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Resolution fur Pradikatenlogik

Ein konkreter Algorithmus zum logischen SchlieBen:

(1) Logische Konsequenz auf Unerflllbarkeit reduzieren
(2) Formeln in Klauselform umwandeln
— Formel bereinigen
Negationsnormalform bilden
Pranexform bilden
Skolemform bilden
Konjunktive Normalform bilden

(3) Resolutionsverfahren anwenden

— Unifikation zum Finden passender Klauseln
— Bilden von Resolventen bis zur Terminierung
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Bereinigte Formeln

Eine Formel F ist genau dann bereinigt, wenn sie folgende beiden Eigenschaften hat:
(1) Keine Variable in F kommt sowohl frei als auch gebunden vor.
(2) Keine Variable in F wird in mehr als einem Quantor gebunden.

Man kann jede Formel leicht durch Umbenennung gebundener Variablen bereinigen.

Beispiel: Die Formel
Yy.(p(x,y) = Ax.(r(y, x) A Vy.q(x, )

kann wie folgt bereinigt werden:

Yy.(p(x,y) = Jz.(r(y,2) A Yv.q(z,v)))
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Beispiel: Logelei
In Vorlesung 14 betrachteten wir den Fall, dass alle Einwohner einer Insel sagen:

~Auf dieser Insel haben alle den gleichen Typ.*

Dies entspricht der Theorie aus folgenden Satzen:

e Jeder Einwohner ist entweder Wahrheitssager oder Lugner.*
Vx.(W(x) A =L(x)) V (L(x) A =W (x)))

® |ebt auf der Insel ein Wahrheitssager, dann stimmt die Behauptung:
x.W(x) - (Vx.W(x) VvV Vx.L(x))

® | ebt auf der Insel ein LUgner, dann ist die Behauptung falsch:
dx.L(x) » =(Vx.W(x) V Yx.L(x))
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Beispiel: Logelei
In Vorlesung 14 betrachteten wir den Fall, dass alle Einwohner einer Insel sagen:

~Auf dieser Insel haben alle den gleichen Typ.*

Dies entspricht der Theorie aus folgenden Satzen:
e Jeder Einwohner ist entweder Wahrheitssager oder Lugner.*
Vx.(W(x) A =L(x)) V (L(x) A =W (x)))
® |ebt auf der Insel ein Wahrheitssager, dann stimmt die Behauptung:
Ax.W(x) - (Vx.W(x) vV Vx.L(x))
® | ebt auf der Insel ein LUgner, dann ist die Behauptung falsch:
dx.L(x) » =(Vx.W(x) V Yx.L(x))
Diese Theorie ist darstellbar als Konjunktion:

V. (W(x) A =L(x)) V (L(x) A =W(x)))
A (IxW(x) = (Vx.W(x) V Yx.L(x)))
A (Ax.L(x) = =(Yx.W(x) V Yx.L(x)))
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Beispiel: Bereinigung

V. (W(x) A =L(x)) V (L(x) A =W (x)))
A (@x W) = (Vx.W(x) V ¥x.L(x)))
A (Tx.L(x) = ~(Vx.W(x) V Vx.L(x)))
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Beispiel: Bereinigung

Va.(W(x) A =L(x) V (L(x) A =W(x)))
A (IxW(x) = (Vx.W(x) V Yx.L(x)))
A (Ax.L(x) = =(¥Vx.W(x) V Vx.L(x)))

Wir bereinigen die Formel, indem wir alle gebundenen Variablen umbenennen:

Yy (W) A =L(xp) V (L(xp) A =W(x1)))
A (EI)CQ.W()Cz) - (Vx3.W(x3) VvV V)C4.L()C4)))
A (Axs.L(xs) = =(Yx.W(xg) V Vx7.L(x7)))
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Beispiel: Negationsnormalform

Jetzt bilden wir die NNF:

Vo (W) A =L(x1) V (L(x1) A =W(x1)))
A (ElXQ.W()Q) — (Vx3.W(x3) vV VX4.L(X4)))
A (Fxs.L(xs) = —(¥x5.W(xg) V Vx7.L(x7)))
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Beispiel: Negationsnormalform

Jetzt bilden wir die NNF:

Vo (W) A =L(x) vV (L) A =W(xp)))
A (T W(xa) = (V3. W(x3) V Vxy.L(xy)))
A (Fxs.L(xs) = —(¥x5.W(xg) V Vx7.L(x7)))
= Vo (W) A =L(x) V (L(x) A =W(xp)
A (= W) V (Yx3.W(xs) V Vxy.L(xg)))
A (~3xs.L(xs) V ~(¥xs. W(xe) V Vo7.L(x7)))
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Beispiel: Negationsnormalform

Jetzt bilden wir die NNF:

Vo (W) A =L(x1) V (L(x1) A =W(x1)))

A (T W(xa) = (V3. W(x3) V Vxy.L(xy)))

