
Concurrency Theory
Lecture 2: Linear Time vs. Branching Time
Dr. Stephan Mennicke

Institute for Theoretical Computer Science
Knowledge-Based Systems Group

April 8, 2025

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory

Process (Equivalence) Relations

Definition 11 Any binary relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called a process relation. ℛ is a
process equivalence if it is a process relation and an equivalence.

We have seen now two instances of process equivalences.

Theorem 12 ↔ and ≡𝗍𝗋 are process equivalences.

Proof: in a few slides … ∎

Throughout the course, we will explore many more process equivalences, each time with a
different set of requirements.

Isomorphic equivalence (↔) and trace equivalence (≡𝗍𝗋) form meaninful boundaries.

Trivial boundaries: 𝒰 = 𝖯𝗋 × 𝖯𝗋 (the universal equivalence) and ∅ (the non-equivalence).

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 1

A Proof of Theorem 12

Theorem 12 ↔ and ≡𝗍𝗋 are process equivalences.

Proof: For all processes 𝑝, 𝑞, 𝑟 ∈ 𝖯𝗋,
1. 𝑝 ↔ 𝑝 by id : 𝖯𝗋 → 𝖯𝗋 (id(𝑞) = 𝑞 for all 𝑞 ∈ 𝖯𝗋) being an isomorphism.
2. 𝑝 ↔ 𝑞 implies 𝑞 ↔ 𝑝 since the inverse 𝑓−1 of an isomorphism 𝑓 is an isomorphism (cf.

Lemma 7).
3. 𝑝 ↔ 𝑞 and 𝑞 ↔ 𝑟 implies 𝑝 ↔ 𝑟 since isomorphisms 𝑓 and 𝑔 compose to an

isomorphism 𝑔 ⚬ 𝑓 (if unclear, let’s make it another exercise 😀).

For all processes 𝑝, 𝑞, 𝑟 ∈ 𝖯𝗋,
1. 𝑝 ≡𝗍𝗋 𝑝 iff 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) by reflexivity of =.
2. 𝑝 ≡𝗍𝗋 𝑞 iff 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) iff 𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) iff 𝑞 ≡𝗍𝗋 𝑝 by symmetry of =.
3. 𝑝 ≡𝗍𝗋 𝑞 and 𝑞 ≡𝗍𝗋 𝑟 iff ☐☐ iff 𝑝 ≡𝗍𝗋 𝑟 by transitivity of =.

∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 2

Reminder: ↔ and ≡𝗍𝗋

Example. Reconsider processes 𝑝 and 𝑞 and find that 𝑝 ≡𝗍𝗋 𝑞

𝑎
𝑎

𝑝 𝑞

We have 𝑝 ↮ 𝑞 but 𝑝 ≡𝗍𝗋 𝑞.

• this means, ↔≠≡𝗍𝗋
• but does ≡𝗍𝗋⊆↔? ✘
• or ↔⊆≡𝗍𝗋? ✔

Process equivalence ℰ1 ……… ℰ2
• is finer (than) if ℰ1 ⊆ ℰ2 strictly if if ℰ1 ⊊ ℰ2
• is coarser (than) if ℰ1 ⊇ ℰ1
• is incomparable with if neither finer nor coarser

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 3

Towards a Spectrum of Process Equivalences

Theorem 13

∅ ⊊
(1)

 ↔ ⊊
(2)

 ≡𝗍𝗋 ⊊
(3)

 𝒰 = 𝖯𝗋 × 𝖯𝗋

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 4

Towards a Spectrum of Process Equivalences

Theorem 13

∅ ⊊
(1)

 ↔ ⊊
(2)

 ≡𝗍𝗋 ⊊
(3)

 𝒰 = 𝖯𝗋 × 𝖯𝗋

Proof: Parts (1) and (3) are clear. Proper inclusions stem from the examples we have seen.

