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Resolution für Prädikatenlogik

Ein konkreter Algorithmus zum logischen Schließen:

(1) Logische Konsequenz auf Unerfüllbarkeit reduzieren

(2) Formeln in Klauselform umwandeln
– Formel bereinigen
– Negationsnormalform bilden
– Pränexform bilden
– Skolemform bilden
– Konjunktive Normalform bilden

(3) Resolutionsverfahren anwenden
– Unifikation zum Finden passender Klauseln
– Bilden von Resolventen bis zur Terminierung
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Bereinigte Formeln

Eine Formel F ist genau dann bereinigt, wenn sie folgende beiden Eigenschaften hat:

(1) Keine Variable in F kommt sowohl frei als auch gebunden vor.

(2) Keine Variable in F wird in mehr als einem Quantor gebunden.

Man kann jede Formel leicht durch Umbenennung gebundener Variablen bereinigen.

Beispiel: Die Formel

∀y.( p(x, y)→ ∃x.(r(y, x) ∧ ∀y.q(x, y)))

kann wie folgt bereinigt werden:

∀y.( p(x, y)→ ∃z.(r(y, z) ∧ ∀v.q(z, v)))
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Beispiel: Logelei
In Vorlesung 14 betrachteten wir den Fall, dass alle Einwohner einer Insel sagen:

„Auf dieser Insel haben alle den gleichen Typ.“

Dies entspricht der Theorie aus folgenden Sätzen:
• „Jeder Einwohner ist entweder Wahrheitssager oder Lügner.“
∀x.

(
(W(x) ∧ ¬L(x)) ∨ (L(x) ∧ ¬W(x))

)
• Lebt auf der Insel ein Wahrheitssager, dann stimmt die Behauptung:
∃x.W(x)→ (∀x.W(x) ∨ ∀x.L(x))

• Lebt auf der Insel ein Lügner, dann ist die Behauptung falsch:
∃x.L(x)→ ¬(∀x.W(x) ∨ ∀x.L(x))

Diese Theorie ist darstellbar als Konjunktion:

∀x.
(
(W(x) ∧ ¬L(x)) ∨ (L(x) ∧ ¬W(x))

)
∧

(
∃x.W(x)→ (∀x.W(x) ∨ ∀x.L(x))

)
∧

(
∃x.L(x)→ ¬(∀x.W(x) ∨ ∀x.L(x))

)
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Beispiel: Bereinigung

∀x.
(
(W(x) ∧ ¬L(x)) ∨ (L(x) ∧ ¬W(x))

)
∧

(
∃x.W(x)→ (∀x.W(x) ∨ ∀x.L(x))

)
∧

(
∃x.L(x)→ ¬(∀x.W(x) ∨ ∀x.L(x))

)

Wir bereinigen die Formel, indem wir alle gebundenen Variablen umbenennen:

∀x1.
(
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
∃x2.W(x2)→ (∀x3.W(x3) ∨ ∀x4.L(x4))

)
∧

(
∃x5.L(x5)→ ¬(∀x6.W(x6) ∨ ∀x7.L(x7))

)

Hannes Straß, TU Dresden Theoretische Informatik und Logik, VL 17 Folie 5 von 33

https://iccl.inf.tu-dresden.de/web/Hannes_Stra%C3%9F


Beispiel: Bereinigung

∀x.
(
(W(x) ∧ ¬L(x)) ∨ (L(x) ∧ ¬W(x))

)
∧

(
∃x.W(x)→ (∀x.W(x) ∨ ∀x.L(x))

)
∧

(
∃x.L(x)→ ¬(∀x.W(x) ∨ ∀x.L(x))

)
Wir bereinigen die Formel, indem wir alle gebundenen Variablen umbenennen:

∀x1.
(
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
∃x2.W(x2)→ (∀x3.W(x3) ∨ ∀x4.L(x4))

)
∧

(
∃x5.L(x5)→ ¬(∀x6.W(x6) ∨ ∀x7.L(x7))

)

Hannes Straß, TU Dresden Theoretische Informatik und Logik, VL 17 Folie 5 von 33

https://iccl.inf.tu-dresden.de/web/Hannes_Stra%C3%9F


Beispiel: Negationsnormalform

Jetzt bilden wir die NNF:

∀x1.
(
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
∃x2.W(x2)→ (∀x3.W(x3) ∨ ∀x4.L(x4))

)
∧

(
∃x5.L(x5)→ ¬(∀x6.W(x6) ∨ ∀x7.L(x7))

)

≡ ∀x1.
(
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
¬∃x2.W(x2) ∨ (∀x3.W(x3) ∨ ∀x4.L(x4))

)
∧

(
¬∃x5.L(x5) ∨ ¬(∀x6.W(x6) ∨ ∀x7.L(x7))

)
≡ ∀x1.

