $p \xrightarrow{a\sigma} q$ for $p, q \in \Pr$ if there is a $p' \in \Pr$ such that $p \xrightarrow{a} p'$ and $p \xrightarrow{\sigma} p'$

 $a \in \mathsf{Act}, \sigma \in \mathsf{Act}^{\star}$

• an LTS $\mathcal T$ can be seen as an NFA such that all states are final

 $F = \mathsf{Pr}$

- there is a notion closer to that of automata theory
- $p \in Pr$ is called a deadlock (process) if $p \stackrel{a}{\longrightarrow}$ for all $a \in Act$
- completed traces are traces ending in deadlocks

 $F = \{ p \in \Pr \mid p \text{ is a deadlock} \}$

(i) Note

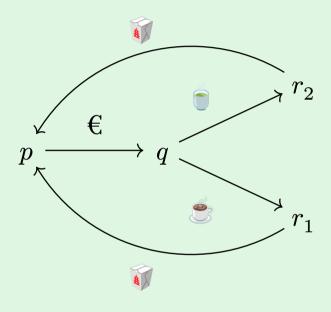
We oftentimes leave the LTS \mathcal{T} implicit and just talk about its processes. Whenever we state that p is a process, we assume there is an LTS in which p lives.

Definition 10 The set of (partial) traces of $p \in Pr$, traces(p), is defined inductively

- $\varepsilon \in \mathsf{traces}(p)$ and
- if $\sigma \in \operatorname{traces}(q)$ and $p \xrightarrow{a} q$, then $a\sigma \in \operatorname{traces}(p)$.

 $p \in \mathsf{Pr}$ is (partial) trace equialent to $q \in \mathsf{Pr}$, denoted $p \equiv_{\mathsf{tr}} q$, if $\mathsf{traces}(p) = \mathsf{traces}(q)$.

Example.



Example. Reconsider processes p and q and find that $p \equiv_{tr} q$

$$p \xrightarrow{a} q$$

 $\mathsf{traces}(p) = \{\varepsilon, a, aa, aaa, \ldots\} = \mathsf{traces}(q)$

Process (Equivalence) Relations

Definition 11 Any binary relation $\mathcal{R} \subseteq \Pr{\times} \Pr{}$ is called a *process relation*. \mathcal{R} is a *process equivalence* if it is a process relation and an equivalence.

We have seen now two instances of process equivalences.

Theorem 12 \leftrightarrow and \equiv_{tr} are process equivalences.

Proof: next slide

Throughout the course, we will explore many more process equivalences, each time with a different set of requirements.

Isomorphic equivalence (\leftrightarrow) and trace equivalence (\equiv_{tr}) form meaninful boundaries.

Trivial boundaries: $\mathcal{U} = \Pr \times \Pr$ (the *universal equivalence*) and \emptyset (the *non-equivalence*).

A Proof of Theorem 12

Theorem 12 \leftrightarrow and \equiv_{tr} are process equivalences.

Proof: For all processes $p, q, r \in Pr$,

- 1. $p \leftrightarrow p$ by id: $Pr \rightarrow Pr$ (id(q) = q for all $q \in Pr$) being an isomorphism.
- 2. $p \leftrightarrow q$ implies $q \leftrightarrow p$ since the inverse f^{-1} of an isomorphism f is an isomorphism (cf. Lemma 7).
- 3. $p \leftrightarrow q$ and $q \leftrightarrow r$ implies $p \leftrightarrow r$ since isomorphisms f and g compose to an isomorphism $g \circ f$.

For all processes $p, q, r \in Pr$,

- 1. $p \equiv_{\mathsf{tr}} p$ as set equality is reflexive.
- 2. $p \equiv_{tr} q$ implies $q \equiv_{tr} p$ since set equality is symmetric.
- 3. $p \equiv_{\mathsf{tr}} q$ and $q \equiv_{\mathsf{tr}} r$ implies $p \equiv_{\mathsf{tr}} r$ since set equality is transitive.