Regarding (2), let 𝑝, 𝑞 ∈ 𝖯𝗋 such that 𝑝 ↔ 𝑞. Then there is an isomorphism 𝑓 between the
graphs 𝐺(𝑝) and 𝐺(𝑞), meaning
1. 𝑓(𝑝) = 𝑞 (since 𝑝 and 𝑞 are the roots of their respective process graphs) and
2. 𝑝1 ⟶

𝑎
𝑝2 (𝑝1 ∈ Reach(𝑝)) if and only if 𝑓(𝑝1) ⟶

𝑎
𝑓(𝑝2) (𝑓(𝑝1) ∈ Reach(𝑞))

… to be continued ∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 5

Towards a Spectrum of Process Equivalences
Proof: For every trace 𝜎 = 𝑎1𝑎2…𝑎𝑛 ∈ 𝖠𝖼𝗍⋆,

𝜎 ∈ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) iff ∃𝑝1, …, 𝑝𝑛 ∈ 𝖯𝗋 .𝑝 ⟶
𝑎1

𝑝1 ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑝𝑛 (by definition)

iff ∃𝑝1, …, 𝑝𝑛 ∈ 𝖯𝗋 .𝑓(𝑝) ⟶
𝑎1

𝑓(𝑝1) ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑓(𝑝𝑛) (𝑓 is an isomorphism)

iff ∃𝑞1, …, 𝑞𝑛 ∈ 𝖯𝗋 .𝑞 ⟶
𝑎1

𝑞1 ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑞𝑛 (take 𝑞1 = 𝑓(𝑝1)…𝑞𝑛 = 𝑓(𝑝𝑛))
iff 𝜎 ∈ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) (by definition)

For ↔≠≡𝗍𝗋, reconsider 𝑝 and 𝑞 below, having 𝑝 ≡𝗍𝗋 𝑞 but 𝑝 ↮ 𝑞.

𝑎
𝑎

𝑝 𝑞

∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 6

Trace Equivalence: End of Story?

Example.

€ ☕ €

€

☕

𝑝 𝑞 𝑟 𝑝′𝑞′

😈

𝑟′

𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = {𝜀, €, €☕} = {𝜀, €, €, €☕} = 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝′)

There is one trace, namely €, that is a completed trace of 𝑝′ but not of 𝑝.

In other words, trace equivalence (i.e., ≡𝗍𝗋) is not sensitive to deadlocks.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 7

The Completed Trace Semantics

Definition 14 A process 𝑝 ∈ 𝖯𝗋 is a deadlock if 𝑝 ⟶
𝑎

 for all 𝑎 ∈ 𝖠𝖼𝗍.

The set of completed traces of a process 𝑝 ∈ 𝖯𝗋, denoted by traces𝑐(𝑝) is the set of all
traces 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) such that 𝑝 ⟶

𝜎
𝑞 and 𝑞 is a deadlock.

Processes 𝑝, 𝑞 ∈ 𝖯𝗋 are completed trace equivalent, denoted by 𝑝 ≡𝖼𝗍𝗋 𝑞, if 𝑝 ≡𝗍𝗋 𝑞 and
𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞).

Theorem 15

↔ ⊊
(1)

 ≡𝖼𝗍𝗋 ⊊
(2)

 ≡𝗍𝗋

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 8

Proof of Theorem 15

Theorem 15

↔ ⊊
(1)

 ≡𝖼𝗍𝗋 ⊊
(2)

 ≡𝗍𝗋

Regarding (2),
• observe that trace equivalence is part of the definition of ≡𝖼𝗍𝗋;
• in fact, 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) ⊆ 𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) for all processes 𝑝 ∈ 𝖯𝗋;
• furthermore, 😈 serves as a counterexample, proving ≡𝖼𝗍𝗋≠≡𝗍𝗋.

€ ☕ €

€

☕

𝑝 𝑞 𝑟 𝑝′𝑞′

😈

𝑟′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 9

Proof of Theorem 15

Towards (1),
• observe that a deadlock process 𝑝 ∈ 𝖯𝗋 can only be isomorphic to other deadlock

processes;
• in fact, 𝑝 ↔ 𝑞 for all processes 𝑝, 𝑞 ∈ 𝖯𝗋 that are deadlocks;
• hence, any completed trace of 𝑝 ∈ 𝖯𝗋 must be a a completed trace of 𝑓(𝑝) (by the same

arguments as in proof of Theorem 13);
• also, ↔≠≡𝖼𝗍𝗋 (e.g., 𝑝0 and 𝑞0 below).