A (Fxs.L(xs) = —(¥x5.W(xg) V Vx7.L(x7)))
= Vo (W) A =L(x) V (L(x) A =W(xp)
A (= W) V (Yx3.W(xs) V Vxy.L(xg)))
A (~3xs.L(xs) V ~(¥xs. W(xe) V Yo7.L(x7)))
Vo (W(x) A =L(xy) V (L(xr) A =W(xy)))
A (Yx0.=W(xp) V (V3. W(x3) V Vxy.L(x4)))
A (Vxs.=L(xs) V (=Vxs.W(x6) A =Vx7.L(x7)))
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Beispiel: Negationsnormalform

Jetzt bilden wir die NNF:

Vo (W) A =L(x1) V (L(x1) A =W(x1)))

A (T W(xa) = (V3. W(x3) V Vxy.L(xy)))

A (Fxs.L(xs) = —(¥x5.W(xg) V Vx7.L(x7)))
Vo (W(x) A =L(x1) V (L(xr) A =W(x1)))

A (= W) V (Yx3.W(xs) V Vxy.L(xg)))

A (~3xs.L(xs) V ~(¥xs. W(xe) V Yo7.L(x7)))
Vo (W(x) A =L(xy) V (L(xr) A =W(xy)))

A (Yx0.=W(xp) V (V3. W(x3) V Vxy.L(x4)))

A (Vxs.=L(xs) V (=Vxs.W(x6) A =Vx7.L(x7)))
Y (W(xp) A =L(x) V (L(x1) A =W(x1)))

A (Yx0.=W(x2) V (V3. W(x3) V Vxy.L(x4)))

A (Vxs.=L(xs) V (Axg.~W(x6) A Ax7.=L(x7)))
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Pranexform

Eine Formel ist genau dann in Pranexform, wenn alle ihre Quantoren am Anfang ste-
hen, d.h. wenn sie die folgende Form hat:

O1x1 -+ - Opx, . F

mit Oy,...,0, € {3,V} und F eine Formel ohne Quantoren.

Man kann beliebige Formeln leicht in &quivalente Formeln in Pranexform umwandeln.
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Umwandlung in Pranexform (1)

Satz: Sei F eine bereinigte Formel in NNF. Eine zu F semantisch &quivalente Formel
in Pranexform entsteht durch erschépfende Ersetzung von Teilformeln nach folgendem
Schema:

(Ox.GoH) - Ox.(Go H) (GoOx.H)— Ox.(Go H)
fir beliebige © € {3, V} und o € {V, A}.
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Umwandlung in Pranexform (1)

Satz: Sei F eine bereinigte Formel in NNF. Eine zu F semantisch aquivalente Formel
in Pranexform entsteht durch erschépfende Ersetzung von Teilformeln nach folgendem
Schema:

(Ox.GoH) - Ox.(Go H) (GoOx.H)— Ox.(Go H)
fir beliebige © € {3, V} und o € {V, A}.

Beweis: (Korrektheit) Wenn der Algorithmus terminiert, dann ist die Formel in
Pranexform. Denn eine Formel in NNF, die nicht in Préanexform ist, muss eine ersetzbare
Teilformel enthalten.
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Umwandlung in Pranexform (1)

Satz: Sei F eine bereinigte Formel in NNF. Eine zu F semantisch aquivalente Formel
in Pranexform entsteht durch erschépfende Ersetzung von Teilformeln nach folgendem
Schema:

(Ox.GoH) - Ox.(Go H) (GoOx.H)— Ox.(Go H)
fir beliebige © € {3, V} und o € {V, A}.

Beweis: (Korrektheit) Wenn der Algorithmus terminiert, dann ist die Formel in
Pranexform. Denn eine Formel in NNF, die nicht in Préanexform ist, muss eine ersetzbare
Teilformel enthalten.

Es entsteht in jedem Schritt eine semantisch &quivalente Formel, weil wir eine Formel
durch eine aquivalente ersetzen (Aquivalenz gilt, da x in G nicht vorkommt). Also ist die
Formel auch nach beliebig vielen Schritten noch &quivalent (Induktion Gber die Zahl der
Schritte).
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Umwandlung in Pranexform (2)

Satz: Sei F eine bereinigte Formel in NNF. Eine zu F semantische aquivalente Formel
in Pranexform entsteht durch erschépfende Ersetzung von Teilformeln nach folgendem
Schema:

(Ox.GoH) - Ox.(Go H) (GoOx.H)— Ox.(Go H)
fir beliebige © € {3, V} und o € {V, A}.

Beweis: (Terminierung) Man kann die Ersetzungen nicht unendlich oft anwenden:
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Umwandlung in Pranexform (2)

Satz: Sei F eine bereinigte Formel in NNF. Eine zu F semantische aquivalente Formel
in Pranexform entsteht durch erschépfende Ersetzung von Teilformeln nach folgendem
Schema:

(Ox.GoH) - Ox.(Go H) (GoOx.H)— Ox.(Go H)
fir beliebige © € {3, V} und o € {V, A}.

Beweis: (Terminierung) Man kann die Ersetzungen nicht unendlich oft anwenden:
® Fir eine Formel F sei J(F) die Zahl der Junktoren in F.

