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Turing-Machtigkeit

e Die Turingmaschine ist das

méachstigste bekannte Berechnungsmodell

~» was nicht Turing-berechenbar ist, gilt als unberechenbar
e Zahlreiche andere Modelle sind ebenso Turing-méachtig

— Turingmaschinen in vielen Varianten
(deterministisch/nichtdeterministisch,
Einband/Mehrband, einseitig/zweiseitig unendlich, ...)

— alle ,echten” Programmiersprachen (C, PHP, Java, C++,
Python, JavaScript, Perl, BASIC, C¥, Pascal, Fortran,
Ruby, COBOL, Lisp, Visual Basic, Assembler, Prolog, Ada,
Lua, Haskell, Scheme, ALGOL, TeX, R, Logo, Objective-C,
Scratch, AWK, TCL, .NET, Smalltalk, PostScript, ...*)

— theoretische Kalkile (Pradikatenlogik erster Stufe,
A-Kalkll, allgemeine rekursive Funktionen, ...)

— manch Unerwartetes (C++-Templates, SQL, Java
Generics, Magic: The Gathering, ...)
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* populare Programmiersprachen (geordnet nach Zahl internationaler Wikipedia-Artikel)

Die Turingmaschine
Eingabe-/Speicherband

lalalalb|blc)plclclplD] -

Lese-/Schreibkopf
(beweglich)

Endliche

Steuerung
-—E Zustandsvariable

Eine (deterministische) Turingmaschine (DTM) ist ein Tupel

M = (Q,X,T,6,qo, F) bestehend aus Zustandsmenge Q, Ein-
gabealphabet X, Arbeitsalphabet I' 2 X U {.}, Startzustand ¢¢ C Q,
Endzustanden F C Q, und einer partiellen Ubergangsfunktion

0:0xI' > OXTI' X{L,R,N}
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Entscheidbarkeit
Das Halteproblem ist das Wortproblem fiir die Sprache

{enc(M)##enc(w) | M hélt bei Eingabe w}.

e Entscheidbar: Sprache wird von Turing-Entscheider erkannt

e Unentscheidbar: Sprache wird von keinem Turing-Entscheider
erkannt

e Semi-entscheidbar: Sprache wird von einer TM erkannt, die
aber eventuell kein Entscheider ist

Beispiel:
e Die Sprache {ww | w € {a, b}*} ist entscheidbar (und damit
auch semi-entscheidbar)

e Das Halteproblem ist nicht entscheidbar aber
semi-entscheidbar

e Das Komplement des Halteproblems ist nicht
semi-entscheidbar (und damit auch nicht entscheidbar)
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Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice zeigt die
Probleme Turing-méachtiger Formalismen:

Alles unentscheidbar

Satz von Rice (informelle Version): Jede nicht-triviale Frage UGber
die von einer TM ausgeflihrte Berechnung ist unentscheidbar.

Satz von Rice (formell): Sei E eine Eigenschaft von Sprachen,
die fir manche Turing-erkennbare Sprachen gilt und fir man-
che Turing-erkennbare Sprachen nicht gilt (=,nicht-triviale Eigen-
schaft). Dann ist das folgende Problem unentscheidbar:

e Eingabe: Turingmaschine M

e Ausgabe: Hat L(M) die Eigenschaft E?

Beweis: Durch eine nicht sonderlich komplizierte Reduktion auf
das Halteproblem. Kein Vorlesungsstoff.

Markus Krétzsch, 5. Januar 2017 Formale Systeme Folie 6 von 32

Typ-0-Sprachen
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Beispiele fir Fragen, die laut Rice unentscheidbar sind:
e st aba € L(M)?"
o Ist L(M) leer?”
e st L(M) endlich?“
e Ist L(M) regular?”
e ..
Rice ist dagegen nicht anwendbar auf:

e Hat M mindestens zwei Zustande?“
(keine Eigenschaft von L(M))

e Ist L(M) semi-entscheibar?” (trivial)

Der Satz von Rice lasst sich sinngemaf3 auf alle Turing-méchtigen
Formalismen Ubertragen.
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Typ-0-Grammatiken und Turingmaschinen

Turingmaschinen charakterisieren die Typ-0-Sprachen:

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Spra-
chen, die von einer Turingmaschine erkannt werden kénnen.

Direkte Konsequenzen:

e Typ-0-Grammatiken sind ein universelles (Turing-méachtiges)
Berechnungsmodell

e Typ-0-Sprachen sind die gréBte Klasse von Sprachen, die wir
mit einem ,implementierbaren“ Formalismus beschreiben
kénnen

e Die Typ-0-Sprachen sind genau die semi-entscheidbaren
Sprachen

e Das Wortproblem fir Typ-0-Sprachen ist unentscheidbar
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Typ0 e T™M

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Spra-
chen, die von einer Turingmaschine erkannt werden kénnen.

