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Die Turingmaschine
Eingabe-/Speicherband
a a a b b C D C C b D · · ·

Endliche
Steuerung

Lese-/Schreibkopf
(beweglich)

q Zustandsvariable

Eine (deterministische) Turingmaschine (DTM) ist ein Tupel
M = 〈Q, Σ, Γ, δ, q0, F〉 bestehend aus Zustandsmenge Q, Ein-
gabealphabet Σ, Arbeitsalphabet Γ ⊇ Σ ∪ {�}, Startzustand q0 ⊆ Q,
Endzuständen F ⊆ Q, und einer partiellen Übergangsfunktion

δ : Q × Γ→ Q × Γ × {L, R, N}
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Turing-Mächtigkeit

• Die Turingmaschine ist das
mächstigste bekannte Berechnungsmodell
{ was nicht Turing-berechenbar ist, gilt als unberechenbar

• Zahlreiche andere Modelle sind ebenso Turing-mächtig

– Turingmaschinen in vielen Varianten
(deterministisch/nichtdeterministisch,
Einband/Mehrband, einseitig/zweiseitig unendlich, . . . )

– alle „echten“ Programmiersprachen (C, PHP, Java, C++,
Python, JavaScript, Perl, BASIC, C], Pascal, Fortran,
Ruby, COBOL, Lisp, Visual Basic, Assembler, Prolog, Ada,
Lua, Haskell, Scheme, ALGOL, TeX, R, Logo, Objective-C,
Scratch, AWK, TCL, .NET, Smalltalk, PostScript, . . . ∗)

– theoretische Kalküle (Prädikatenlogik erster Stufe,
λ-Kalkül, allgemeine rekursive Funktionen, . . . )

– manch Unerwartetes (C++-Templates, SQL, Java
Generics, Magic: The Gathering, . . . )
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Entscheidbarkeit
Das Halteproblem ist das Wortproblem für die Sprache

{enc(M)##enc(w) | M hält bei Eingabe w}.

• Entscheidbar: Sprache wird von Turing-Entscheider erkannt
• Unentscheidbar: Sprache wird von keinem Turing-Entscheider

erkannt
• Semi-entscheidbar: Sprache wird von einer TM erkannt, die

aber eventuell kein Entscheider ist

Beispiel:

• Die Sprache {ww | w ∈ {a, b}∗} ist entscheidbar (und damit
auch semi-entscheidbar)

• Das Halteproblem ist nicht entscheidbar aber
semi-entscheidbar

• Das Komplement des Halteproblems ist nicht
semi-entscheidbar (und damit auch nicht entscheidbar)
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Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice zeigt die
Probleme Turing-mächtiger Formalismen:

Satz von Rice (informelle Version): Jede nicht-triviale Frage über
die von einer TM ausgeführte Berechnung ist unentscheidbar.

Satz von Rice (formell): Sei E eine Eigenschaft von Sprachen,
die für manche Turing-erkennbare Sprachen gilt und für man-
che Turing-erkennbare Sprachen nicht gilt (=„nicht-triviale Eigen-
schaft“). Dann ist das folgende Problem unentscheidbar:

• Eingabe: Turingmaschine M
• Ausgabe: Hat L(M) die Eigenschaft E?

Beweis: Durch eine nicht sonderlich komplizierte Reduktion auf
das Halteproblem. Kein Vorlesungsstoff.
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Alles unentscheidbar

Beispiele für Fragen, die laut Rice unentscheidbar sind:

• „Ist aba ∈ L(M)?“

• „Ist L(M) leer?“

• „Ist L(M) endlich?“

• „Ist L(M) regulär?“

• . . .

Rice ist dagegen nicht anwendbar auf:

• „Hat M mindestens zwei Zustände?“
(keine Eigenschaft von L(M))

• „Ist L(M) semi-entscheibar?“ (trivial)

• . . .

