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Process (Equivalence) Relations

Definition 11  Any binary relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called a process relation. ℛ is a
process equivalence if it is a process relation and an equivalence.

We have seen now two instances of process equivalences.

Theorem 12  ↔ and ≡𝗍𝗋 are process equivalences.

Proof: in a few slides … ∎

Throughout the course, we will explore many more process equivalences, each time with a
different set of requirements.

Isomorphic equivalence (↔) and trace equivalence (≡𝗍𝗋) form meaninful boundaries.

Trivial boundaries: 𝒰 = 𝖯𝗋 × 𝖯𝗋 (the universal equivalence) and ∅ (the non-equivalence).
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A Proof of Theorem 12

Theorem 12  ↔ and ≡𝗍𝗋 are process equivalences.

Proof:  For all processes 𝑝, 𝑞, 𝑟 ∈ 𝖯𝗋,
1. 𝑝 ↔ 𝑝 by id : 𝖯𝗋 → 𝖯𝗋 (id(𝑞) = 𝑞 for all 𝑞 ∈ 𝖯𝗋) being an isomorphism.
2. 𝑝 ↔ 𝑞 implies 𝑞 ↔ 𝑝 since the inverse 𝑓−1 of an isomorphism 𝑓  is an isomorphism (cf.

Lemma 7).
3. 𝑝 ↔ 𝑞 and 𝑞 ↔ 𝑟 implies 𝑝 ↔ 𝑟 since isomorphisms 𝑓  and 𝑔 compose to an

isomorphism 𝑔 ⚬ 𝑓  (if unclear, let’s make it another exercise 😀).

For all processes 𝑝, 𝑞, 𝑟 ∈ 𝖯𝗋,
1. 𝑝 ≡𝗍𝗋 𝑝 iff 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) by reflexivity of =.
2. 𝑝 ≡𝗍𝗋 𝑞 iff 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) iff 𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) iff 𝑞 ≡𝗍𝗋 𝑝 by symmetry of =.
3. 𝑝 ≡𝗍𝗋 𝑞 and 𝑞 ≡𝗍𝗋 𝑟 iff ☐☐ iff 𝑝 ≡𝗍𝗋 𝑟 by transitivity of =.

∎
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Reminder: ↔ and ≡𝗍𝗋

Example.  Reconsider processes 𝑝 and 𝑞 and find that 𝑝 ≡𝗍𝗋 𝑞

𝑎
𝑎

𝑝 𝑞

We have 𝑝 ↮ 𝑞 but 𝑝 ≡𝗍𝗋 𝑞.

• this means, ↔≠≡𝗍𝗋
• but does ≡𝗍𝗋⊆↔? ✘
• or ↔⊆≡𝗍𝗋? ✔

Process equivalence ℰ1 ……… ℰ2
• is finer (than) if ℰ1 ⊆ ℰ2 strictly if if ℰ1 ⊊ ℰ2
• is coarser (than) if ℰ1 ⊇ ℰ1
• is incomparable with if neither finer nor coarser
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Towards a Spectrum of Process Equivalences

Theorem 13 

∅  ⊊
(1)

  ↔   ⊊
(2)

  ≡𝗍𝗋   ⊊
(3)

  𝒰 = 𝖯𝗋 × 𝖯𝗋
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Towards a Spectrum of Process Equivalences

Theorem 13 

∅  ⊊
(1)

  ↔   ⊊
(2)

  ≡𝗍𝗋   ⊊
(3)

  𝒰 = 𝖯𝗋 × 𝖯𝗋

Proof:  Parts (1) and (3) are clear. Proper inclusions stem from the examples we have seen.

Regarding (2), let 𝑝, 𝑞 ∈ 𝖯𝗋 such that 𝑝 ↔ 𝑞. Then there is an isomorphism 𝑓  between the
graphs 𝐺(𝑝) and 𝐺(𝑞), meaning
1. 𝑓(𝑝) = 𝑞 (since 𝑝 and 𝑞 are the roots of their respective process graphs) and
2. 𝑝1 ⟶

𝑎
𝑝2 (𝑝1 ∈ Reach(𝑝)) if and only if 𝑓(𝑝1) ⟶

𝑎
𝑓(𝑝2) (𝑓(𝑝1) ∈ Reach(𝑞))