Dr. Stephan Mennicke Motivation & Introduction April 7, 2025

Towards a Spectrum of Process Equivalences

Theorem 13

$$\emptyset \quad \stackrel{(1)}{\subsetneq} \quad \leftrightarrow \quad \stackrel{(2)}{\subsetneq} \quad \equiv_{\mathsf{tr}} \quad \stackrel{(3)}{\subsetneq} \quad \mathcal{U} = \mathsf{Pr} \times \mathsf{Pr}$$

Proof: Parts (1) and (3) are clear. Proper inclusions stem from the examples we have seen.

Regarding (2), let $p, q \in Pr$ such that $p \leftrightarrow q$. Then there is an isomorphism f between the graphs G(p) and G(q), meaning

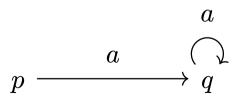
- 1. f(p) = q (since p and q are the roots of their respective process graphs) and 2. $p_1 \xrightarrow{a} p_2$ (and $p_1 \in \text{Reach}(p)$) if and only if $f(p_1) \xrightarrow{a} f(p_2)$ ($f(p_1) \in \text{Reach}(q)$)

Towards a Spectrum of Process Equivalences

For every trace $\sigma = a_1 a_2 ... a_n \in \mathsf{Act}^{\star}$,

$$\begin{split} \sigma \in \mathsf{traces}(p) \ \text{iff} \ \exists p_1, ..., p_n \in \mathsf{Pr} \ .p \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} p_n & \text{(by definition)} \\ \text{iff} \ f(p) \xrightarrow{a_1} f(p_1) \xrightarrow{a_2} \cdots \xrightarrow{a_n} f(p_n) & \text{(f is an isomorphism)} \\ \text{iff} \ \exists q_1, ..., q_n \in \mathsf{Pr} \ .q \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n \ (\mathsf{take} \ q_1 = f(p_1) ... q_n = f(p_n)) \\ \text{iff} \ \sigma \in \mathsf{traces}(q) & \text{(by definition)} \end{split}$$

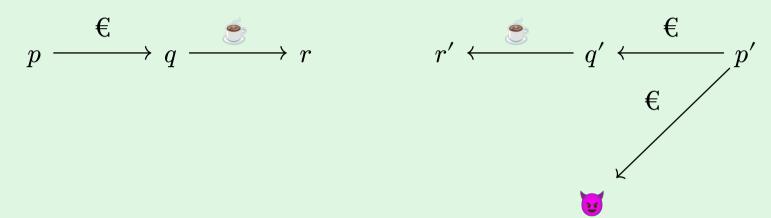
For $\leftrightarrow \neq \equiv_{tr}$, reconsider p and q below, having $p \equiv_{tr} q$ but $p \nleftrightarrow q$.



Dr. Stephan Mennicke Motivation & Introduction April 7, 2025

Trace Equivalence: End of Story?

Example.



$$\mathsf{traces}(p) = \{\varepsilon, \in, \in, \in, \in, \in, \in, \in, \in\} = \mathsf{traces}(p')$$

There is one trace, namely \in , that is a completed trace of p' but not of p.

In other words, trace equivalence (i.e., \equiv_{tr}) is **not** sensitive to deadlocks.

The Completed Trace Semantics

Definition 14 A process $p \in Pr$ is a deadlock if $p \stackrel{a}{\not\longrightarrow}$ for all $a \in Act$.

The set of completed traces of a process $p \in \Pr$, denoted by $\operatorname{traces}_c(p)$ is the set of all $\operatorname{traces} \sigma \in \operatorname{ctraces}(p)$ such that $p \xrightarrow{\sigma} q$ and q is a deadlock.

Processes $p, q \in \text{Pr}$ are completed trace equivalent, denoted by $p \equiv_{\mathsf{ctr}} q$, if $p \equiv_{\mathsf{tr}} q$ and $\mathsf{ctraces}(p) = \mathsf{ctraces}(q)$.