® Sei Q(F) := >, {J(Ox.G) | Ox.G Teilformel in F} die Summe der Zahl von Junktoren
unterhalb jedes Quantors.
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Umwandlung in Pranexform (2)

Satz: Sei F eine bereinigte Formel in NNF. Eine zu F semantische aquivalente Formel
in Pranexform entsteht durch erschépfende Ersetzung von Teilformeln nach folgendem
Schema:

(Ox.GoH) - Ox.(Go H) (GoOx.H)— Ox.(Go H)
fir beliebige © € {3, V} und o € {V, A}.

Beweis: (Terminierung) Man kann die Ersetzungen nicht unendlich oft anwenden:
® Fir eine Formel F sei J(F) die Zahl der Junktoren in F.

® Sei Q(F) := >, {J(Ox.G) | Ox.G Teilformel in F} die Summe der Zahl von Junktoren
unterhalb jedes Quantors.

® (Q(F) wird in jedem Ersetzungsschritt gréBer, aber die Gesamtzahl der Quantoren
und Junktoren bleibt gleich, d.h. es gibt einen Maximalwert, den Q(F) nicht
Ubersteigen kann.

~» Das Verfahren muss irgendwann anhalten. O
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Beispiel: Pranexform

Zuletzt werden fir die Pranexform alle Quantoren nach vorn gezogen:

Yy .(W(xr) A =L(x1)) V (L(x1) A =W(x1)))
A (V)Cz.—!W()Cz) VvV (Vx3.W(x3) vV V)C4.L()C4)))
A (Yx5.=L(xs) V (.= W(xg) A 7. =L(x7))
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Beispiel: Pranexform

Zuletzt werden fir die Pranexform alle Quantoren nach vorn gezogen:

Yy (W) A ~LGx) V (Lx) A =W(x1)

A (Yx. =~ W(xp) V (Vx3.W(x3) V Vxy.L(x4)))

A (Vxs.—L(xs) V (Fxg.~W(xe) A Ix7.-L(x7)))
= Vxp,x2,X3,X4,X5.3x6, X7.

(W) A =LE)) v (L) A =W (1)

A (AW(x2) V (W(x3) V L(x4)))

A (=L(xs) V (W (x6) A =L(x7))))
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Quiz: Umwandlung in Pranexform

Quiz: Ist die folgende schrittweise Umwandlung einer Formel in Pranexform korrekt?
Falls nicht, in welchem Schritt/welchen Schritten ist ein Fehler passiert? ...
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Skolem
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Thoralf Albert Skolem
(1887—1963)

* Norwegischer Mathematiker

Pionier der mathematischen Logik

Wesentliche Beitrdge — zum Teil erst mit groBer Verspatung von der Fachwelt
wahrgenommen’

Skeptisch gegeniiber unendlichen Mengen?

(Siehe auch Hao Wang, 1996)

TZum Beispiel schlug er Verbesserungen von Zermelos Mengenlehre vor, fast zeitgleich zu Fraenkel, der dafiir
berlihmt wurde. Auch hétte er fast Godels Vollstandigkeitssatz vor Gddel bewiesen.

2Godel glaubte, dass diese Abneigung der Grund war, dass Skolem den Vollstandigkeitssatz nicht als erster
gezeigt hat.

Hannes Stra3, TU Dresden Theoretische Informatik und Logik, VL 17 Folie 13 von 33


https://iccl.inf.tu-dresden.de/web/Hannes_Stra%C3%9F

Skolems Funktionen

Eine fir uns wesentliche Idee Skolems (1920) ist folgende:

Man kann sich existentielle Quantifikation auch als Auswertung einer Funktion vorstel-
len, deren Funktionswert das gesuchte Element ist.
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Skolems Funktionen

Eine fir uns wesentliche Idee Skolems (1920) ist folgende:

Man kann sich existentielle Quantifikation auch als Auswertung einer Funktion vorstel-
len, deren Funktionswert das gesuchte Element ist.

Beispiel: Den Satz Vx.dy.hatVater(x, y) (,Jeder hat einen Vater®) kénnte formuliert
werden als Yx.hatVater(x, vater(x)). Letzteres ist so zu verstehen:

® Es gibt eine einstellige Funktion vater,

® welche fir jedes Doméanenelement den Vater (genauer gesagt ,einen Vater®) des
Elements liefert.

Daraus folgt insbesondere auch, dass jeder einen Vater hat.

Um das zu formalisieren, mussen wir zunachst Funktionssymbole in die Logik einflhren.
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Terme mit Funktionssymbolen

Pradikatenlogik mit Funktionssymbolen verwendet eine erweiterte Signatur:

® Eine Menge V von Variablen x, y, z, ...

® Eine Menge C von Konstanten q, b, c, ...

® Eine Menge F von Funktionssymbolen f, g, A, ...
® Eine Menge P von Pradikatensymbolen p, g, r, ...

Jedes Pradikat und jedes Funktionssymbol hat eine Stelligkeit > 0 (auch Aritat ge-
nannt). Die Mengen sind jeweils abzéhlbar und paarweise disjunkt.
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Terme mit Funktionssymbolen

Pradikatenlogik mit Funktionssymbolen verwendet eine erweiterte Signatur:

® Eine Menge V von Variablen x, y, z, ...