Beweis: Die beiden Richtungen werden einzeln gezeigt:

(1) Wenn eine Sprache von einer Typ-0-Grammatik erzeugt wird,
dann kann sie von einer TM erkannt werden.

(2) Wenn eine Sprache von einer TM erkannt wird, dann kann sie
durch eine Typ-0-Grammatik erzeugt werden.
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Typ 0 = TM (Details)

Die TM fur Grammatik G = (V, X, P, S) arbeitet wie folgt:
e Eingabealphabet
e BandalphabetI' =X U V U {_}
e Arbeitsweise:
(1) Wabhle (nichtdeterministisch) eine Regel u — v € P aus
(2) Finde (nichtdeterministisch) auf dem Band ein
Vorkommen von v
(3) Ersetze das gewahlte v durch u (dabei muss der
restliche Bandinhalt verschoben werden, wenn |u| # [v|)
(4) Wiederhole ab (1) bis entweder (a) das Band nur noch §
enthalt (Akzeptanz) oder (b) kein Vorkommen von v
gefunden wird (Ablehnung)

Offenbar gilt: Die TM bei Eingabe w hat genau dann einen
erfolgreichen Lauf wenn die Grammatik eine Ableitung von w
zuldsst. O
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Typ0=TM

Gegeben: Eine Grammatik G
Gesucht: Eine TM M mit L(IM) = L(G)

Idee:
e Turingmaschinen kénnen Ableitungsregeln anwenden

e Bandinhalt: Zwischenstand der Ableitung (aus Terminalen und
Nichtterminalen)

e Ableitungsregel wird nichtdeterministisch gewahit

e TMs beginnen mit dem von der Grammatik erzeugten Wort
~» Ableitungsregeln werden rickwarts angewendet
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Typ0<=TM

Gegeben: Eine TM M
Gesucht: Eine Grammatik G mit L(G) = L(M)

Idee:
e Ein Wort kann die Konfiguration einer TM kodieren
e Berechnungsschritte kdnnen durch Ersetzungen von
Teilwoértern simuliert werden
e Grammatiken massen die Wérter erzeugen, welche die TM
akzeptiert ~ Vorgehen einer Grammatik:

(1) wahle ein beliebiges Eingabewort (nichtdeterministisch)

(2) simuliere die TM auf dieser Eingabe

(3) Falls TM akzeptiert: ersetze die simulierte
Endkonfiguration durch das urspriingliche Eingabewort
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Typ 0 & TM (Details 1)

Kodierungstrick:
e Variablen von G kodieren dreierlei Informationen:
(1) Urspriingliches Eingabeband: ein Zeichen aus X U {._}
(2) Simuliertes Arbeitsband: ein Zeichen aus I
(3) Simulierte Position und Zustand: ein Zeichen aus Q U {-}

ajla
Beispiel: Die Zeichenfolge [XJ [a]

bl(b][_.]]=
X] [b [X] [u] kodiert:
q — — f—

(a) die Eingabe war aabb,

(b) die aktuell simulierte Konfiguration ist Xa g XbX..

e AuBerdem verwenden wir Variablen S (Start), A, B
(Erzeugung der Startkonfiguration), .. (entsteht beim
Aufraumen nach akzeptierender Endkonfiguration)

«»V:{S,A,B,u}u((Zuu)xFX(QU{—}))
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Typ 0 & TM (Details 3)

Phase 2: Simuliere TM-Berechnung auf Spuren 2 und 3:

e Fir jeden TM-Ubergang (¢, y, R) € 6(q, x), beliebige
a,b e U {.} und beliebige ze ZUT:

HEREE

e Fir jeden TM-Ubergang (¢, y, L) € 6(¢, x), beliebige
a,b e ZU{.} und beliebige ze ZUT

allb allb
X EY
AU q )\~
e Fir jeden TM-Ubergang (¢’,y,N) € 6(g,x) und a € T U {_}:

-1
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Anmerkung: In Phase 1 vorbereiteter Bandbereich kann nicht verlassen werden!