… to be continued ∎
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Towards a Spectrum of Process Equivalences
Proof:  For every trace 𝜎 = 𝑎1𝑎2…𝑎𝑛 ∈ 𝖠𝖼𝗍⋆,

𝜎 ∈ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) iff ∃𝑝1, …, 𝑝𝑛 ∈ 𝖯𝗋 .𝑝 ⟶
𝑎1

𝑝1 ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑝𝑛 (by definition)

iff ∃𝑝1, …, 𝑝𝑛 ∈ 𝖯𝗋 .𝑓(𝑝) ⟶
𝑎1

𝑓(𝑝1) ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑓(𝑝𝑛) (𝑓 is an isomorphism)

iff ∃𝑞1, …, 𝑞𝑛 ∈ 𝖯𝗋 .𝑞 ⟶
𝑎1

𝑞1 ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑞𝑛 (take 𝑞1 = 𝑓(𝑝1)…𝑞𝑛 = 𝑓(𝑝𝑛))
iff 𝜎 ∈ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) (by definition)

For ↔≠≡𝗍𝗋, reconsider 𝑝 and 𝑞 below, having 𝑝 ≡𝗍𝗋 𝑞 but 𝑝 ↮ 𝑞.

𝑎
𝑎

𝑝 𝑞

∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 6



Trace Equivalence: End of Story?

Example. 

€ ☕ €

€

☕

𝑝 𝑞 𝑟 𝑝′𝑞′

😈

𝑟′

𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = {𝜀, €, €☕} = {𝜀, €, €, €☕} = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝′)

There is one trace, namely €, that is a completed trace of 𝑝′ but not of 𝑝.

In other words, trace equivalence (i.e., ≡𝗍𝗋) is not sensitive to deadlocks.
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The Completed Trace Semantics

Definition 14  A process 𝑝 ∈ 𝖯𝗋 is a deadlock if 𝑝 ⟶
𝑎

 for all 𝑎 ∈ 𝖠𝖼𝗍.

The set of completed traces of a process 𝑝 ∈ 𝖯𝗋, denoted by traces𝑐(𝑝) is the set of all
traces 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) such that 𝑝 ⟶

𝜎
𝑞 and 𝑞 is a deadlock.

Processes 𝑝, 𝑞 ∈ 𝖯𝗋 are completed trace equivalent, denoted by 𝑝 ≡𝖼𝗍𝗋 𝑞, if 𝑝 ≡𝗍𝗋 𝑞 and
𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞).

Theorem 15 

↔   ⊊
(1)

  ≡𝖼𝗍𝗋   ⊊
(2)

  ≡𝗍𝗋
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Proof of Theorem 15

Theorem 15 

↔   ⊊
(1)

  ≡𝖼𝗍𝗋   ⊊
(2)

  ≡𝗍𝗋

Regarding (2),
• observe that trace equivalence is part of the definition of ≡𝖼𝗍𝗋;
• in fact, 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) ⊆ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) for all processes 𝑝 ∈ 𝖯𝗋;
• furthermore, 😈 serves as a counterexample, proving ≡𝖼𝗍𝗋≠≡𝗍𝗋.

€ ☕ €

€

☕

𝑝 𝑞 𝑟 𝑝′𝑞′

😈

𝑟′
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Proof of Theorem 15

Towards (1),
• observe that a deadlock process 𝑝 ∈ 𝖯𝗋 can only be isomorphic to other deadlock

processes;
• in fact, 𝑝 ↔ 𝑞 for all processes 𝑝, 𝑞 ∈ 𝖯𝗋 that are deadlocks;
• hence, any completed trace of 𝑝 ∈ 𝖯𝗋 must be a a completed trace of 𝑓(𝑝) (by the same

arguments as in proof of Theorem 13);
• also, ↔≠≡𝖼𝗍𝗋 (e.g., 𝑝0 and 𝑞0 below).

𝑎

𝑎

𝑎
𝑝0𝑞0𝑞1

𝑝1

𝑝2

≡𝖼𝗍𝗋

↮

∎
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Completed Traces: End of Story?

Definition 14  A process 𝑝 ∈ 𝖯𝗋 is a deadlock if 𝑝 ⟶
𝑎

 for all 𝑎 ∈ 𝖠𝖼𝗍.

The set of completed traces of a process 𝑝 ∈ 𝖯𝗋, denoted by traces𝑐(𝑝) is the set of all
traces 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) such that 𝑝 ⟶

𝜎
𝑞 and 𝑞 is a deadlock.