Der Satz von Rice lässt sich sinngemäß auf alle Turing-mächtigen
Formalismen übertragen.
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Typ-0-Sprachen
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Typ-0-Grammatiken und Turingmaschinen

Turingmaschinen charakterisieren die Typ-0-Sprachen:

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Spra-
chen, die von einer Turingmaschine erkannt werden können.

Direkte Konsequenzen:

• Typ-0-Grammatiken sind ein universelles (Turing-mächtiges)
Berechnungsmodell

• Typ-0-Sprachen sind die größte Klasse von Sprachen, die wir
mit einem „implementierbaren“ Formalismus beschreiben
können

• Die Typ-0-Sprachen sind genau die semi-entscheidbaren
Sprachen

• Das Wortproblem für Typ-0-Sprachen ist unentscheidbar
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Typ 0⇔ TM

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Spra-
chen, die von einer Turingmaschine erkannt werden können.

Beweis: Die beiden Richtungen werden einzeln gezeigt:

(1) Wenn eine Sprache von einer Typ-0-Grammatik erzeugt wird,
dann kann sie von einer TM erkannt werden.

(2) Wenn eine Sprache von einer TM erkannt wird, dann kann sie
durch eine Typ-0-Grammatik erzeugt werden.
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Typ 0⇒ TM

Gegeben: Eine Grammatik G

Gesucht: Eine TMM mit L(M) = L(G)

Idee:

• Turingmaschinen können Ableitungsregeln anwenden

• Bandinhalt: Zwischenstand der Ableitung (aus Terminalen und
Nichtterminalen)

• Ableitungsregel wird nichtdeterministisch gewählt

• TMs beginnen mit dem von der Grammatik erzeugten Wort
{ Ableitungsregeln werden rückwärts angewendet
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Typ 0⇒ TM (Details)

Die TM für Grammatik G = 〈V, Σ, P, S〉 arbeitet wie folgt:

• Eingabealphabet Σ

• Bandalphabet Γ = Σ ∪ V ∪ {�}
• Arbeitsweise:

(1) Wähle (nichtdeterministisch) eine Regel u→ v ∈ P aus
(2) Finde (nichtdeterministisch) auf dem Band ein

Vorkommen von v
(3) Ersetze das gewählte v durch u (dabei muss der

restliche Bandinhalt verschoben werden, wenn |u| , |v|)
(4) Wiederhole ab (1) bis entweder (a) das Band nur noch S

enthält (Akzeptanz) oder (b) kein Vorkommen von v
gefunden wird (Ablehnung)

Offenbar gilt: Die TM bei Eingabe w hat genau dann einen
erfolgreichen Lauf wenn die Grammatik eine Ableitung von w
zulässt. �
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Typ 0⇐ TM

Gegeben: Eine TMM
Gesucht: Eine Grammatik G mit L(G) = L(M)

Idee:

• Ein Wort kann die Konfiguration einer TM kodieren

• Berechnungsschritte können durch Ersetzungen von
Teilwörtern simuliert werden

• Grammatiken müssen die Wörter erzeugen, welche die TM
akzeptiert{ Vorgehen einer Grammatik:
(1) wähle ein beliebiges Eingabewort (nichtdeterministisch)
(2) simuliere die TM auf dieser Eingabe
(3) Falls TM akzeptiert: ersetze die simulierte

Endkonfiguration durch das ursprüngliche Eingabewort
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Typ 0⇐ TM (Details 1)
Kodierungstrick:
• Variablen von G kodieren dreierlei Informationen:

(1) Ursprüngliches Eingabeband: ein Zeichen aus Σ ∪ {�}
(2) Simuliertes Arbeitsband: ein Zeichen aus Γ

(3) Simulierte Position und Zustand: ein Zeichen aus Q∪ {−}

Beispiel: Die Zeichenfolge


a
X
−




a
a
−




b
X
q




b
b
−




�
X
−




�
�
−

 kodiert:

(a) die Eingabe war aabb,
(b) die aktuell simulierte Konfiguration ist Xa q XbX�

• Außerdem verwenden wir Variablen S (Start), A, B
(Erzeugung der Startkonfiguration), � (entsteht beim
Aufräumen nach akzeptierender Endkonfiguration)