® Eine Menge C von Konstanten q, b, c, ...

® Eine Menge F von Funktionssymbolen f, g, h, ...
® Eine Menge P von Pradikatensymbolen p, ¢, r, ...

Jedes Pradikat und jedes Funktionssymbol hat eine Stelligkeit > 0 (auch Aritat ge-
nannt). Die Mengen sind jeweils abzéhlbar und paarweise disjunkt.

Mit Funktionssymbolen lassen sich komplexere Terme konstruieren:

Die Menge der Terme der Pradikatenlogik mit Funktionssymbolen ist induktiv definiert:
e |st r € VU C eine Variable oder eine Konstante, dann ist z ein Term;

® ist f € F ein n-stelliges Funktionssymbol und sind 74, ..., Terme, dann ist
t=f(t,...,t,) ein Term.
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Syntax der Pradikatenlogik mit Funktionssymbolen

Mit dieser Erweiterung kénnen nun Formeln wie gewohnt konstruiert werden:

Ein Atom der Pradikatenlogik mit Funktionssymbolen ist ein Ausdruck p(t, ..., t,) fOr
ein n-stelliges Pradikatensymbol p € P und Terme ¢, ..., 1,, die Funktionssymbole ver-
wenden durfen.

Die Menge der pradikatenlogischen Formeln mit Funktionssymbolen ergibt sich wie
bei Pradikatenlogik ohne Funktionen induktiv aus der Menge der Atome unter Verwen-
dung der Operatoren =, A, V, —, &, dx. und VYx. (x € V).

Beispiele:
® VYx.(hatBruder(mutter(x)) — hatOheim(x, bruder(mutter(x))))
® Vx,y.(mutter(x) ~ mutter(y) — halbGeschwister(x, y))
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Semantik der Pradikatenlogik mit Funktionssymbolen

Wir missen nun auch Funktionssymbole interpretieren:

Eine Interpretation I der Préadikatenlogik mit Funktionssymbolen ist ein Paar (A7, -7)
bestehend aus einer nichtleeren Grundmenge A’ (der Doméne) und einer Interpretati-
onsfunktion -£, welche:

* jede Konstante a € C auf ein Element a’ € A?,
® jedes n-stellige Funktionssymbol f € F auf eine n-stellige Funktion
£ (A7) > AT und
* jedes n-stellige Préadikatensymbol p € P auf eine Relation p’ C (Af)n
abbildet.

Zuweisungen werden wie zuvor definiert (Abbildungen von Variablen auf
Domaéanenelemente).

Bemerkung: Oftmals wird in der Literatur Pradikatenlogik von vornherein mit Funktionssymbolen (und
ohne explizite Konstanten) eingefiihrt. Eine (in unserem Sinne) Konstante a € C mit a’ = a € AL wird

dabei von einem 0-stelligen Funktionssymbol £, € F mit £ : {()} — A’ und f/({)) = a ausgedriickt.
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Formeln mit Funktionssymbolen interpretieren

Zur Interpretation von Atomen werten wir Funktionsterme gesondert aus:

Sei I eine Interpretation und Z eine Zuweisung fir 7.
® Fiir eine Konstante ¢ definieren wir ¢/ = ¢,
® Fir eine Variable x definieren wir x/-< = Z(x).

e Fir einen Funktionsterm ¢ = f(t,, ..., 1,) definieren wir /< = f(r "%, ...
Far ein Atom p(¢4,...,t,) setzen wir wie gewohnt:

* ptr,...,ty"% = 1 wenn (i %, ..., %) € p? und

o p(tr,...,t)yHZ =0 wenn (%, 0%y ¢ pl.

I.Z
).

Wir definieren I, Z = F wie zuvor, induktiv auf der Struktur der Formeln.

Bemerkung: Eine (in unserem Sinne) Konstante a € C mit a = a € A wird in der Menge der Terme

durch den Funktionsterm f,({)) wie zuvor ausgedriickt. Es ergibt sich demnach fa(<>)I’Z :faf(()) =a.
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Beispiel

Gemeinsam mit Gleichheit eignen sich Funktionen gut, um mathematische Operationen
auszudrlcken.

Die Theorie der kommutativen Monoide ist in der Pradikatenlogik mit einem
Funktionssymbol & (infix geschrieben) und Gleichheit wie folgt darstellbar:

Yx,9,2(x@y)®2) = (x® (y®2)
VX, y. xoy) = (yox)
Vx. x®0)~x

Eine mdgliche Interpretation 7

o AT=N

e 0/ =0

e ¢’ = + (Addition Uber natiirlichen Zahlen, z.B. {(Ck,my, ny € N2 XN | k+m = n})
Achtung: Es gibt oft mehr mdgliche Interpretationen als man denkt. Pradikatenlogik eignet sich zur Beschreibung algebraischer Strukturen
allgemein, aber nicht zur Beschreibung ganz spezieller Strukturen, wie z.B. der natiirlichen Zahlen.
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Skolemisierung

Sei Vx;.---Vx,.dy.F eine Formel in Pranexform, bei der dy das erste Vorkommen ei-
nes Existenzquantors ist. Die Skolemisierung von y ist die Formel Vx;. - - - Vx,.F’, defi-
niert wie folgt:

® F"=F{ym f(xy,...,x,)} entsteht aus F, indem man jedes (freie) Vorkommen von
y in F durch den Skolemterm f(xi,...,x,) ersetzt;

® dabei ist f ein n-stelliges Funktionssymbol, das bisher nirgends verwendet wurde,
genannt Skolemfunktion.