Processes 𝑝, 𝑞 ∈ 𝖯𝗋 are completed trace equivalent, denoted by 𝑝 ≡𝖼𝗍𝗋 𝑞, if 𝑝 ≡𝗍𝗋 𝑞 and
𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞).

Theorem 15 

↔   ⊊
(1)

  ≡𝖼𝗍𝗋   ⊊
(2)

  ≡𝗍𝗋

≡𝖼𝗍𝗋 preserves traces (2) and deadlocks (😈)
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Completed Traces are Insensitive to Nondeterminism

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

What more do we need?
1. We are looking for the intimate connection between nondeterminism and interaction.
2. We are aiming at equivalences going beyond linear-time (≡𝗍𝗋 and ≡𝖼𝗍𝗋 are linear-time).
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Recall

Definition 11  Any binary relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called a process relation. ℛ is a
process equivalence if it is a process relation and an equivalence.

Theorem 15 

↔   ⊊
(1)

  ≡𝖼𝗍𝗋   ⊊
(2)

  ≡𝗍𝗋

If, between two process equivalences ℛ1 and ℛ2, it holds that ℛ1 ⊆ ℛ2, we say that ℛ1 is
finer than ℛ2, and ℛ2 is coarser than ℛ1.

The coarsest process equivalence of all is 𝒰 ⊆ 𝖯𝗋 × 𝖯𝗋.
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Towards More Meaningful Equivalences

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

Maybe induction helps?
Suppose, 𝑝 ≡ 𝑝′ (← claim);
1. since 𝑝 ⟶

€
𝑞, 𝑝′ needs to have a similar step

2. 𝑝′ ⟶
€

𝑞1′  and 𝑝′ ⟶
€

𝑞2′

3. thus, the claim holds if 𝑞 ≡ 𝑞1′  and/or(?) 𝑞 ≡ 𝑞2′

4. but as 𝑞 ⟶
☕

 and 𝑞2′ ⟶
☕

, 𝑞 ≢ 𝑞2′ ; similarly, 𝑞 ⟶
🍵

 but 𝑞1′ ⟶
🍵

, 𝑞 ≢ 𝑞1′
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Induction Seems to Work

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

𝑝 ≢ 𝑝′ because 𝑞 ≢ 𝑞1′  and 𝑞 ≢ 𝑞2′ .

Cooking up Equivalence ≡
𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.
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Induction Seems to Work

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

€ ☕ €

€

☕

𝑝 𝑞 𝑟 𝑝′𝑞′

😈

𝑟′

𝑝 ≢ 𝑝′ because 𝑞 ≢😈

Note, 𝑟 ≡ 𝑟′ ≡😈

All deadlock processes are equivalent under ≡.
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Where Does Induction Fail?
𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

Example.  Reconsider processes 𝑝 and 𝑞 and find that 𝑝 ≡𝗍𝗋 𝑞

𝑎
𝑎

𝑝 𝑞

To prove that 𝑝 ≡ 𝑞, we have to show that 𝑞 ≡ 𝑞 because
1. 𝑝 ⟶

𝑎
𝑞 and there is a 𝑞′ such that 𝑞 ⟶

𝑎
𝑞′, namely 𝑞′ = 𝑞, for which 𝑞 ≡ 𝑞′ = 𝑞, and

2. 𝑞 ⟶
𝑎

𝑞 and there is a 𝑝′ such that 𝑝 ⟶
𝑎

𝑞′, namely 𝑞′ = 𝑞, … 𝑞 ≡ 𝑞′ = 𝑞.

To prove that 𝑞 ≡ 𝑞, we have to show that 𝑞 ≡ 𝑞 … To prove that 𝑞 ≡ 𝑞, we have to show
that 𝑞 ≡ 𝑞 … To prove that 𝑞 ≡ 𝑞, we have to show that 𝑞 ≡ 𝑞 … … ∎
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Why Does Induction Fail?

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

• Induction requires a base case start with nothing: ℛ0 = {}
• By definition, in order to know that 𝑝 ≡ 𝑞, we have to already know that 𝑝′ ≡ 𝑞′

• In the example, to know/prove that 𝑝 ≡ 𝑞, we have to already know that 𝑞 ≡ 𝑞

𝑎
𝑎

𝑝 𝑞

What went wrong?
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What went well?