{ V = {S, A, B, �} ∪
(
(Σ ∪ �) × Γ × (Q ∪ {−})

)

Markus Krötzsch, 5. Januar 2017 Formale Systeme Folie 14 von 32

Typ 0⇐ TM (Details 2)
Phase 1: Initialisiere TM für eine beliebige Eingabe:

S→

a
a
q0

 A (für beliebige a ∈ Σ) |

�
�
q0

 B

A→

a
a
−

 A (für beliebige a ∈ Σ) | B

B→

�
�
−

 B | ε

{ erzeugt Eingabewort und einen beliebig langen (leeren)
Arbeitsspeicher

{ Spur 1 speichert geratene Eingabe

{ Spuren 2 und 3 speichern TM-Startkonfiguration bei dieser
Eingabe
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Typ 0⇐ TM (Details 3)
Phase 2: Simuliere TM-Berechnung auf Spuren 2 und 3:

• Für jeden TM-Übergang 〈q′, y, R〉 ∈ δ(q, x), beliebige
a, b ∈ Σ ∪ {�} und beliebige z ∈ Σ ∪ Γ:


a
x
q




b
z
−

→

a
y
−




b
z
q′



• Für jeden TM-Übergang 〈q′, y, L〉 ∈ δ(q, x), beliebige
a, b ∈ Σ ∪ {�} und beliebige z ∈ Σ ∪ Γ


a
z
−




b
x
q

→


a
z
q′




b
y
−



• Für jeden TM-Übergang 〈q′, y, N〉 ∈ δ(q, x) und a ∈ Σ ∪ {�}:

a
x
q

→


a
y
q′

 A
nm

er
ku

ng
:I

n
P

ha
se

1
vo

rb
er

ei
te

te
rB

an
db

er
ei

ch
ka

nn
ni

ch
tv

er
la

ss
en

w
er

de
n!

Markus Krötzsch, 5. Januar 2017 Formale Systeme Folie 16 von 32

Typ 0⇐ TM (Details 4)
Phase 3: Akzeptanz und Aufräumen:

• Für alle q ∈ F und x ∈ Σ ∪ Γ mit δ(q, x) = ∅ und beliebige
a ∈ Σ ∪ {�}: 

a
x
q

→ a

• Für alle a, b ∈ Σ ∪ {�} und beliebige x ∈ Σ ∪ Γ:

a


b
x
−

→ ab


b
x
−

 a→ ba

• Dabei erzeugte Blanks werden entfernt:

�→ ε

Diese Grammatik erzeugt ein Wort w genau dann wenn die TM
einen akzeptierenden Lauf für w hat (unter Verwendung von
beliebig viel Speicher). �
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Zusammenfassung Typ 0

Wir haben also gezeigt:

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Spra-
chen, die von einer Turingmaschine erkannt werden können.

Der Satz von Rice ist daher auf Typ-0-Grammatiken übertragbar:

Satz (informell): Für eine gegebene Typ-0-Grammatik G und eine
nichttriviale Eigenschaft E von Typ-0-Sprachen ist es unentscheid-
bar, ob L(G) die Eigenschaft E hat.

Probleme wie Leerheit, Universalität, Äquivalenz zu einer anderen
Typ-0-Grammatik, usw. sind daher für Typ-0-Grammatiken (wie
auch für TMs) unentscheidbar
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Typ-1-Sprachen
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Automaten für Typ 1?

Welches Berechnungsmodell entspricht den Typ-1-Sprachen?

• Kellerautomat: zu schwach (Typ 2)

• Turingmaschine: zu stark (Typ 0)

Lösung: Beschränkung des Arbeitsspeichers einer TM:

Ein linear beschränkte Turingmaschine (linear-bounded automa-
ton, LBA) ist eine nichtdeterministische Turingmaschine, die den
Lese-/Schreibkopf nicht über das letzte Eingabezeichen hinaus
bewegen kann. Versucht sie das, so bleibt der Kopf stattdessen
an der letzten Bandstelle stehen.