Die Skolemisierung einer Formel in Pranexform erhalt man durch Skolemisieren jeder
ihrer existentiell quantifizierten Variablen, von vorn nach hinten (auf3en nach innen).
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Skolemisierung

Sei Vx;.---Vx,.dy.F eine Formel in Pranexform, bei der dy das erste Vorkommen ei-
nes Existenzquantors ist. Die Skolemisierung von y ist die Formel Vx;. - - - Vx,.F’, defi-
niert wie folgt:

® F"=F{ym f(xy,...,x,)} entsteht aus F, indem man jedes (freie) Vorkommen von
y in F durch den Skolemterm f(xi,...,x,) ersetzt;

® dabei ist f ein n-stelliges Funktionssymbol, das bisher nirgends verwendet wurde,
genannt Skolemfunktion.

Die Skolemisierung einer Formel in Pranexform erhalt man durch Skolemisieren jeder
ihrer existentiell quantifizierten Variablen, von vorn nach hinten (auf3en nach innen).

Beispiel: Fir die Formel Vx.dy.Vz.3v.p(x,y, z, v) ergibt sich:
Skolemisierung von y:  Vx.Vz.3v.p(x,f(x), z,v)

Skolemisierung von v:  Vx.Vz.p(x,f(x), z, g(x, 2))
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Korrektheit der Skolemisierung

Skolemisierung fuhrt nicht zu semantisch aquivalenten Formeln:

Beispiel: Die Formel Yx.3y.(p(x) — p(y)) ist eine Tautologie, aber ihre Skolemisierung
Vx.(p(x) — p(f(x))) ist widerlegbar:

Sei AT :={a,B), p’ = {a} sowie f1(6) := g fir alle § € AL.

Dann ist I |£ Vx.(p(x) — p(f(x))), da I, {x = a} £ p(x) — p(f(x)).
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Korrektheit der Skolemisierung

Skolemisierung fuhrt nicht zu semantisch aquivalenten Formeln:

Beispiel: Die Formel Yx.3y.(p(x) — p(y)) ist eine Tautologie, aber ihre Skolemisierung
Vx.(p(x) — p(f(x))) ist widerlegbar:

Sei AT :={a,B), p’ = {a} sowie f1(6) := g fir alle § € AL.

Dann ist I £ Yx.(p(x) = p(f(x))), da I, {x — a} £ p(x) = p(f(x)).

Skolemisierung erhalt aber Erfiillbarkeit:

Satz: Eine Formel F in Pranexform ist genau dann erfillbar, wenn die Skolemisierung
von F erfillbar ist.

Anmerkung: Man kann einen Erfilllbarkeitstest also auf der Skolemisierten Formel
ausfuhren — das gendgt, um logisches SchlieBen zu implementieren.
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Korrektheit der Skolemisierung: Beweis

Satz: Eine Formel F in Pranexform ist genau dann erfiillbar, wenn die Skolemisierung
von F erfillbar ist.

Beweis: Wir zeigen die Behauptung fur die Skolemisierung einer einzelnen Variablen,
d.h. die Erflllbarkeitsdquivalenz von Vx;. - - - Vx,,.3y.F und
Vxi. - Vx, . Fly = f(x1,...,x,)].
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Korrektheit der Skolemisierung: Beweis

Satz: Eine Formel F in Pranexform ist genau dann erfiillbar, wenn die Skolemisierung
von F erfillbar ist.

Beweis: Wir zeigen die Behauptung fur die Skolemisierung einer einzelnen Variablen,
d.h. die Erflllbarkeitsdquivalenz von Vx;. - - - Vx,,.3y.F und

Vxi. - Vx, . Fly = f(x1,...,x,)].
Dann folgt der Satz durch Induktion tber die Anzahl der Existenzquantoren.
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Korrektheit der Skolemisierung: Beweis

Satz: Eine Formel F in Pranexform ist genau dann erfiillbar, wenn die Skolemisierung
von F erfillbar ist.

Beweis: Wir zeigen die Behauptung fur die Skolemisierung einer einzelnen Variablen,
d.h. die Erflllbarkeitsdquivalenz von Vx;. - - - Vx,,.3y.F und

Vxi. - Vx, . Fly = f(x1,...,x,)].
Dann folgt der Satz durch Induktion tber die Anzahl der Existenzquantoren.