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′
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An Inductive Approach to Process Equivalence in Reverse

Note

The coarsest process equivalence of all is 𝒰 ⊆ 𝖯𝗋 × 𝖯𝗋.

Compute ≃0, ≃1, … and define ≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.
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An Inductive Approach to Process Equivalence in Reverse

Compute ≃0, ≃1, … and define ≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Example. 

𝑎
𝑎

𝑝 𝑞

≃0= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑞, 𝑝), (𝑞, 𝑞)}
≃1= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑞, 𝑝), (𝑞, 𝑞)} =≃0=≃𝜔
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An Inductive Approach to Process Equivalence in Reverse

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

≃0= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑝, 𝑟1), (𝑝, 𝑟2), …}
≃1= {(𝑝, 𝑝), (𝑝, 𝑝′), …, (𝑞, 𝑞2′), (𝑞, 𝑞1′), …, (𝑟1, 𝑟1′), (𝑟1, 𝑟2′), …}
≃2= {(𝑝, 𝑝), (𝑝, 𝑝′), (𝑝′, 𝑝), (𝑝′, 𝑝′), (𝑞, 𝑞), (𝑞1′ , 𝑞1′), (𝑞2′ , 𝑞2′), …}
≃3= {(𝑝, 𝑝), (𝑝′, 𝑝′), (𝑞, 𝑞), (𝑞1′ , 𝑞1′), (𝑞2′ , 𝑞2′), …} =≃𝜔

𝑝 ≄𝜔 𝑝′
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Rebooting Process Equivalence
A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞
implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ such
that 𝑝 ℛ 𝑞. ≃ is called the bisimilarity.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 23



Rebooting Process Equivalence

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.
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Rebooting Process Equivalence

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Consequences
1. bisimilarity ≃ is the union of all bisimulations
2. showing that 𝑝 ≃ 𝑞 holds reduces to finding a bisimulation ℛ such that 𝑝 ℛ 𝑞
3. conversely, 𝑝 ≄ 𝑞 can be shown by excluding the existence of any such bisimulation ℛ

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 25



Bisimilarity – Two Examples

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Example. 

𝑎
𝑎

𝑝 𝑞

𝑝 ≃ 𝑞 by ℛ = {(𝑝, 𝑞), (𝑞, 𝑞)}, but ℛ′ = {(𝑝, 𝑞), (𝑞, 𝑝)} is not a bisimulation. ∎
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Bisimilarity – Two Examples

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

Towards a contradiction, suppose 𝑝 ≃ 𝑝′. Then there is a bisimulation ℛ with 𝑝 ℛ 𝑝′. As ℛ
is a bisimulation, 𝑞 ℛ 𝑞1′  since 𝑝′ ⟶

€
𝑞1′  and 𝑝 ⟶

€
𝑞. But 𝑞 ℛ 𝑞1′  cannot hold since 𝑞 ⟶

🍵

𝑟2 whereas 𝑞1′ ⟶
🍵

. ∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 27



Disecting Bisimilarity

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Proofs of bisimilarity are
• local checks performed on states separately
• non-hierarchical no fixed temporal order
• require no base case this is not induction

It is, in fact, an example of coinduction
(We had already seen what happens if we read Definition 16 inductively.)
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Disecting Bisimilarity

Theorem 17  ≃ is a process equivalence that is itself a bisimulation.

Proof: We have to show that ≃ is (1) an equivalence and (2) a bisimulation.

to be continued… ∎

Not every bisimulation is an equivalence:

Example. 

𝑎
𝑎

𝑝 𝑞

𝑝 ≃ 𝑞 by ℛ = {(𝑝, 𝑞), (𝑞, 𝑞)} which is neither reflexive nor symmetric.
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Disecting Bisimilarity

Theorem 17  ≃ is a process equivalence that is itself a bisimulation.