Ein LBA kann also nur die (lineare) Menge an Speicher nutzen, die
durch die Eingabe belegt wird
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Beispiel

Die TM zur Erkennung von {aibici | i ≥ 0} (Vorlesung 18) ist ein LBA.

Arbeitsweise:

(1) Ersetze, angefangen von links, Vorkommen von a durch â

(2) Immer wenn ein a ersetzt wurde, suche ein b und ersetzte es durch b̂,
suche anschließend rechts davon ein c und ersetzte es durch ĉ

(3) Gehe danach zurück zum ersten noch nicht ersetzten a und führe die
Ersetzung (1) fort, bis alle a ersetzt worden sind

(4) Akzeptiere, falls der Inhalt des Bandes die Form â∗b̂
∗
ĉ∗ hat

(5) Andernfalls oder falls eine der Ersetzungen in Schritt (2) fehlschlägt,
weil es zu wenige b oder c gibt, lehne die Eingabe ab
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Typ 1⇔ LBA

Anmerkung: Wir beschränken uns auf Typ-1-Spachen ohne das
Wort ε. Diesen Sonderfall müssten LBAs anders behandeln, da
eine TM nicht mit 0 Speicherzellen arbeiten kann. Das ist nicht
schwer,1 aber auch nicht sehr interessant.

Satz: Die Typ-1-Grammatiken erzeugen genau diejenigen Spra-
chen, die von einem LBA erkannt werden können.

Beweis: Wir können fast die gleichen Konstruktionen anwenden,
wie bei Typ 0:

(1) Typ 1⇒ LBA: Eine TM kann wie zuvor Grammatikregeln
rückwärts anwenden. Bei Typ-1-Regeln ist sichergestellt, dass
dabei niemals mehr Speicher benutzt wird als am Anfang

(2) LBA⇒ Typ 1: Die Konstruktion liefert schon fast eine
Typ-1-Grammatik . . .

1Z.B. durch Verwendung eines Endzeichens nach der Eingabe.
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Typ 1⇐ LBA (1)
Die zuvor verwendete TM-Grammatik auf einen Blick:

S→

a
a
q0

 A (für beliebige a ∈ Σ) |

�
�
q0

 B

A→

a
a
−

 A (für beliebige a ∈ Σ) | B B→

�
�
−

 B | ε


a
x
q




b
z
−

→

a
y
−




b
z
q′




a
z
−




b
x
q

→


a
z
q′




b
y
−




a
x
q

→


a
y
q′




a
x
q

→ a a


b
x
−

→ ab


b
x
−

 a→ ba �→ ε

Problematisch für Typ 1 sind nur die beiden ε-Regeln, die aber nur
wegen der zusätzlichen Blanks nötig sind.
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Typ 1⇐ LBA (2)
Modifizierte Grammatik zur Simulation von LBAs:

S→

a
a
q0

 A (für beliebige a ∈ Σ) |

a
a
q0

 (für beliebige a ∈ Σ)

A→

a
a
−

 A (für beliebige a ∈ Σ) |

a
a
−

 (für beliebige a ∈ Σ)


a
x
q




b
z
−

→

a
y
−




b
z
q′




a
z
−




b
x
q

→


a
z
q′




b
y
−




a
x
q

→


a
y
q′




a
x
q

→ a a


b
x
−

→ ab


b
x
−

 a→ ba

Diese Grammatik simuliert wie zuvor beliebige (N)TMs, aber nur
auf dem Speicherbereich, der von der Eingabe belegt wird. �
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Konfigurationsgraphen

Das Wortproblem bei Typ 0 ist unentscheidbar. Und bei Typ 1?