I EVx.---Vx,.Ay.F

Hannes Stra3, TU Dresden Theoretische Informatik und Logik, VL 17 Folie 22 von 33


https://iccl.inf.tu-dresden.de/web/Hannes_Stra%C3%9F

Korrektheit der Skolemisierung: Beweis

Satz: Eine Formel F in Pranexform ist genau dann erfiillbar, wenn die Skolemisierung
von F erfillbar ist.

Beweis: Wir zeigen die Behauptung fur die Skolemisierung einer einzelnen Variablen,
d.h. die Erflllbarkeitsdquivalenz von Vx;. - - - Vx,,.3y.F und

Vxi. - Vx, . Fly = f(x1,...,x,)].
Dann folgt der Satz durch Induktion tber die Anzahl der Existenzquantoren.

I EVx.---Vx,.Ay.F

gdw. fir alle 6y,...,6, € AT existiert ein € € A7, so dass
Ia{xlHéla"-,anénvyHE}le
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Korrektheit der Skolemisierung: Beweis

Satz: Eine Formel F in Pranexform ist genau dann erfiillbar, wenn die Skolemisierung
von F erfillbar ist.

Beweis: Wir zeigen die Behauptung fur die Skolemisierung einer einzelnen Variablen,
d.h. die Erflllbarkeitsdquivalenz von Vx;. - - - Vx,,.3y.F und

Vxi. - Vx, . Fly = f(x1,...,x,)].

Dann folgt der Satz durch Induktion tber die Anzahl der Existenzquantoren.

I EVx.---Vx,.Ay.F

gdw. fir alle 6y,...,6, € AT existiert ein € € A7, so dass
Ia{xlHéla"-,anénvyHE}le

Wir definieren: f2(61,...,8,) := € fir ein solches e.
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Korrektheit der Skolemisierung: Beweis

Satz: Eine Formel F in Pranexform ist genau dann erfillbar, wenn die Skolemisierung
von F erfillbar ist.

Beweis: Wir zeigen die Behauptung fur die Skolemisierung einer einzelnen Variablen,
d.h. die Erflllbarkeitsdquivalenz von Vx;. - - - Vx,,.3y.F und

Vxi. - Vx, . Fly = f(x1,...,x,)].

Dann folgt der Satz durch Induktion tber die Anzahl der Existenzquantoren.

I EVx.---Vx,.Ay.F

gdw. fir alle 6y,...,6, € AT existiert ein € € A7, so dass
Ia{xlHéla"-,anénvyHE}le

Wir definieren: f2(61,...,8,) := € fir ein solches e.

gdw. firalles,,...,s, € A
T {xi1 > 01,..., %, > 0} EFly f(x1,...,x)}

Hannes Stra3, TU Dresden Theoretische Informatik und Logik, VL 17 Folie 22 von 33


https://iccl.inf.tu-dresden.de/web/Hannes_Stra%C3%9F

Korrektheit der Skolemisierung: Beweis

Satz: Eine Formel F in Pranexform ist genau dann erfillbar, wenn die Skolemisierung
von F erfillbar ist.

Beweis: Wir zeigen die Behauptung fur die Skolemisierung einer einzelnen Variablen,
d.h. die Erflllbarkeitsdquivalenz von Vx;. - - - Vx,,.3y.F und

Vxi. - Vx, . Fly = f(x1,...,x,)].

Dann folgt der Satz durch Induktion tber die Anzahl der Existenzquantoren.

I EVx.---Vx,.Ay.F

gdw. fir alle 6y,...,6, € AT existiert ein € € A7, so dass
Ia{xlHéla"-,anénvyHE}le

Wir definieren: f2(61,...,8,) := € fir ein solches e.

gdw. firalles,,...,s, € A
T {xi1 > 01,..., %, > 0} EFly f(x1,...,x)}

gdw. T EVx.--Vx,.Fly e f(xq,...,x)} O
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Sind also Funktionen ausdrucksstéarker als 3?
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Sind also Funktionen ausdrucksstarker als 37

Nein. Wir kénnen eine n-stellige Funktion f durch ein (n + 1)-stelliges Préadikat p,
darstellen, z.B. mit folgender Theorie:

Vxr, . x Aypr(xe, .o, X, y)
VX1,... 7xm)’aZ-((Pf(xla~- 7xn7y) /\pf(xla"' 7xnaz)) —Yy= Z)
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Sind also Funktionen ausdrucksstarker als 37

Nein. Wir kénnen eine n-stellige Funktion f durch ein (n + 1)-stelliges Préadikat p,
darstellen, z.B. mit folgender Theorie:

Vxr, . x Aypr(xe, .o, X, y)
vxla .. 7xmyvz'((pf(xla .. 7xn7y) /\pf(xla .. 7xl’laz)) —Yy= Z)

Damit kédnnen wir Funktionsterme durch existentiell quantifizierte Variablen mit
entsprechenden Nebenbedingungen ersetzen, z.B.:

Q(f(x)7 g(ya Z)) wird zu 3V7 W(pf(-xa V) A Pg(% 2y W) A q(V7 W))
r(g(f(x), y)) wird zu Jv, w.(pr(x, v) A pg(v,y, w) A r(w))