Proof: We have to show that ≃ is (1) an equivalence and (2) a bisimulation.
Reflexivity id : 𝖯𝗋 → 𝖯𝗋 is, in fact, a bisimulation. For 𝑝 id 𝑞 (i.e., id(𝑝) = 𝑞), we get 𝑝 ⟶

𝑎

𝑝′ iff 𝑞 = id(𝑝) = 𝑝 ⟶
𝑎

𝑝′ = id(𝑝′) = 𝑞′. The same holds for steps from id(𝑝).
Symmetry If ℛ is a bisimulation, then ℛ−1 ≔ {(𝑞, 𝑝) | 𝑝 ℛ 𝑞} is a bisimulation.
Transitivity Let ℛ1, ℛ2 be bisimulations. We subsequently show that ℛ1⚬ ℛ2 ≔

{(𝑥, 𝑧) | ∃𝑦.𝑥 ℛ1 𝑦 ∧ 𝑦 ℛ2 𝑧} is a bisimulation. For 𝑝 ℛ1 ⚬ ℛ2 𝑞 and 𝑝 ⟶
𝑎

𝑝′,
1. there is an 𝑟 such that 𝑥 ℛ1 𝑟 and 𝑟 ℛ2 𝑞; by definition of ℛ1⚬ ℛ2
2. there is an 𝑟′ such that 𝑟 ⟶

𝑎
𝑟′ and 𝑝′ ℛ1 𝑟′ since ℛ1 is a bisimulation

3. there is a 𝑞′ such that 𝑞 ⟶
𝑎

𝑞′ and 𝑟′ ℛ2 𝑞′ since ℛ2 is a bisimulation
4. hence, by taking that 𝑞′, we get 𝑝′ ℛ1 ⚬ ℛ2 𝑞′ by definition of ℛ1⚬ ℛ2

Since bisimulations are union-closed (by Lemma 18, cf. next slide) and ≃ is the union of all
bisimulations, ≃ is itself a bisimulation. ∎
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Disecting Bisimilarity

Lemma 18  Bisimulations are closed under set unions: If {ℛ𝑖}𝑖 is a (at most countable)
family of bisimulations, then ⋃𝑖 ℛ𝑖 is a bisimulation.
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Disecting Bisimilarity

Lemma 18  Bisimulations are closed under set unions: If {ℛ𝑖}𝑖 is a (at most countable)
family of bisimulations, then ⋃𝑖 ℛ𝑖 is a bisimulation.

Towards a special case, take two bisimulations ℛ1 and ℛ2 and consider ℛ1 ∪ ℛ2:

Take 𝑝 ℛ1 ∪ ℛ2 𝑞 and consider 𝑝 ⟶
𝑎

𝑝′.
1. if 𝑝 ℛ1 𝑞, then there is a 𝑞′ such that 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ1 𝑞′ ℛ1 is a bisimulation

2. if 𝑝 ℛ2 𝑞, then there is a 𝑞′ such that 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ℛ2 𝑞′ ℛ2 is a bisimulation

In both cases, there is a 𝑞′ such that 𝑞 ⟶
𝑎

𝑞′ and 𝑝 ℛ1 ∪ ℛ2 𝑞. Same for 𝑞 ⟶
𝑎

𝑞′.

Proof:  If each ℛ𝑖 is a bisimulation, then ℛ = ⋃𝑖 ℛ𝑖 is a bisimulation. For each pair 𝑝 ℛ 𝑞,
there is a ℛ𝑖 such that 𝑝 ℛ𝑖 𝑞.
1. if 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ such that 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ𝑖 𝑞′ ℛ𝑖 is a bisimulation

2. if 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ such that 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ𝑖 𝑞′ ℛ𝑖 is a bisimulation

In each case 𝑝′ ℛ𝑖 𝑞′ and, thus, 𝑝′ ℛ 𝑞′. ∎
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Yet Another Characterization of ≃

Theorem 19  ≃ is the largest bisimulation, i.e., the largest process relation ≃ such that
𝑝 ≃ 𝑞 implies for all 𝑎 ∈ 𝖠𝖼𝗍:
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′.
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Yet Another Characterization of ≃

Theorem 19  ≃ is the largest bisimulation, i.e., the largest process relation ≃ such that
𝑝 ≃ 𝑞 implies for all 𝑎 ∈ 𝖠𝖼𝗍:
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′.

Proof:  By Theorem 17, ≃ is a bisimulation. It remains to be shown that it is the largest one.