Typ 0 & TM (Details 2)

Phase 1: Initialisiere TM fiir eine beliebige Eingabe:

a -
S - a]A (fir beliebige a € £) | [H]B
q0 q0

a
A— a)A (fir beliebige a € ) | B

B — :]B|e

~» erzeugt Eingabewort und einen beliebig langen (leeren)
Arbeitsspeicher

~» Spur 1 speichert geratene Eingabe

~» Spuren 2 und 3 speichern TM-Startkonfiguration bei dieser
Eingabe
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Typ 0 & TM (Details 4)

Phase 3: Akzeptanz und Aufraumen:

e Fiuralle g e FundxeXZUI mitd(q,x) =0 und beliebige

aeXU{L)
i
x|—a
q

e Firalle a,b € XU {_} und beliebige x e XUT:

b b
alx|— ab x|a — ba

e Dabei erzeugte Blanks werden entfernt:
o — €
Diese Grammatik erzeugt ein Wort w genau dann wenn die TM

einen akzeptierenden Lauf fiir w hat (unter Verwendung von
beliebig viel Speicher). O
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Zusammenfassung Typ 0

Wir haben also gezeigt:

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Spra-
chen, die von einer Turingmaschine erkannt werden kénnen.

Der Satz von Rice ist daher auf Typ-0-Grammatiken Ubertragbar:

Satz (informell): Fir eine gegebene Typ-0-Grammatik G und eine
nichttriviale Eigenschaft £ von Typ-0-Sprachen ist es unentscheid-
bar, ob L(G) die Eigenschaft E hat.

Probleme wie Leerheit, Universalitat, Aquivalenz Zu einer anderen
Typ-0-Grammatik, usw. sind daher fir Typ-0-Grammatiken (wie
auch fur TMs) unentscheidbar
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Automaten far Typ 1?

Welches Berechnungsmodell entspricht den Typ-1-Sprachen?
e Kellerautomat: zu schwach (Typ 2)
e Turingmaschine: zu stark (Typ 0)

Lésung: Beschrankung des Arbeitsspeichers einer TM:

Ein linear beschréankte Turingmaschine (linear-bounded automa-
ton, LBA) ist eine nichtdeterministische Turingmaschine, die den
Lese-/Schreibkopf nicht liber das letzte Eingabezeichen hinaus

bewegen kann. Versucht sie das, so bleibt der Kopf stattdessen
an der letzten Bandstelle stehen.

Ein LBA kann also nur die (lineare) Menge an Speicher nutzen, die
durch die Eingabe belegt wird
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Typ-1-Sprachen
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Beispiel

Die TM zur Erkennung von {a’b'c’ | i > 0} (Vorlesung 18) ist ein LBA.

Arbeitsweise:
(1) Ersetze, angefangen von links, Vorkommen von a durch a

(2) Immer wenn ein a ersetzt wurde, suche ein b und ersetzte es durch b,
suche anschlielBend rechts davon ein c und ersetzte es durch ¢

(3) Gehe danach zuriick zum ersten noch nicht ersetzten a und fiihre die
Ersetzung (1) fort, bis alle a ersetzt worden sind

(4) Akzeptiere, falls der Inhalt des Bandes die Form a*h ¢* hat

(5) Andernfalls oder falls eine der Ersetzungen in Schritt (2) fehlschlagt,
weil es zu wenige b oder c gibt, lehne die Eingabe ab
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Typ 1 & LBA

Anmerkung: Wir beschranken uns auf Typ-1-Spachen ohne das
Wort €. Diesen Sonderfall miissten LBAs anders behandeln, da
eine TM nicht mit 0 Speicherzellen arbeiten kann. Das ist nicht
schwer,! aber auch nicht sehr interessant.

Satz: Die Typ-1-Grammatiken erzeugen genau diejenigen Spra-
chen, die von einem LBA erkannt werden kénnen.

Beweis: Wir kdnnen fast die gleichen Konstruktionen anwenden,

wie bei Typ 0:

(1) Typ 1 = LBA: Eine TM kann wie zuvor Grammatikregeln
rickwarts anwenden. Bei Typ-1-Regeln ist sichergestellt, dass
dabei niemals mehr Speicher benutzt wird als am Anfang

(2) LBA = Typ 1: Die Konstruktion liefert schon fast eine
Typ-1-Grammatik . ..

Z.B. durch Verwendung eines Endzeichens nach der Eingabe.
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Typ 1 < LBA (2)

Modifizierte Grammatik zur Simulation von LBAs:

a a
S - (a A (fUr beliebige a € ¥) | [a] (fiir beliebige a € X)
q0 q0

a a
A— (a A (fUr beliebige a € ¥) | [a] (fiir beliebige a € X)

HE F I R

a b b
x|—a alx|— ab x|a — ba
q — —

Diese Grammatik simuliert wie zuvor beliebige (N)TMs, aber nur
auf dem Speicherbereich, der von der Eingabe belegt wird. O
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Typ1 < LBA (1)

Die zuvor verwendete TM-Grammatik auf einen Blick:

a o
S—>[a]A (far beliebige a € X) | [u]B
q0 q0

a o
A— {a]A (fiir beliebige a € %) | B B— [u] B | €

a b b
x|—a alx|— ab x |a — ba L€
q — —_—

Problematisch fur Typ 1 sind nur die beiden e-Regeln, die aber nur
wegen der zusétzlichen Blanks nétig sind.
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Konfigurationsgraphen

Das Wortproblem bei Typ 0 ist unentscheidbar. Und bei Typ 1?