(
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
∀x2.¬W(x2) ∨ (∀x3.W(x3) ∨ ∀x4.L(x4))

)
∧

(
∀x5.¬L(x5) ∨ (¬∀x6.W(x6) ∧ ¬∀x7.L(x7))

)
≡ ∀x1.

(
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧
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Pränexform

Eine Formel ist genau dann in Pränexform, wenn alle ihre Quantoren am Anfang ste-
hen, d.h. wenn sie die folgende Form hat:

Q1x1 · · · Qnxn.F

mit Q1, . . . , Qn ∈ {∃,∀} und F eine Formel ohne Quantoren.

Man kann beliebige Formeln leicht in äquivalente Formeln in Pränexform umwandeln.
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Umwandlung in Pränexform (1)

Satz: Sei F eine bereinigte Formel in NNF. Eine zu F semantisch äquivalente Formel
in Pränexform entsteht durch erschöpfende Ersetzung von Teilformeln nach folgendem
Schema:

( Qx.G ◦ H) 7→ Qx.(G ◦ H) (G ◦ Qx.H) 7→ Qx.(G ◦ H)

für beliebige Q∈ {∃,∀} und ◦ ∈ {∨,∧}.

Beweis: (Korrektheit) Wenn der Algorithmus terminiert, dann ist die Formel in
Pränexform. Denn eine Formel in NNF, die nicht in Pränexform ist, muss eine ersetzbare
Teilformel enthalten.

Es entsteht in jedem Schritt eine semantisch äquivalente Formel, weil wir eine Formel
durch eine äquivalente ersetzen (Äquivalenz gilt, da x in G nicht vorkommt). Also ist die
Formel auch nach beliebig vielen Schritten noch äquivalent (Induktion über die Zahl der
Schritte).
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Umwandlung in Pränexform (2)

Satz: Sei F eine bereinigte Formel in NNF. Eine zu F semantische äquivalente Formel
in Pränexform entsteht durch erschöpfende Ersetzung von Teilformeln nach folgendem
Schema:

( Qx.G ◦ H) 7→ Qx.(G ◦ H) (G ◦ Qx.H) 7→ Qx.(G ◦ H)

für beliebige Q∈ {∃,∀} und ◦ ∈ {∨,∧}.

Beweis: (Terminierung) Man kann die Ersetzungen nicht unendlich oft anwenden:

• Für eine Formel F sei J(F) die Zahl der Junktoren in F.

• Sei Q(F) :=
∑
{J( Qx.G) | Qx.G Teilformel in F} die Summe der Zahl von Junktoren

unterhalb jedes Quantors.

• Q(F) wird in jedem Ersetzungsschritt größer, aber die Gesamtzahl der Quantoren
und Junktoren bleibt gleich, d.h. es gibt einen Maximalwert, den Q(F) nicht
übersteigen kann.

{ Das Verfahren muss irgendwann anhalten. �
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Beispiel: Pränexform

Zuletzt werden für die Pränexform alle Quantoren nach vorn gezogen:

∀x1.
(
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
∀x2.¬W(x2) ∨ (∀x3.W(x3) ∨ ∀x4.L(x4))

)
∧

(
∀x5.¬L(x5) ∨ (∃x6.¬W(x6) ∧ ∃x7.¬L(x7))

)

≡ ∀x1, x2, x3, x4, x5.∃x6, x7.((
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧

(
¬L(x5) ∨ (¬W(x6) ∧ ¬L(x7))

))
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Quiz: Umwandlung in Pränexform

Quiz: Ist die folgende schrittweise Umwandlung einer Formel in Pränexform korrekt?
Falls nicht, in welchem Schritt/welchen Schritten ist ein Fehler passiert? . . .
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Skolem
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Thoralf Albert Skolem
(1887–1963)

• Norwegischer Mathematiker

• Pionier der mathematischen Logik

• Wesentliche Beiträge – zum Teil erst mit großer Verspätung von der Fachwelt
wahrgenommen1

• Skeptisch gegenüber unendlichen Mengen2

(Siehe auch Hao Wang, 1996)

1Zum Beispiel schlug er Verbesserungen von Zermelos Mengenlehre vor, fast zeitgleich zu Fraenkel, der dafür
berühmt wurde. Auch hätte er fast Gödels Vollständigkeitssatz vor Gödel bewiesen.