Hannes Stra3, TU Dresden Theoretische Informatik und Logik, VL 17 Folie 23 von 33


https://iccl.inf.tu-dresden.de/web/Hannes_Stra%C3%9F

Sind also Funktionen ausdrucksstarker als 47
Nein. Wir kénnen eine n-stellige Funktion f durch ein (n + 1)-stelliges Préadikat p,
darstellen, z.B. mit folgender Theorie:

Vxr, . x Aypr(xe, .o, X, y)

vxla .. 7xnayvz'((pf(xla .. 7xn7y) /\pf(xla .. 7'xl’laz)) —Yy= Z)

Damit kédnnen wir Funktionsterme durch existentiell quantifizierte Variablen mit
entsprechenden Nebenbedingungen ersetzen, z.B.:

q(f(x), g(y,2)) wird zu v, w.(pr(x, v) A pe(y, 2, w) A q(v, w))

r(g(f(x),y)) wird zu Jv, w.(pr(x,v) A pe(v,y,w) A r(w))

Eine entsprechende Ersetzung kann man bei jedem Atom in einer Formel durchfuhren.
Wir erhalten (ohne Beweis):

Satz: Fur jede Formel der Pradikatenlogik mit Funktionssymbolen gibt es eine erflill-
barkeitsaquivalente Formel ohne Funktionssymbole, welche in linearer Zeit berechnet
werden kann.
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Quiz: Ausdrucksstarke von Funktionen

Quiz: ...
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Zusammenfassung: Funktionen

Die folgenden Varianten von Pradikatenlogik haben also in gewissem Sinne die gleiche
Ausdruckstérke:

® Pradikatenlogik (ohne Funktionssymbole)
® Pradikatenlogik mit Funktionssymbolen
® Pradikatenlogik mit Funktionssymbolen, in Pranexform ohne Existenzquantoren
In jeder dieser Logiken kann man zudem wahlweise ein Gleichheitspradikat hinzufigen.
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Zusammenfassung: Funktionen

Die folgenden Varianten von Pradikatenlogik haben also in gewissem Sinne die gleiche
Ausdruckstérke:

® Pradikatenlogik (ohne Funktionssymbole)
® Pradikatenlogik mit Funktionssymbolen
® Pradikatenlogik mit Funktionssymbolen, in Pranexform ohne Existenzquantoren
In jeder dieser Logiken kann man zudem wahlweise ein Gleichheitspradikat hinzufigen.

Vorteile von Skolemfunktionen gegenlber Existenzquantoren:
® Es gibt nur noch eine Art von Quantoren.

* Die Abh&ngigkeiten der existentiell bestimmten Elemente von universell
bestimmten Elementen wird explizit in der Syntax dargestellt.
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Beispiel: Skolemform

Wir Skolemisieren das vorige Beispiel:

VX1, X2, X3, X4, X5.AXg, X7.

(W) A =Lx) v (L) A =W(x1)))
A (=W () vV (W(x3) V L(xg)))

A (L(xs) V (W (x6) A =L(x7))))
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Beispiel: Skolemform

Wir Skolemisieren das vorige Beispiel:

VX1, X2, X3, X4, X5.AXg, X7.
(W) A =Lx) v (L) A =W(x1)))
A (=W () vV (W(x3) V L(xg)))
A (L(xs) V (W (x6) A =L(x7))))
= VYxi,x2,X3,X4,Xs5.
(W) A =Lx) v (L) A =W(x1)))
A (=W(x2) vV (W(x3) V L(x4)))
A (SL(xs) V (< W(fo(x1, %2, X3, X4,%5)) A ~L(fr(x1, X2, X3, X4, X5)))))
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Konjunktive Normalform und Klauselform
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Konjunktive Normalform

Aus der Aussagenlogik kennen wir die folgende Definition:

Eine Formel F ist genau dann in konjunktiver Normalform (KNF), wenn sie eine Kon-
junktion von Disjunktionen von Literalen ist, d.h. wenn sie die folgende Form hat:

(Ll,l V... VLl’ml)/\(Lg’l V... VLg’mz)/\ /\(L,,’l V... VL,,’mn)

wobei die Formeln L;; Literale sind. Eine Disjunktion von Literalen hei3t Klausel.

(Zur Erinnerung: Literale = negierte oder nicht-negierte Atome)

~» Die gleiche Form kann fir den quantorenfreien inneren Teil jeder Formel in
Pranexform hergestellt werden.
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Bilden der KNF

Wir stellen die KNF in der Pradikatenlogik wie folgt her:
(1) Formel bereinigen
(2) Bilden der Negationsnormalform
(3) Bilden der Pranexform
(4)
®)

Skolemisieren
Erschdpfende Anwendung der folgenden Ersetzung auf Teilformeln im
quantorenfreien Teil der Formel:

FV(GAH)— (FVG)A(FVH)
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Bilden der KNF

Wir stellen die KNF in der Pradikatenlogik wie folgt her:
(1) Formel bereinigen
(2) Bilden der Negationsnormalform
(3) Bilden der Pranexform

(4
(

5

Skolemisieren

)
)
)
) Erschépfende Anwendung der folgenden Ersetzung auf Teilformeln im

quantorenfreien Teil der Formel:

FV(GAH)— (FVG)A(FVH)

Satz: Die so aus einer Formel F gebildete KNF ist genau dann erfillbar, wenn F' er-
fallbar ist.