Consider two largest bisimulations ≃
1

 and ≃
2

. Since bisimulations are union-closed (by
Lemma 18), ≃

1
∪ ≃

2
 is a bisimulation as well, implying that ≃

1
=≃

1
∪ ≃

2
 and ≃

2
=≃

1
∪ ≃

2
 to not

contradict the assumption that ≃
1

 and ≃
2

 were chosen to be largest. Thus, ≃ is the unique
largest bisimulation. ∎
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Bisimilarity is an Example for Branching-Time

Theorem 20 

↔   ⊊
(1)

  ≃   ⊊
(2)

  ≡𝖼𝗍𝗋   ⊊   ≡𝗍𝗋

Proof: 
(1) Let 𝑓 : 𝖯𝗋 → 𝖯𝗋 be an isomorphism. We show, 𝑓  is a bisimulation.

For 𝑝 𝑓 𝑞 (i.e., 𝑓(𝑝) = 𝑞),

𝑝 ⟶
𝑎

𝑝′ iff 𝑓(𝑝) ⟶
𝑎

𝑓(𝑝′) since 𝑓 is an isomorphism

iff ∃𝑞′.𝑞 ⟶
𝑎

𝑞′ by 𝑓(𝑝) = 𝑞 take 𝑞′ = 𝑓(𝑝′)

We have 𝑝′ 𝑓 𝑞′ since 𝑓(𝑝′) = 𝑞′. The second direction is analogous.

Towards ↔≠≃, ≃ is insensitive to branch duplicates.

∎
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Bisimilarity is an Example for Branching-Time

Theorem 20 

↔   ⊊
(1)

  ≃   ⊊
(2)

  ≡𝖼𝗍𝗋   ⊊   ≡𝗍𝗋

Proof: 
(2) Let 𝑝, 𝑞 ∈ 𝖯𝗋 such that 𝑝 ≃ 𝑞. We need to show that 𝑝 ≡𝖼𝗍𝗋 𝑞, meaning 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) =

𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞). It is sufficient to show that 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) ⊆ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) since the other direction
follows by symmetry (process equivalences are symmetric).

Let 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) with 𝜎 = 𝑎1𝑎2…𝑎𝑛. Then there are states 𝑝1, 𝑝2, …, 𝑝𝑛 such that
𝑝 ⟶

𝑎1
𝑝1 ⟶

𝑎2
⋯ ⟶

𝑎𝑛
𝑝𝑛 and 𝑝𝑛 is a deadlock.

Since 𝑝 ≃ 𝑞, there are 𝑞1, 𝑞2, …, 𝑞𝑛 such that 𝑞 ⟶
𝑎1

𝑞1 ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑞𝑛 such that 𝑝𝑖 ≃ 𝑞𝑖
(𝑖 = 1, …, 𝑛). In particular, 𝑞𝑛 is a deadlock. Thus, 𝑎1𝑎2…𝑎𝑛 = 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞).

∎
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Counterexample for ≃=≡𝖼𝗍𝗋

Theorem 20 

↔   ⊊
(1)

  ≃   ⊊
(2)

  ≡𝖼𝗍𝗋   ⊊   ≡𝗍𝗋

Example. 

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

𝑝 ≄ 𝑝′ but 𝑝 ≡𝖼𝗍𝗋 𝑝′
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What about ≃𝜔?

Do the two views on process equivalence, ≃ and ≃𝜔, coincide?

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.
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What about ≃𝜔?
≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Example. 

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

Claim: For each 𝑛 ∈ ℕ, we get 𝑝 ≃𝑛 𝑞.
1. 𝑛 = 0, 𝑝 ≃𝑛 𝑞 since ≃0= 𝖯𝗋 × 𝖯𝗋 is the universal process equivalence.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 39



What about ≃𝜔?

2. 𝑛 → 𝑛 + 1,
• if 𝑞 ⟶ 𝑞′, 𝑝 answers by 𝑝 ⟶ 𝑎𝑛; for which we get 𝑎𝑛 ≃𝑛 𝑞′ by another

induction on 𝑛.
• if 𝑞 ⟶ 𝑎𝑘, answer by 𝑝 ⟶ 𝑎𝑘, and vice versa. Exploit reflexivity of ≃𝑛.

Claim: For each 𝑛 ∈ ℕ, 𝑎𝑛 ≃𝑛 𝑞′

1. 𝑛 = 0, ✓
2. 𝑛 → 𝑛 + 1, 𝑎𝑛+1 still has 𝑛 + 1 steps to go until it deadlocks 𝑎0.

Another Fact: For each 𝑚, 𝑛 ∈ ℕ, 𝑎𝑚 ≃𝑛 𝑞′ if 𝑚 ≥ 𝑛.

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 40



What about ≃𝜔?