2Gödel glaubte, dass diese Abneigung der Grund war, dass Skolem den Vollständigkeitssatz nicht als erster
gezeigt hat.
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Skolems Funktionen

Eine für uns wesentliche Idee Skolems (1920) ist folgende:

Man kann sich existentielle Quantifikation auch als Auswertung einer Funktion vorstel-
len, deren Funktionswert das gesuchte Element ist.

Beispiel: Den Satz ∀x.∃y.hatVater(x, y) („Jeder hat einen Vater“) könnte formuliert
werden als ∀x.hatVater(x, vater(x)). Letzteres ist so zu verstehen:

• Es gibt eine einstellige Funktion vater,

• welche für jedes Domänenelement den Vater (genauer gesagt „einen Vater“) des
Elements liefert.

Daraus folgt insbesondere auch, dass jeder einen Vater hat.

Um das zu formalisieren, müssen wir zunächst Funktionssymbole in die Logik einführen.
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Terme mit Funktionssymbolen

Prädikatenlogik mit Funktionssymbolen verwendet eine erweiterte Signatur:

• Eine Menge V von Variablen x, y, z, . . .

• Eine Menge C von Konstanten a, b, c, . . .

• Eine Menge F von Funktionssymbolen f , g, h, . . .

• Eine Menge P von Prädikatensymbolen p, q, r, . . .

Jedes Prädikat und jedes Funktionssymbol hat eine Stelligkeit ≥ 0 (auch Arität ge-
nannt). Die Mengen sind jeweils abzählbar und paarweise disjunkt.

Mit Funktionssymbolen lassen sich komplexere Terme konstruieren:

Die Menge der Terme der Prädikatenlogik mit Funktionssymbolen ist induktiv definiert:

• Ist t ∈ V ∪ C eine Variable oder eine Konstante, dann ist t ein Term;

• ist f ∈ F ein n-stelliges Funktionssymbol und sind t1, . . . , tn Terme, dann ist
t = f (t1, . . . , tn) ein Term.
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Syntax der Prädikatenlogik mit Funktionssymbolen

Mit dieser Erweiterung können nun Formeln wie gewohnt konstruiert werden:

Ein Atom der Prädikatenlogik mit Funktionssymbolen ist ein Ausdruck p(t1, . . . , tn) für
ein n-stelliges Prädikatensymbol p ∈ P und Terme t1, . . . , tn, die Funktionssymbole ver-
wenden dürfen.

Die Menge der prädikatenlogischen Formeln mit Funktionssymbolen ergibt sich wie
bei Prädikatenlogik ohne Funktionen induktiv aus der Menge der Atome unter Verwen-
dung der Operatoren ¬, ∧, ∨, →, ↔, ∃x. und ∀x. (x ∈ V).

Beispiele:

• ∀x.(hatBruder(mutter(x))→ hatOheim(x, bruder(mutter(x))))
• ∀x, y.(mutter(x) ≈ mutter(y)→ halbGeschwister(x, y))
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Semantik der Prädikatenlogik mit Funktionssymbolen
Wir müssen nun auch Funktionssymbole interpretieren:

Eine Interpretation I der Prädikatenlogik mit Funktionssymbolen ist ein Paar 〈∆I, ·I〉
bestehend aus einer nichtleeren Grundmenge ∆I (der Domäne) und einer Interpretati-
onsfunktion ·I, welche:

• jede Konstante a ∈ C auf ein Element aI ∈ ∆I,

• jedes n-stellige Funktionssymbol f ∈ F auf eine n-stellige Funktion
f I :

(
∆I

)n
→ ∆I und

• jedes n-stellige Prädikatensymbol p ∈ P auf eine Relation pI ⊆
(
∆I

)n

abbildet.

Zuweisungen werden wie zuvor definiert (Abbildungen von Variablen auf
Domänenelemente).