𝑎

𝑎

𝑎
𝑝0𝑞0𝑞1

𝑝1

𝑝2

≡𝖼𝗍𝗋

↮

∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 10

Completed Traces: End of Story?

Definition 14 A process 𝑝 ∈ 𝖯𝗋 is a deadlock if 𝑝 ⟶
𝑎

 for all 𝑎 ∈ 𝖠𝖼𝗍.

The set of completed traces of a process 𝑝 ∈ 𝖯𝗋, denoted by traces𝑐(𝑝) is the set of all
traces 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) such that 𝑝 ⟶

𝜎
𝑞 and 𝑞 is a deadlock.

Processes 𝑝, 𝑞 ∈ 𝖯𝗋 are completed trace equivalent, denoted by 𝑝 ≡𝖼𝗍𝗋 𝑞, if 𝑝 ≡𝗍𝗋 𝑞 and
𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) = 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞).

Theorem 15

↔ ⊊
(1)

 ≡𝖼𝗍𝗋 ⊊
(2)

 ≡𝗍𝗋

≡𝖼𝗍𝗋 preserves traces (2) and deadlocks (😈)

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 11

Completed Traces are Insensitive to Nondeterminism

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

What more do we need?
1. We are looking for the intimate connection between nondeterminism and interaction.
2. We are aiming at equivalences going beyond linear-time (≡𝗍𝗋 and ≡𝖼𝗍𝗋 are linear-time).

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 12

Recall

Definition 11 Any binary relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called a process relation. ℛ is a
process equivalence if it is a process relation and an equivalence.

Theorem 15

↔ ⊊
(1)

 ≡𝖼𝗍𝗋 ⊊
(2)

 ≡𝗍𝗋

If, between two process equivalences ℛ1 and ℛ2, it holds that ℛ1 ⊆ ℛ2, we say that ℛ1 is
finer than ℛ2, and ℛ2 is coarser than ℛ1.

The coarsest process equivalence of all is 𝒰 ⊆ 𝖯𝗋 × 𝖯𝗋.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 13

Towards More Meaningful Equivalences

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

Maybe induction helps?
Suppose, 𝑝 ≡ 𝑝′ (← claim);
1. since 𝑝 ⟶

€
𝑞, 𝑝′ needs to have a similar step

2. 𝑝′ ⟶
€

𝑞1′ and 𝑝′ ⟶
€

𝑞2′

3. thus, the claim holds if 𝑞 ≡ 𝑞1′ and/or(?) 𝑞 ≡ 𝑞2′

4. but as 𝑞 ⟶
☕

 and 𝑞2′ ⟶
☕

, 𝑞 ≢ 𝑞2′ ; similarly, 𝑞 ⟶
🍵

 but 𝑞1′ ⟶
🍵

, 𝑞 ≢ 𝑞1′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 14

Induction Seems to Work

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

𝑝 ≢ 𝑝′ because 𝑞 ≢ 𝑞1′ and 𝑞 ≢ 𝑞2′ .

Cooking up Equivalence ≡
𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 15

Induction Seems to Work

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

€ ☕ €

€

☕

𝑝 𝑞 𝑟 𝑝′𝑞′

😈

𝑟′

𝑝 ≢ 𝑝′ because 𝑞 ≢😈

Note, 𝑟 ≡ 𝑟′ ≡😈

All deadlock processes are equivalent under ≡.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 16

Where Does Induction Fail?
𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

Example. Reconsider processes 𝑝 and 𝑞 and find that 𝑝 ≡𝗍𝗋 𝑞

𝑎
𝑎

𝑝 𝑞

To prove that 𝑝 ≡ 𝑞, we have to show that 𝑞 ≡ 𝑞 because
1. 𝑝 ⟶

𝑎
𝑞 and there is a 𝑞′ such that 𝑞 ⟶

𝑎
𝑞′, namely 𝑞′ = 𝑞, for which 𝑞 ≡ 𝑞′ = 𝑞, and

2. 𝑞 ⟶
𝑎

𝑞 and there is a 𝑝′ such that 𝑝 ⟶
𝑎

𝑞′, namely 𝑞′ = 𝑞, … 𝑞 ≡ 𝑞′ = 𝑞.