Beobachtung:

• Auf einem beschränkten Speicher gibt es nur beschränkt viele
Konfigurationen, genauer gesagt:

Konfigurationszahl bei n Zellen: |Γ|n︸︷︷︸
Bandinhalt

· n︸︷︷︸
Kopfpositionen

· |Q|︸︷︷︸
Zustände

• Man kann entscheiden, ob eine TM von einer Konfiguration in
eine andere wechseln kann oder nicht

Für eine Eingabe w können wir also den kompletten Graphen aller
möglichen LBA-Konfigurationen und Übergänge berechnen.
{ Konfigurationsgraph
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Das Wortproblem für Typ 1

Wortproblem: Gibt es eine akzeptierende Endkonfiguration, die im
Konfigurationsgraphen von der Startkonfiguration aus erreichbar ist?

Daraus folgt:

Satz: Das Wortproblem für Typ-1-Sprachen ist entscheidbar.

Unser Algorithmus benötigt (immer) exponentiell viel Zeit.

Aber: Es ist bis heute nicht bekannt, ob es einen Algorithmus gibt,
der im Worst-Case weniger als exponentiell viel Zeit benötigt!

Beispiel: Das Halteproblem ist keine Typ-1-Sprache, da es nicht
entscheidbar ist.
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Abschlusseigenschaften
Typ 0 und Typ 1
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Bekannte Abschlusseigenschaften

Wir wissen bereits:

Satz (siehe Vorlesung 14): Sowohl die Klasse der Typ-1-Sprachen
als auch die Klasse der Typ-0-Sprachen ist unter Vereinigung ab-
geschlossen.

Satz: Die Klasse der Typ-0-Sprachen ist nicht unter Komplement
abgeschlossen.

Beweis: Das Komplement des Halteproblems ist nicht
semi-entscheidbar (siehe Vorlesung 19). �
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Schnitt, Konkatenation und Kleene-Stern
Weitere Abschlusseigenschaften sind nicht schwer zu finden:

• Schnitt: Simuliere erst die erste TM, dann (bei Akzeptanz) die
zweite; verwende ein „mehrspuriges“ Alphabet, um die
Eingabe für die zweite Simulation zu speichern

• Konkatenation: Rate und markiere die Trennstelle der beiden
Wörter; teste dann jedes der Wörter einzeln

• Kleene-Stern: Rate und teste einen ersten nicht-leeren
Teilabschnitt; wiederhole dies bis das gesamte Wort erkannt
wurde

Diese Konstruktionen funktionieren auch bei linear beschränktem
Speicher, also:

Satz: Sowohl die Klasse der Typ-1-Sprachen als auch die Klasse
der Typ-0-Sprachen ist unter Schnitt, Konkatenation und Kleene-
Stern abgeschlossen.
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Die LBA-Probleme
Zwei Probleme sind schon seit Erfindung der LBAs bekannt
(Kuroda, 1964):

(1) Erkennen LBA dieselben Sprachen wie deterministische LBA?

(2) Sind die von LBA erkennbaren Sprachen unter Komplement
abgeschlossen?

Das zweite Problem lösten überraschend nach über 20 Jahren
unabhängig voneinander Robert Szelepcsényi (1987) und Neil
Immerman (1988):

Satz von Immerman und Szelepcsényi: Die Typ-1-Sprachen sind
unter Komplement abgeschlossen.

Beweis: siehe Tafel oder Sipser (Abschnitt 8.6) oder Schöning
(Abschnitt 1.4).

Das erste LBA-Problem ist bis heute ungelöst.
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Übersicht Abschlusseigenschaften

Abschluss unter . . .

Sprache ∩ ∪ ◦ ∗ Automat

Typ 0 X X × X X TM (DTM/NTM)

Typ 1 X X X X X LBA ( ?
= det. LBA)

Typ 2 × X × X X PDA

Det. Typ 2 × × X × × DPDA

Typ 3 X X X X X DFA/NFA
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Zusammenfassung und Ausblick

Turingmaschinen charakterisieren Typ-0-Sprachen.

Linear beschränkte Turingmaschinen charakterisieren
Typ-0-Sprachen.

Das Wortproblem für Typ-1-Sprachen ist entscheidbar aber
kompliziert

Offene Fragen:

• Wollten wir nicht auch noch etwas Logik behandeln?

• Was hat das mit Sprachen, Berechnung und TMs zu tun?
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