Bemerkung: Oftmals wird in der Literatur Prädikatenlogik von vornherein mit Funktionssymbolen (und

ohne explizite Konstanten) eingeführt. Eine (in unserem Sinne) Konstante a ∈ C mit aI = α ∈ ∆I wird

dabei von einem 0-stelligen Funktionssymbol fa ∈ F mit fIa : {〈〉} → ∆I und fIa (〈〉) = α ausgedrückt.
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Formeln mit Funktionssymbolen interpretieren

Zur Interpretation von Atomen werten wir Funktionsterme gesondert aus:

Sei I eine Interpretation und Z eine Zuweisung für I.

• Für eine Konstante c definieren wir cI,Z = cI.

• Für eine Variable x definieren wir xI,Z = Z(x).
• Für einen Funktionsterm t = f (t1, . . . , tn) definieren wir tI,Z = f I(tI,Z1 , . . . , tI,Zn ).

Für ein Atom p(t1, . . . , tn) setzen wir wie gewohnt:

• p(t1, . . . , tn)I,Z = 1 wenn 〈tI,Z1 , . . . , tI,Zn 〉 ∈ pI und

• p(t1, . . . , tn)I,Z = 0 wenn 〈tI,Z1 , . . . , tI,Zn 〉 < pI.

Wir definieren I,Z |= F wie zuvor, induktiv auf der Struktur der Formeln.

Bemerkung: Eine (in unserem Sinne) Konstante a ∈ C mit aI = α ∈ ∆I wird in der Menge der Terme

durch den Funktionsterm fa(〈〉) wie zuvor ausgedrückt. Es ergibt sich demnach fa(〈〉)I,Z = fIa (〈〉) = α.
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Beispiel
Gemeinsam mit Gleichheit eignen sich Funktionen gut, um mathematische Operationen
auszudrücken.

Die Theorie der kommutativen Monoide ist in der Prädikatenlogik mit einem
Funktionssymbol ⊕ (infix geschrieben) und Gleichheit wie folgt darstellbar:

∀x, y, z.((x ⊕ y) ⊕ z) ≈ (x ⊕ (y ⊕ z))

∀x, y. (x ⊕ y) ≈ (y ⊕ x)

∀x. (x ⊕ 0) ≈ x

Eine mögliche Interpretation I:
• ∆I = N

• 0I = 0
• ⊕I = + (Addition über natürlichen Zahlen, z.B.

{
〈〈k, m〉, n〉 ∈ N2 × N

∣∣∣ k + m = n
}
)

Achtung: Es gibt oft mehr mögliche Interpretationen als man denkt. Prädikatenlogik eignet sich zur Beschreibung algebraischer Strukturen
allgemein, aber nicht zur Beschreibung ganz spezieller Strukturen, wie z.B. der natürlichen Zahlen.
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Skolemisierung

Sei ∀x1. · · · ∀xn.∃y.F eine Formel in Pränexform, bei der ∃y das erste Vorkommen ei-
nes Existenzquantors ist. Die Skolemisierung von y ist die Formel ∀x1. · · · ∀xn.F′, defi-
niert wie folgt:

• F′ = F{y 7→ f (x1, . . . , xn)} entsteht aus F, indem man jedes (freie) Vorkommen von
y in F durch den Skolemterm f (x1, . . . , xn) ersetzt;

• dabei ist f ein n-stelliges Funktionssymbol, das bisher nirgends verwendet wurde,
genannt Skolemfunktion.

Die Skolemisierung einer Formel in Pränexform erhält man durch Skolemisieren jeder
ihrer existentiell quantifizierten Variablen, von vorn nach hinten (außen nach innen).

Beispiel: Für die Formel ∀x.∃y.∀z.∃v.p(x, y, z, v) ergibt sich:

Skolemisierung von y: ∀x.∀z.∃v.p(x, f (x), z, v)

Skolemisierung von v: ∀x.∀z.p(x, f (x), z, g(x, z))
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Korrektheit der Skolemisierung

Skolemisierung führt nicht zu semantisch äquivalenten Formeln:

Beispiel: Die Formel ∀x.∃y.( p(x) → p(y)) ist eine Tautologie, aber ihre Skolemisierung
∀x.( p(x)→ p( f (x))) ist widerlegbar:
Sei ∆I := {α, β}, pI := {α} sowie f I(δ) := β für alle δ ∈ ∆I.
Dann ist I 6|= ∀x.( p(x)→ p( f (x))), da I, {x 7→ α} 6|= p(x)→ p( f (x)).