To prove that 𝑞 ≡ 𝑞, we have to show that 𝑞 ≡ 𝑞 … To prove that 𝑞 ≡ 𝑞, we have to show
that 𝑞 ≡ 𝑞 … To prove that 𝑞 ≡ 𝑞, we have to show that 𝑞 ≡ 𝑞 … … ∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 17

Why Does Induction Fail?

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

• Induction requires a base case start with nothing: ℛ0 = {}
• By definition, in order to know that 𝑝 ≡ 𝑞, we have to already know that 𝑝′ ≡ 𝑞′

• In the example, to know/prove that 𝑝 ≡ 𝑞, we have to already know that 𝑞 ≡ 𝑞

𝑎
𝑎

𝑝 𝑞

What went wrong?

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 18

What went well?

𝑝 ≡ 𝑞 if, for all 𝑎 ∈ 𝖠𝖼𝗍,
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ≡ 𝑞′;

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≡ 𝑞′.

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 19

An Inductive Approach to Process Equivalence in Reverse

Note

The coarsest process equivalence of all is 𝒰 ⊆ 𝖯𝗋 × 𝖯𝗋.

Compute ≃0, ≃1, … and define ≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 20

An Inductive Approach to Process Equivalence in Reverse

Compute ≃0, ≃1, … and define ≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Example.

𝑎
𝑎

𝑝 𝑞

≃0= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑞, 𝑝), (𝑞, 𝑞)}
≃1= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑞, 𝑝), (𝑞, 𝑞)} =≃0=≃𝜔

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 21

An Inductive Approach to Process Equivalence in Reverse

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

≃0= {(𝑝, 𝑝), (𝑝, 𝑞), (𝑝, 𝑟1), (𝑝, 𝑟2), …}
≃1= {(𝑝, 𝑝), (𝑝, 𝑝′), …, (𝑞, 𝑞2′), (𝑞, 𝑞1′), …, (𝑟1, 𝑟1′), (𝑟1, 𝑟2′), …}
≃2= {(𝑝, 𝑝), (𝑝, 𝑝′), (𝑝′, 𝑝), (𝑝′, 𝑝′), (𝑞, 𝑞), (𝑞1′ , 𝑞1′), (𝑞2′ , 𝑞2′), …}
≃3= {(𝑝, 𝑝), (𝑝′, 𝑝′), (𝑞, 𝑞), (𝑞1′ , 𝑞1′), (𝑞2′ , 𝑞2′), …} =≃𝜔

𝑝 ≄𝜔 𝑝′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 22

Rebooting Process Equivalence
A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞
implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ such
that 𝑝 ℛ 𝑞. ≃ is called the bisimilarity.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 23

Rebooting Process Equivalence

Definition 16 (Bisimulation, Bisimilarity) A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 24

Rebooting Process Equivalence

Definition 16 (Bisimulation, Bisimilarity) A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Consequences
1. bisimilarity ≃ is the union of all bisimulations
2. showing that 𝑝 ≃ 𝑞 holds reduces to finding a bisimulation ℛ such that 𝑝 ℛ 𝑞
3. conversely, 𝑝 ≄ 𝑞 can be shown by excluding the existence of any such bisimulation ℛ

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 25

Bisimilarity – Two Examples

Definition 16 (Bisimulation, Bisimilarity) A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Example.