Theorem 15

$$\leftrightarrow \quad \stackrel{(1)}{\subsetneq} \quad \equiv_{\mathsf{ctr}} \quad \stackrel{(2)}{\subsetneq} \quad \equiv_{\mathsf{tr}}$$

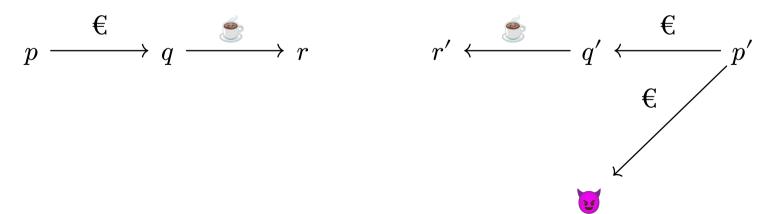
Proof of Theorem 15

Theorem 15

$$\leftrightarrow \quad \stackrel{(1)}{\subsetneq} \quad \equiv_{\mathsf{ctr}} \quad \stackrel{(2)}{\subsetneq} \quad \equiv_{\mathsf{tr}}$$

Regarding (2),

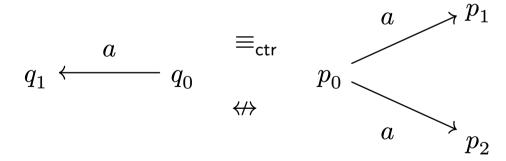
- observe that trace equivalence is part of the definition of \equiv_{ctr} ;
- furthermore, \forall serves as a counterexample, proving $\equiv_{ctr} \neq \equiv_{tr}$.



Proof of Theorem 15

Towards (1),

- observe that a deadlock process $p \in \Pr$ can only be isomorphic to other deadlock processes;
- in fact, all deadlock processes are isomorphic;
- hence, any completed trace of $p \in Pr$ must be a completed trace of f(p) (by the same arguments as in proof of Theorem 13);
- also, $\leftrightarrow \neq \equiv_{ctr}$ (e.g., p_0 and q_0 below).



Dr. Stephan Mennicke Motivation & Introduction April 7, 2025

Completed Traces: End of Story?

Definition 14 A process $p \in Pr$ is a deadlock if $p \xrightarrow{a}$ for all $a \in Act$.

The set of completed traces of a process $p \in \Pr$, denoted by $\operatorname{traces}_c(p)$ is the set of all $\operatorname{traces} \sigma \in \operatorname{ctraces}(p)$ such that $p \stackrel{\sigma}{\longrightarrow} q$ and q is a deadlock.

Processes $p, q \in \text{Pr}$ are completed trace equivalent, denoted by $p \equiv_{\mathsf{ctr}} q$, if $p \equiv_{\mathsf{tr}} q$ and $\mathsf{ctraces}(p) = \mathsf{ctraces}(q)$.

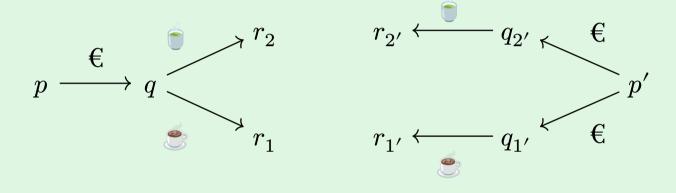
Theorem 15

$$\leftrightarrow \quad \stackrel{(1)}{\subsetneq} \quad \equiv_{\mathsf{ctr}} \quad \stackrel{(2)}{\subsetneq} \quad \equiv_{\mathsf{tr}}$$

 \equiv_{ctr} preserves traces (2) and deadlocks (\mathbf{v})

Completed Traces are Insensitive for Nondeterminism

Example.



Outlook

- 1. We are looking for the intimate connection between nondeterminism and interaction.
- 2. We are aiming at equivalences going beyond *linear time*.
- 3. **Resolution:** *branching time* and, more specifically, *bisimilarity*