Skolemisierung erhält aber Erfüllbarkeit:

Satz: Eine Formel F in Pränexform ist genau dann erfüllbar, wenn die Skolemisierung
von F erfüllbar ist.

Anmerkung: Man kann einen Erfüllbarkeitstest also auf der Skolemisierten Formel
ausführen – das genügt, um logisches Schließen zu implementieren.
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Korrektheit der Skolemisierung: Beweis

Satz: Eine Formel F in Pränexform ist genau dann erfüllbar, wenn die Skolemisierung
von F erfüllbar ist.

Beweis: Wir zeigen die Behauptung für die Skolemisierung einer einzelnen Variablen,
d.h. die Erfüllbarkeitsäquivalenz von ∀x1. · · · ∀xn.∃y.F und
∀x1. · · · ∀xn.F[y 7→ f (x1, . . . , xn)].

Dann folgt der Satz durch Induktion über die Anzahl der Existenzquantoren.

I |= ∀x1. · · · ∀xn.∃y.F

gdw. für alle δ1, . . . , δn ∈ ∆I existiert ein ε ∈ ∆I, so dass
I, {x1 7→ δ1, . . . , xn 7→ δn, y 7→ ε} |= F

Wir definieren: f I(δ1, . . . , δn) := ε für ein solches ε.

gdw. für alle δ1, . . . , δn ∈ ∆I

I, {x1 7→ δ1, . . . , xn 7→ δn} |= F{y 7→ f (x1, . . . , xn)}

gdw. I |= ∀x1. · · · ∀xn.F{y 7→ f (x1, . . . , xn)} �
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d.h. die Erfüllbarkeitsäquivalenz von ∀x1. · · · ∀xn.∃y.F und
∀x1. · · · ∀xn.F[y 7→ f (x1, . . . , xn)].
Dann folgt der Satz durch Induktion über die Anzahl der Existenzquantoren.

I |= ∀x1. · · · ∀xn.∃y.F

gdw. für alle δ1, . . . , δn ∈ ∆I existiert ein ε ∈ ∆I, so dass
I, {x1 7→ δ1, . . . , xn 7→ δn, y 7→ ε} |= F

Wir definieren: f I(δ1, . . . , δn) := ε für ein solches ε.

gdw. für alle δ1, . . . , δn ∈ ∆I

I, {x1 7→ δ1, . . . , xn 7→ δn} |= F{y 7→ f (x1, . . . , xn)}

gdw. I |= ∀x1. · · · ∀xn.F{y 7→ f (x1, . . . , xn)} �
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Sind also Funktionen ausdrucksstärker als ∃?

Nein. Wir können eine n-stellige Funktion f durch ein (n + 1)-stelliges Prädikat pf

darstellen, z.B. mit folgender Theorie:

∀x1, . . . , xn.∃y.pf (x1, . . . , xn, y)

∀x1, . . . , xn, y, z.
(
( pf (x1, . . . , xn, y) ∧ pf (x1, . . . , xn, z))→ y ≈ z

)
Damit können wir Funktionsterme durch existentiell quantifizierte Variablen mit
entsprechenden Nebenbedingungen ersetzen, z.B.:

q( f (x), g(y, z)) wird zu ∃v, w.( pf (x, v) ∧ pg(y, z, w) ∧ q(v, w))

r(g( f (x), y)) wird zu ∃v, w.( pf (x, v) ∧ pg(v, y, w) ∧ r(w))

Eine entsprechende Ersetzung kann man bei jedem Atom in einer Formel durchführen.
Wir erhalten (ohne Beweis):

Satz: Für jede Formel der Prädikatenlogik mit Funktionssymbolen gibt es eine erfüll-
barkeitsäquivalente Formel ohne Funktionssymbole, welche in linearer Zeit berechnet
werden kann.
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Quiz: Ausdrucksstärke von Funktionen

Quiz: . . .
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Zusammenfassung: Funktionen

Die folgenden Varianten von Prädikatenlogik haben also in gewissem Sinne die gleiche
Ausdruckstärke:

• Prädikatenlogik (ohne Funktionssymbole)

• Prädikatenlogik mit Funktionssymbolen

• Prädikatenlogik mit Funktionssymbolen, in Pränexform ohne Existenzquantoren

In jeder dieser Logiken kann man zudem wahlweise ein Gleichheitsprädikat hinzufügen.