𝑎
𝑎

𝑝 𝑞

𝑝 ≃ 𝑞 by ℛ = {(𝑝, 𝑞), (𝑞, 𝑞)}, but ℛ′ = {(𝑝, 𝑞), (𝑞, 𝑝)} is not a bisimulation. ∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 26

Bisimilarity – Two Examples

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

Towards a contradiction, suppose 𝑝 ≃ 𝑝′. Then there is a bisimulation ℛ with 𝑝 ℛ 𝑝′. As ℛ
is a bisimulation, 𝑞 ℛ 𝑞1′ since 𝑝′ ⟶

€
𝑞1′ and 𝑝 ⟶

€
𝑞. But 𝑞 ℛ 𝑞1′ cannot hold since 𝑞 ⟶

🍵

𝑟2 whereas 𝑞1′ ⟶
🍵

. ∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 27

Disecting Bisimilarity

Definition 16 (Bisimulation, Bisimilarity) A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Proofs of bisimilarity are
• local checks performed on states separately
• non-hierarchical no fixed temporal order
• require no base case this is not induction

It is, in fact, an example of coinduction
(We had already seen what happens if we read Definition 16 inductively.)

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 28

Disecting Bisimilarity

Theorem 17 ≃ is a process equivalence that is itself a bisimulation.

Proof: We have to show that ≃ is (1) an equivalence and (2) a bisimulation.

to be continued… ∎

Not every bisimulation is an equivalence:

Example.

𝑎
𝑎

𝑝 𝑞

𝑝 ≃ 𝑞 by ℛ = {(𝑝, 𝑞), (𝑞, 𝑞)} which is neither reflexive nor symmetric.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 29

Disecting Bisimilarity

Theorem 17 ≃ is a process equivalence that is itself a bisimulation.

Proof: We have to show that ≃ is (1) an equivalence and (2) a bisimulation.
Reflexivity id : 𝖯𝗋 → 𝖯𝗋 is, in fact, a bisimulation. For 𝑝 id 𝑞 (i.e., id(𝑝) = 𝑞), we get 𝑝 ⟶

𝑎

𝑝′ iff 𝑞 = id(𝑝) = 𝑝 ⟶
𝑎

𝑝′ = id(𝑝′) = 𝑞′. The same holds for steps from id(𝑝).
Symmetry If ℛ is a bisimulation, then ℛ−1 ≔ {(𝑞, 𝑝) | 𝑝 ℛ 𝑞} is a bisimulation.
Transitivity Let ℛ1, ℛ2 be bisimulations. We subsequently show that ℛ1⚬ ℛ2 ≔

{(𝑥, 𝑧) | ∃𝑦.𝑥 ℛ1 𝑦 ∧ 𝑦 ℛ2 𝑧} is a bisimulation. For 𝑝 ℛ1 ⚬ ℛ2 𝑞 and 𝑝 ⟶
𝑎

𝑝′,
1. there is an 𝑟 such that 𝑥 ℛ1 𝑟 and 𝑟 ℛ2 𝑞; by definition of ℛ1⚬ ℛ2
2. there is an 𝑟′ such that 𝑟 ⟶

𝑎
𝑟′ and 𝑝′ ℛ1 𝑟′ since ℛ1 is a bisimulation

3. there is a 𝑞′ such that 𝑞 ⟶
𝑎

𝑞′ and 𝑟′ ℛ2 𝑞′ since ℛ2 is a bisimulation
4. hence, by taking that 𝑞′, we get 𝑝′ ℛ1 ⚬ ℛ2 𝑞′ by definition of ℛ1⚬ ℛ2

Since bisimulations are union-closed (by Lemma 18, cf. next slide) and ≃ is the union of all
bisimulations, ≃ is itself a bisimulation. ∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 30

Disecting Bisimilarity

Lemma 18 Bisimulations are closed under set unions: If {ℛ𝑖}𝑖 is a (at most countable)
family of bisimulations, then ⋃𝑖 ℛ𝑖 is a bisimulation.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 31

Disecting Bisimilarity

Lemma 18 Bisimulations are closed under set unions: If {ℛ𝑖}𝑖 is a (at most countable)
family of bisimulations, then ⋃𝑖 ℛ𝑖 is a bisimulation.