Beweis: Schritte (1)—(3) liefern semantisch &quivalente Formeln. Schritt (4) liefert eine
erflllbarkeitsdquivalente Formel. Schritt (5) liefert eine zu dieser semantisch aquivalente
Formel. O

Anmerkung: Man kdnnte manche der Schritte auch vertauschen.
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Beispiel: Konjunktive Normalform

Vxi, X2, X3, X4, X5.

(((W(xl) A =L(x1)) V (L(xr) A =W (x1))

A (=W (x2) V (W(x3) V L(xs)))

A (=L(xs) V (~W(fo(x1, X2, X3, X4, X5)) A —\L(ﬁ(x17x27x37x47x5)))))
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Beispiel: Konjunktive Normalform

Vxi, X2, X3, X4, X5.

(W) A =L) v (L) A =W(x))

A (=W (x2) V (W(x3) V L(xs)))

A (=L(xs) V (~W(fo(x1, X2, X3, X4, X5)) A —\L(ﬁ(x17x27x37x47x5)))))
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Beispiel: Konjunktive Normalform

vxl7x27x37x47x5'
(((W(xl) A =L() V (L(x) A =W (x))
A (=Wx) Vv (W(xs) V L(xs)))

A (ALGxs) V (AW folxr, %2, x5, 24, 65)) A =L(f (61, X2, 33, %3, 35))))
VX1, X2, X3, X4, X5.

(W) v L) A (~LGxy) V Lixy)

AWV =W) A (L) V =W (x1)))

A (W(x) V (W(x3) V L(x4)))

A (5L(xs) V (=W (fs(x1, X2, X3, X4, X5)) A —\L(ﬁ(xl,xz,xg,x4,x5)))))
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Beispiel: Konjunktive Normalform

vxl7x27x37x47x5'
(((W(Xl) A =L(x)) V (L(x) A =W(x))))
A (=W () V (W(xs) V L(x4)))

A (=L(xs) V (~W(fo(x1, X2, X3, X4, X5)) A —\L(ﬁ(x17x27x37x47x5)))))
VX1, X2, X3, X4, Xs5.

(W) v L) A (~LGxy) V Lixy)

A W) V=W) A (=L(xy) V =W(x))

A (=W (x2) V (W(x3) V L(xs)))

A (SL(xs) V (=W (folaxr, %2, X3, %4, X5)) A ~L(fr (1, %2, X3, %3, X5)))))
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Beispiel: Konjunktive Normalform

VX1, X0, X3, X4, X5

(W) A =L) v (L) A =W(x)))

A (W) vV (W(x3) V L(xs)))

A (ALGxs) V (AW folxr, %2, x5, 24, 65)) A =L(f (61, X2, 33, %3, 35))))
VX1, X2, X3, X4, X5.

(W) v L) A (~LGxy) V Lixy)

A (W) V =W(@p) A (~L(xy) V =W(x,))

A (W(x) V (W(x3) V L(x4)))

A (~L(xs) V (AW (fylxr, x2, 33, %4, 35)) A ~Lf (X1, %2, X5, 33, 35))))
VX1, X2, X3, X4, X5.
(W) v L) A (<L) V Lix)

A (W) V =W (@) A (~L(xy) V =W(x,))

A (W) V (W) V L(xa))

A (=L(xs) V 2 W(fo(x1, X2, X3, X4, X5))) A (=L(xs5) V —|L(f7(x1,x2,x3,X4,X5))))
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Klauselform

Die Klauselform ist eine vereinfachte Schreibweise der KNF:
® Allquantoren werden weggelassen
* Klauseln werden als Mengen von Literalen geschrieben

e Konjunktionen von Klauseln werden als Mengen von Mengen von Literalen
geschrieben

Beispiel: Unser Beispiel kann damit wie folgt geschrieben werden:
{ WG, L)},
{=L(x1), L(x1)},
{(W(x1), =W,
{=L(x1), =W(x1)},
{=W(x2), W(x3), L(x4)},
{=L(x5), "W(fe(x1, X2, X3, X4, X5))},
{=L(xs), =L(f7(x1, X2, X3, X4, X5))}  }
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Zusammenfassung und Ausblick

Die Pranexform entsteht durch einfaches ,Herausziehen“ der Quantoren aus einer NNF.

Funktionen liefern keine zusétzliche Ausdrucksstarke, aber sie helfen bei der
Normalisierung von Formeln, da man existentiell quantifizierte Variablen durch
Funktionsterme ersetzen kann (Skolemform).

Konjunktive Normalform und Klauselform werden in der Pradikatenlogik wie in der
Aussagenlogik gebildet.

Was erwartet uns als nachstes?
® Herbrand, genialer Mathematiker aber unglicklicher Bergsteiger
e Unifikation und Resolution
® | ogik Uber endlichen Interpretationen und ihre praktische Anwendung
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