Vorteile von Skolemfunktionen gegenüber Existenzquantoren:

• Es gibt nur noch eine Art von Quantoren.

• Die Abhängigkeiten der existentiell bestimmten Elemente von universell
bestimmten Elementen wird explizit in der Syntax dargestellt.
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Beispiel: Skolemform

Wir Skolemisieren das vorige Beispiel:

∀x1, x2, x3, x4, x5.∃x6, x7.((
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧

(
¬L(x5) ∨ (¬W(x6) ∧ ¬L(x7))

))

≡ ∀x1, x2, x3, x4, x5.((
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧

(
¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))
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Konjunktive Normalform und Klauselform
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Konjunktive Normalform

Aus der Aussagenlogik kennen wir die folgende Definition:

Eine Formel F ist genau dann in konjunktiver Normalform (KNF), wenn sie eine Kon-
junktion von Disjunktionen von Literalen ist, d.h. wenn sie die folgende Form hat:

(L1,1 ∨ . . . ∨ L1,m1 ) ∧ (L2,1 ∨ . . . ∨ L2,m2 ) ∧ . . . ∧ (Ln,1 ∨ . . . ∨ Ln,mn )

wobei die Formeln Li,j Literale sind. Eine Disjunktion von Literalen heißt Klausel.

(Zur Erinnerung: Literale = negierte oder nicht-negierte Atome)

{ Die gleiche Form kann für den quantorenfreien inneren Teil jeder Formel in
Pränexform hergestellt werden.
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Bilden der KNF
Wir stellen die KNF in der Prädikatenlogik wie folgt her:

(1) Formel bereinigen

(2) Bilden der Negationsnormalform

(3) Bilden der Pränexform

(4) Skolemisieren

(5) Erschöpfende Anwendung der folgenden Ersetzung auf Teilformeln im
quantorenfreien Teil der Formel:

F ∨ (G ∧ H) 7→ (F ∨ G) ∧ (F ∨ H)

Satz: Die so aus einer Formel F gebildete KNF ist genau dann erfüllbar, wenn F er-
füllbar ist.

Beweis: Schritte (1)–(3) liefern semantisch äquivalente Formeln. Schritt (4) liefert eine
erfüllbarkeitsäquivalente Formel. Schritt (5) liefert eine zu dieser semantisch äquivalente
Formel. �

Anmerkung: Man könnte manche der Schritte auch vertauschen.

Hannes Straß, TU Dresden Theoretische Informatik und Logik, VL 17 Folie 29 von 33

https://iccl.inf.tu-dresden.de/web/Hannes_Stra%C3%9F


Bilden der KNF
Wir stellen die KNF in der Prädikatenlogik wie folgt her:

(1) Formel bereinigen

(2) Bilden der Negationsnormalform

(3) Bilden der Pränexform

(4) Skolemisieren

(5) Erschöpfende Anwendung der folgenden Ersetzung auf Teilformeln im
quantorenfreien Teil der Formel:

F ∨ (G ∧ H) 7→ (F ∨ G) ∧ (F ∨ H)

Satz: Die so aus einer Formel F gebildete KNF ist genau dann erfüllbar, wenn F er-
füllbar ist.

Beweis: Schritte (1)–(3) liefern semantisch äquivalente Formeln. Schritt (4) liefert eine
erfüllbarkeitsäquivalente Formel. Schritt (5) liefert eine zu dieser semantisch äquivalente
Formel. �

Anmerkung: Man könnte manche der Schritte auch vertauschen.
Hannes Straß, TU Dresden Theoretische Informatik und Logik, VL 17 Folie 29 von 33

https://iccl.inf.tu-dresden.de/web/Hannes_Stra%C3%9F


Beispiel: Konjunktive Normalform

∀x1, x2, x3, x4, x5.((
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧

(
¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))

≡ ∀x1, x2, x3, x4, x5.(
(W(x1) ∨ L(x1)) ∧ (¬L(x1) ∨ L(x1))

∧ (W(x1) ∨ ¬W(x1)) ∧ (¬L(x1) ∨ ¬W(x1))
)

∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧

(
¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))
≡ ∀x1, x2, x3, x4, x5.(

(W(x1) ∨ L(x1)) ∧ (¬L(x1) ∨ L(x1))

∧ (W(x1) ∨ ¬W(x1)) ∧ (¬L(x1) ∨ ¬W(x1))
)

∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧ (¬L(x5) ∨ ¬W( f6(x1, x2, x3, x4, x5))) ∧ (¬L(x5) ∨ ¬L( f7(x1, x2, x3, x4, x5)))

)
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¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))

≡ ∀x1, x2, x3, x4, x5.(
(W(x1) ∨ L(x1)) ∧ (¬L(x1) ∨ L(x1))

∧ (W(x1) ∨ ¬W(x1)) ∧ (¬L(x1) ∨ ¬W(x1))
)

∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧ (¬L(x5) ∨ ¬W( f6(x1, x2, x3, x4, x5))) ∧ (¬L(x5) ∨ ¬L( f7(x1, x2, x3, x4, x5)))

)
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Beispiel: Konjunktive Normalform

∀x1, x2, x3, x4, x5.((
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧

(
¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))
≡ ∀x1, x2, x3, x4, x5.(

(W(x1) ∨ L(x1)) ∧ (¬L(x1) ∨ L(x1))

∧ (W(x1) ∨ ¬W(x1)) ∧ (¬L(x1) ∨ ¬W(x1))
)

∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧

(
¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))

≡ ∀x1, x2, x3, x4, x5.(
(W(x1) ∨ L(x1)) ∧ (¬L(x1) ∨ L(x1))

∧ (W(x1) ∨ ¬W(x1)) ∧ (¬L(x1) ∨ ¬W(x1))
)

∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧ (¬L(x5) ∨ ¬W( f6(x1, x2, x3, x4, x5))) ∧ (¬L(x5) ∨ ¬L( f7(x1, x2, x3, x4, x5)))

)
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Beispiel: Konjunktive Normalform

∀x1, x2, x3, x4, x5.((
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧

(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧

(
¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))
≡ ∀x1, x2, x3, x4, x5.(

(W(x1) ∨ L(x1)) ∧ (¬L(x1) ∨ L(x1))

∧ (W(x1) ∨ ¬W(x1)) ∧ (¬L(x1) ∨ ¬W(x1))
)

∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧

(
¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))
≡ ∀x1, x2, x3, x4, x5.(

(W(x1) ∨ L(x1)) ∧ (¬L(x1) ∨ L(x1))

∧ (W(x1) ∨ ¬W(x1)) ∧ (¬L(x1) ∨ ¬W(x1))
)

∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧ (¬L(x5) ∨ ¬W( f6(x1, x2, x3, x4, x5))) ∧ (¬L(x5) ∨ ¬L( f7(x1, x2, x3, x4, x5)))

)
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Klauselform
Die Klauselform ist eine vereinfachte Schreibweise der KNF:

• Allquantoren werden weggelassen

• Klauseln werden als Mengen von Literalen geschrieben

• Konjunktionen von Klauseln werden als Mengen von Mengen von Literalen
geschrieben

Beispiel: Unser Beispiel kann damit wie folgt geschrieben werden:
{ {W(x1), L(x1)},

{¬L(x1), L(x1)},

{W(x1),¬W(x1)},

{¬L(x1),¬W(x1)},

{¬W(x2), W(x3), L(x4)},

{¬L(x5),¬W( f6(x1, x2, x3, x4, x5))},

{¬L(x5),¬L( f7(x1, x2, x3, x4, x5))} }
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Zusammenfassung und Ausblick

Die Pränexform entsteht durch einfaches „Herausziehen“ der Quantoren aus einer NNF.

Funktionen liefern keine zusätzliche Ausdrucksstärke, aber sie helfen bei der
Normalisierung von Formeln, da man existentiell quantifizierte Variablen durch
Funktionsterme ersetzen kann (Skolemform).

Konjunktive Normalform und Klauselform werden in der Prädikatenlogik wie in der
Aussagenlogik gebildet.

Was erwartet uns als nächstes?

• Herbrand, genialer Mathematiker aber unglücklicher Bergsteiger

• Unifikation und Resolution

• Logik über endlichen Interpretationen und ihre praktische Anwendung
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