Towards a special case, take two bisimulations ℛ1 and ℛ2 and consider ℛ1 ∪ ℛ2:

Take 𝑝 ℛ1 ∪ ℛ2 𝑞 and consider 𝑝 ⟶
𝑎

𝑝′.
1. if 𝑝 ℛ1 𝑞, then there is a 𝑞′ such that 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ1 𝑞′ ℛ1 is a bisimulation

2. if 𝑝 ℛ2 𝑞, then there is a 𝑞′ such that 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ℛ2 𝑞′ ℛ2 is a bisimulation

In both cases, there is a 𝑞′ such that 𝑞 ⟶
𝑎

𝑞′ and 𝑝 ℛ1 ∪ ℛ2 𝑞. Same for 𝑞 ⟶
𝑎

𝑞′.

Proof: If each ℛ𝑖 is a bisimulation, then ℛ = ⋃𝑖 ℛ𝑖 is a bisimulation. For each pair 𝑝 ℛ 𝑞,
there is a ℛ𝑖 such that 𝑝 ℛ𝑖 𝑞.
1. if 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ such that 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ𝑖 𝑞′ ℛ𝑖 is a bisimulation

2. if 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ such that 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ𝑖 𝑞′ ℛ𝑖 is a bisimulation

In each case 𝑝′ ℛ𝑖 𝑞′ and, thus, 𝑝′ ℛ 𝑞′. ∎
Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 32

Yet Another Characterization of ≃

Theorem 19 ≃ is the largest bisimulation, i.e., the largest process relation ≃ such that
𝑝 ≃ 𝑞 implies for all 𝑎 ∈ 𝖠𝖼𝗍:
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 33

Yet Another Characterization of ≃

Theorem 19 ≃ is the largest bisimulation, i.e., the largest process relation ≃ such that
𝑝 ≃ 𝑞 implies for all 𝑎 ∈ 𝖠𝖼𝗍:
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′.

Proof: By Theorem 17, ≃ is a bisimulation. It remains to be shown that it is the largest one.

Consider two largest bisimulations ≃
1

 and ≃
2

. Since bisimulations are union-closed (by
Lemma 18), ≃

1
∪ ≃

2
 is a bisimulation as well, implying that ≃

1
=≃

1
∪ ≃

2
 and ≃

2
=≃

1
∪ ≃

2
 to not

contradict the assumption that ≃
1

 and ≃
2

 were chosen to be largest. Thus, ≃ is the unique
largest bisimulation. ∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 34

Bisimilarity is an Example for Branching-Time

Theorem 20

↔ ⊊
(1)

 ≃ ⊊
(2)

 ≡𝖼𝗍𝗋 ⊊ ≡𝗍𝗋

Proof:
(1) Let 𝑓 : 𝖯𝗋 → 𝖯𝗋 be an isomorphism. We show, 𝑓 is a bisimulation.

For 𝑝 𝑓 𝑞 (i.e., 𝑓(𝑝) = 𝑞),

𝑝 ⟶
𝑎

𝑝′ iff 𝑓(𝑝) ⟶
𝑎

𝑓(𝑝′) since 𝑓 is an isomorphism

iff ∃𝑞′.𝑞 ⟶
𝑎

𝑞′ by 𝑓(𝑝) = 𝑞 take 𝑞′ = 𝑓(𝑝′)

We have 𝑝′ 𝑓 𝑞′ since 𝑓(𝑝′) = 𝑞′. The second direction is analogous.

Towards ↔≠≃, ≃ is insensitive to branch duplicates.

∎
Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 35

Bisimilarity is an Example for Branching-Time

Theorem 20

↔ ⊊
(1)

 ≃ ⊊
(2)

 ≡𝖼𝗍𝗋 ⊊ ≡𝗍𝗋

Proof:
(2) Let 𝑝, 𝑞 ∈ 𝖯𝗋 such that 𝑝 ≃ 𝑞. We need to show that 𝑝 ≡𝖼𝗍𝗋 𝑞, meaning 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) =

𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞). It is sufficient to show that 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) ⊆ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞) since the other direction
follows by symmetry (process equivalences are symmetric).

Let 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑝) with 𝜎 = 𝑎1𝑎2…𝑎𝑛. Then there are states 𝑝1, 𝑝2, …, 𝑝𝑛 such that
𝑝 ⟶

𝑎1
𝑝1 ⟶

𝑎2
⋯ ⟶

𝑎𝑛
𝑝𝑛 and 𝑝𝑛 is a deadlock.