Beobachtung:

e Auf einem beschrankten Speicher gibt es nur beschrankt viele
Konfigurationen, genauer gesagt:

Konfigurationszahl bei n Zellen:  |[I']" - n |0|
S~—— S~ S~——
Bandinhalt Kopfpositionen Zustande

e Man kann entscheiden, ob eine TM von einer Konfiguration in
eine andere wechseln kann oder nicht

Far eine Eingabe w kénnen wir also den kompletten Graphen aller
méglichen LBA-Konfigurationen und Ubergénge berechnen.
~» Konfigurationsgraph
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Das Wortproblem far Typ 1

Wortproblem: Gibt es eine akzeptierende Endkonfiguration, die im
Konfigurationsgraphen von der Startkonfiguration aus erreichbar ist?

Daraus folgt:

Fatz: Das Wortproblem flr Typ-1-Sprachen ist entscheidbar.

Unser Algorithmus benétigt (immer) exponentiell viel Zeit.

Aber: Es ist bis heute nicht bekannt, ob es einen Algorithmus gibt,
der im Worst-Case weniger als exponentiell viel Zeit bendtigt!

Beispiel: Das Halteproblem ist keine Typ-1-Sprache, da es nicht
entscheidbar ist.
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Bekannte Abschlusseigenschaften

Wir wissen bereits:

Satz (siehe Vorlesung 14): Sowohl die Klasse der Typ-1-Sprachen
als auch die Klasse der Typ-0-Sprachen ist unter Vereinigung ab-
geschlossen.

Satz: Die Klasse der Typ-0-Sprachen ist nicht unter Komplement
abgeschlossen.

Beweis: Das Komplement des Halteproblems ist nicht
semi-entscheidbar (siehe Vorlesung 19). ]
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Abschlusseigenschaften
Typ O und Typ 1
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Schnitt, Konkatenation und Kleene-Stern
Weitere Abschlusseigenschaften sind nicht schwer zu finden:

e Schnitt: Simuliere erst die erste TM, dann (bei Akzeptanz) die
zweite; verwende ein ,mehrspuriges” Alphabet, um die
Eingabe fur die zweite Simulation zu speichern

e Konkatenation: Rate und markiere die Trennstelle der beiden
Worter; teste dann jedes der Wérter einzeln

e Kleene-Stern: Rate und teste einen ersten nicht-leeren
Teilabschnitt; wiederhole dies bis das gesamte Wort erkannt
wurde

Diese Konstruktionen funktionieren auch bei linear beschranktem
Speicher, also:

Satz: Sowohl die Klasse der Typ-1-Sprachen als auch die Klasse
der Typ-0-Sprachen ist unter Schnitt, Konkatenation und Kleene-
Stern abgeschlossen.
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Die LBA-Probleme

Zwei Probleme sind schon seit Erfindung der LBAs bekannt
(Kuroda, 1964):

(1) Erkennen LBA dieselben Sprachen wie deterministische LBA?

(2) Sind die von LBA erkennbaren Sprachen unter Komplement
abgeschlossen?
Das zweite Problem l&sten Uberraschend nach tber 20 Jahren

unabhéangig voneinander Robert Szelepcsényi (1987) und Neil
Immerman (1988):

Satz von Immerman und Szelepcsényi: Die Typ-1-Sprachen sind
unter Komplement abgeschlossen.

Beweis: siehe Tafel oder Sipser (Abschnitt 8.6) oder Schéning
(Abschnitt 1.4).

Das erste LBA-Problem ist bis heute ungeldst.
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Zusammenfassung und Ausblick

Turingmaschinen charakterisieren Typ-0-Sprachen.

Linear beschrankte Turingmaschinen charakterisieren
Typ-0-Sprachen.

Das Wortproblem fiir Typ-1-Sprachen ist entscheidbar aber
kompliziert

Offene Fragen:
e Wollten wir nicht auch noch etwas Logik behandeln?
e Was hat das mit Sprachen, Berechnung und TMs zu tun?
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Ubersicht Abschlusseigenschaften

Abschluss unter ...

Sprache | N U o * | Automat
Typ0 | v vV x Vv V| TM(DTM/NTM)
Typt | v Vv Vv Vv V| LBA (; det. LBA)
Typ2 | x Vv x v v | PDA
Det. Typ2 | x x V x x | DPDA
Typ3 | v v v v | DFA/NFA
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