Definition 16 (Bisimulation, Bisimilarity)  A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Does 𝑝 ≃ 𝑞 hold in the previous example?
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𝑝 ≃ 𝑞?

Example. 

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

Assume, there is a bisimulation ℛ such that 𝑝 ℛ 𝑞. Then for 𝑞 ⟶ 𝑞′, there is some 𝑚 ∈ ℕ,
so that 𝑝 ⟶ 𝑎𝑚 and 𝑎𝑚 ℛ 𝑞′.

Claim: For all 𝑛 ∈ ℕ, 𝑎𝑚 ≄ 𝑞′.
1. 𝑛 = 0, 𝑎𝑛 ⟶ whereas 𝑞′ ⟶ 𝑞′.
2. 𝑛 → 𝑛 + 1, 𝑎𝑛+1 ⟶ 𝑎𝑛. Thus, 𝑎𝑛+1 ≃ 𝑞′ if and only if 𝑎𝑛 ≃ 𝑞′. By induction

hypothesis, 𝑎𝑛 ≄ 𝑞′. In conclusion, 𝑞𝑛+1 ≄ 𝑞′.
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What is Wrong with ≃𝜔?

Example. 

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

1. 𝑝 is
• acyclic,
• infinite-state,
• infinitely branching, and
• not even image-finite

2. 𝑞 is cyclic, …, and not even image-finite
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What is Wrong with ≃𝜔?

Theorem 21  ≃ and ≃𝜔 coincide on image-finite LTSs.

Proof: We prove both directions separately. Consider all processes and, in fact, the underlying
LTS to be image-finite.
≃⊆≃𝜔 For each 𝑛 ∈ ℕ, we show that 𝑝 ≃ 𝑞 implies 𝑝 ≃𝑛 𝑞.

𝑛 = 0 Since ≃𝑛=≃0= 𝖯𝗋 × 𝖯𝗋, 𝑝 ≃𝑛 𝑞 holds trivially.
Hypothesis For 𝑛 ∈ ℕ, 𝑝 ≃ 𝑞 implies 𝑝 ≃𝑛 𝑞.
𝑛 → 𝑛 + 1 If 𝑝 ≃ 𝑞 holds, we show that 𝑝 ≃𝑛+1 𝑞. For each 𝑎 ∈ 𝖠𝖼𝗍

1. if 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃ 𝑞′. By induction hypothesis,
𝑝′ ≃ 𝑞′ implies 𝑝′ ≃𝑛 𝑞′.

2. if 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≃ 𝑞′. By induction hypothesis,
𝑝′ ≃ 𝑞′ implies 𝑝′ ≃𝑛 𝑞′.

Thus, every step of 𝑝 (𝑞, resp.) can be answered such that their successors are
related by ≃𝑛, proving that 𝑝 ≃𝑛+1 𝑞 holds.
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What is Wrong with ≃𝜔?

≃𝜔⊆≃ We show that ℛ = {(𝑝, 𝑞) | 𝑝 ≃𝜔 𝑞} is a bisimulation. Consider a pair (𝑝, 𝑞) ∈ ℛ.
• Suppose, 𝑝 ⟶

𝑎
𝑝′.

• For all 𝑛 ∈ ℕ,
as 𝑝 ≃𝑛+1 𝑞, there is some 𝑞𝑛 such that 𝑞 ⟶

𝑎
𝑞𝑛 and 𝑝′ ≃𝑛 𝑞𝑛;

• Since 𝑞 is image-finite, the set 𝑄 = {𝑞′ | 𝑞 ⟶
𝑎

𝑞′} is finite;
thus, there must be one 𝑞′ ∈ 𝑄 such that 𝑝′ ≃𝑛 𝑞′ for each 𝑛 ∈ ℕ ⇒ 𝑝′ ≃𝜔 𝑞′

∎
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Outline

1. Algebraic Properties of Bisimilarity
2. Algorithmics of Bisimilarity from Different Points of View

a. Bisimilarity is Decidable 😀
b. Bisimilarity is P-complete 😁
c. Bisimilarity is Undecidable 😲

3. Everything you always wanted to know about Petri nets
a. Decidability Results
b. Complexity Results: Immerman–Szelepcsényi on Steroids

4. If time allows
a. Mobile processes: the 𝜋-calculus
b. Relative expressive power
c. Foundations of data-aware processes
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