Since 𝑝 ≃ 𝑞, there are 𝑞1, 𝑞2, …, 𝑞𝑛 such that 𝑞 ⟶
𝑎1

𝑞1 ⟶
𝑎2

⋯ ⟶
𝑎𝑛

𝑞𝑛 such that 𝑝𝑖 ≃ 𝑞𝑖
(𝑖 = 1, …, 𝑛). In particular, 𝑞𝑛 is a deadlock. Thus, 𝑎1𝑎2…𝑎𝑛 = 𝜎 ∈ 𝖼𝗍𝗋𝖺𝖼𝖾𝗌(𝑞).

∎
Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 36

Counterexample for ≃=≡𝖼𝗍𝗋

Theorem 20

↔ ⊊
(1)

 ≃ ⊊
(2)

 ≡𝖼𝗍𝗋 ⊊ ≡𝗍𝗋

Example.

€

☕

🍵

€

€

☕

🍵

𝑝 𝑞

𝑟1

𝑟2

𝑝′

𝑞1′

𝑞2′

𝑟1′

𝑟2′

𝑝 ≄ 𝑝′ but 𝑝 ≡𝖼𝗍𝗋 𝑝′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 37

What about ≃𝜔?

Do the two views on process equivalence, ≃ and ≃𝜔, coincide?

Definition 16 (Bisimulation, Bisimilarity) A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 38

What about ≃𝜔?
≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Example.

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

Claim: For each 𝑛 ∈ ℕ, we get 𝑝 ≃𝑛 𝑞.
1. 𝑛 = 0, 𝑝 ≃𝑛 𝑞 since ≃0= 𝖯𝗋 × 𝖯𝗋 is the universal process equivalence.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 39

What about ≃𝜔?

2. 𝑛 → 𝑛 + 1,
• if 𝑞 ⟶ 𝑞′, 𝑝 answers by 𝑝 ⟶ 𝑎𝑛; for which we get 𝑎𝑛 ≃𝑛 𝑞′ by another

induction on 𝑛.
• if 𝑞 ⟶ 𝑎𝑘, answer by 𝑝 ⟶ 𝑎𝑘, and vice versa. Exploit reflexivity of ≃𝑛.

Claim: For each 𝑛 ∈ ℕ, 𝑎𝑛 ≃𝑛 𝑞′

1. 𝑛 = 0, ✓
2. 𝑛 → 𝑛 + 1, 𝑎𝑛+1 still has 𝑛 + 1 steps to go until it deadlocks 𝑎0.

Another Fact: For each 𝑚, 𝑛 ∈ ℕ, 𝑎𝑚 ≃𝑛 𝑞′ if 𝑚 ≥ 𝑛.

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 40

What about ≃𝜔?

Definition 16 (Bisimulation, Bisimilarity) A process relation ℛ ⊆ 𝖯𝗋 × 𝖯𝗋 is called
a (strong) bisimulation if, for all 𝑝, 𝑞 ∈ 𝖯𝗋, 𝑝 ℛ 𝑞 implies
1. for all 𝑝′ with 𝑝 ⟶

𝑎
𝑝′, there is a 𝑞′ with 𝑞 ⟶

𝑎
𝑞′ and 𝑝′ ℛ 𝑞′, and

2. for all 𝑞′ with 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ℛ 𝑞′

for all 𝑎 ∈ 𝖠𝖼𝗍. We call 𝑝 and 𝑞 bisimilar, denoted 𝑝 ≃ 𝑞, if there is a bisimulation ℛ
such that 𝑝 ℛ 𝑞. ≃ is called bisimilarity.

Does 𝑝 ≃ 𝑞 hold in the previous example?

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 41

𝑝 ≃ 𝑞?

Example.

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

Assume, there is a bisimulation ℛ such that 𝑝 ℛ 𝑞. Then for 𝑞 ⟶ 𝑞′, there is some 𝑚 ∈ ℕ,
so that 𝑝 ⟶ 𝑎𝑚 and 𝑎𝑚 ℛ 𝑞′.

Claim: For all 𝑛 ∈ ℕ, 𝑎𝑚 ≄ 𝑞′.
1. 𝑛 = 0, 𝑎𝑛 ⟶ whereas 𝑞′ ⟶ 𝑞′.
2. 𝑛 → 𝑛 + 1, 𝑎𝑛+1 ⟶ 𝑎𝑛. Thus, 𝑎𝑛+1 ≃ 𝑞′ if and only if 𝑎𝑛 ≃ 𝑞′. By induction

hypothesis, 𝑎𝑛 ≄ 𝑞′. In conclusion, 𝑞𝑛+1 ≄ 𝑞′.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 42

What is Wrong with ≃𝜔?

Example.

𝑝

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …

…

𝑞 𝑞′

1. 𝑝 is
• acyclic,
• infinite-state,
• infinitely branching, and
• not even image-finite

2. 𝑞 is cyclic, …, and not even image-finite

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 43

What is Wrong with ≃𝜔?

Theorem 21 ≃ and ≃𝜔 coincide on image-finite LTSs.

Proof: We prove both directions separately. Consider all processes and, in fact, the underlying
LTS to be image-finite.
≃⊆≃𝜔 For each 𝑛 ∈ ℕ, we show that 𝑝 ≃ 𝑞 implies 𝑝 ≃𝑛 𝑞.

𝑛 = 0 Since ≃𝑛=≃0= 𝖯𝗋 × 𝖯𝗋, 𝑝 ≃𝑛 𝑞 holds trivially.
Hypothesis For 𝑛 ∈ ℕ, 𝑝 ≃ 𝑞 implies 𝑝 ≃𝑛 𝑞.
𝑛 → 𝑛 + 1 If 𝑝 ≃ 𝑞 holds, we show that 𝑝 ≃𝑛+1 𝑞. For each 𝑎 ∈ 𝖠𝖼𝗍

1. if 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃ 𝑞′. By induction hypothesis,
𝑝′ ≃ 𝑞′ implies 𝑝′ ≃𝑛 𝑞′.

2. if 𝑞 ⟶
𝑎

𝑞′, there is a 𝑝′ with 𝑝 ⟶
𝑎

𝑝′ and 𝑝′ ≃ 𝑞′. By induction hypothesis,
𝑝′ ≃ 𝑞′ implies 𝑝′ ≃𝑛 𝑞′.

Thus, every step of 𝑝 (𝑞, resp.) can be answered such that their successors are
related by ≃𝑛, proving that 𝑝 ≃𝑛+1 𝑞 holds.

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 44

What is Wrong with ≃𝜔?

≃𝜔⊆≃ We show that ℛ = {(𝑝, 𝑞) | 𝑝 ≃𝜔 𝑞} is a bisimulation. Consider a pair (𝑝, 𝑞) ∈ ℛ.
• Suppose, 𝑝 ⟶

𝑎
𝑝′.

• For all 𝑛 ∈ ℕ,
as 𝑝 ≃𝑛+1 𝑞, there is some 𝑞𝑛 such that 𝑞 ⟶

𝑎
𝑞𝑛 and 𝑝′ ≃𝑛 𝑞𝑛;

• Since 𝑞 is image-finite, the set 𝑄 = {𝑞′ | 𝑞 ⟶
𝑎

𝑞′} is finite;
thus, there must be one 𝑞′ ∈ 𝑄 such that 𝑝′ ≃𝑛 𝑞′ for each 𝑛 ∈ ℕ ⇒ 𝑝′ ≃𝜔 𝑞′

∎

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 45

Outline

1. Algebraic Properties of Bisimilarity
2. Algorithmics of Bisimilarity from Different Points of View

a. Bisimilarity is Decidable 😀
b. Bisimilarity is P-complete 😁
c. Bisimilarity is Undecidable 😲

3. Everything you always wanted to know about Petri nets
a. Decidability Results
b. Complexity Results: Immerman–Szelepcsényi on Steroids

4. If time allows
a. Mobile processes: the 𝜋-calculus
b. Relative expressive power
c. Foundations of data-aware processes

Dr. Stephan Mennicke Concurrency Theory: Linear Time vs. Branching Time April 8, 2025 46

