
Justifications for Description Logic Knowledge Bases
under the Fixed-Domain Semantics

Sebastian Rudolph, Lukas Schweizer, and Satyadharma Tirtarasa

Computational Logic Group, TU Dresden, Dresden, Germany
firstname.lastname@tu-dresden.de

Abstract. The fixed-domain semantics for OWL and description logic has been
introduced to open up the OWL modeling and reasoning tool landscape for use
cases resembling constraint satisfaction problems. While standard reasoning un-
der this new semantics is by now rather well-understood theoretically and sup-
ported practically, more elaborate tasks like computation of justifications have not
been considered so far, although being highly important in the modeling phase.
In this paper, we compare three different approaches to this problem: one us-
ing standard OWL technology employing an axiomatization of the fixed-domain
semantics, one using our dedicated fixed-domain reasoner Wolpertinger in
combination with standard justification computation technology, and one where
the problem is encoded entirely into answer-set programming.

1 Introduction

With the success of semantic technologies and its tool support, most notably the OWL
language family and its status as W3C standard, more and more people from various
application domains create and use ontologies. Meanwhile, ontological modeling is not
only well supported by established tools like Protégé, also methodologies such as the
usage of ontology design patterns help practitioners to design and deploy ontologies of
high quality [9].

Despite these evolutionary improvements in ontology engineering, the resulting on-
tologies are not free of errors such as unintended entailments (including the case of
inconsistency). For that purpose, research has already brought up several techniques to
detect the causalities of unintended entailments, and it has been studied for lightweight
ontology languages such as EL [21], as well as for very expressive description logics up
to SROIQ [15,13], which in fact is the logical foundation of OWL 2 DL [10]. These
techniques already found their way as built-in functionality into tools like Protégé, or
are available stand-alone. In any case, these methods have become an integral part of
the semantic development chain.

When considering their purpose, ontologies are often divided into two groups: those
where the intended use is an (highly axiomatized) expert system focusing on automated
reasoning as main use (typically less data driven), or those ontologies that are rather
used for data sharing, integration, and reuse with little or no intentions on reasoning
(typically data driven) [9]. However in our collaborations with practitioners, we found
scenarios exhibiting characteristics of both usages, aiming at ontologies that (a) repre-
sent a detailed specification of some product (schema knowledge), (b) include all data

and (c) contain axioms that (non-deterministically) specify variable (configurable) parts
of the product. In general, these ontologies resemble constraint-type problems, where
the purpose of typical automated reasoning tasks is (i) checking satisfiability and (ii)
asking for models – solutions of the encoded problem. For both tasks, the natural as-
sumption in this setup is that the domain is explicitly given in the ontology, and thus is
finite and fixed a priori.

To accommodate these requirements, the fixed-domain semantics has been intro-
duced [6,25], which allows for reasoning over an explicitly given finite domain. A
reasoner, named Wolpertinger1, that supports standard reasoning as well as model
enumeration under the fixed-domain semantics has been developed [26], based on a
translation of DL into answer-set programming.

Our motivation in this paper is to elaborate on possible approaches to compute
justifications for ontologies under the fixed-domain semantics. We focus on three ap-
proaches that evolved naturally during our investigation. First, it is possible to ax-
iomatize a finite domain and conduct fixed-domain reasoning using standard tools,
such that computing explanations can be done via standard tools as well. Second, the
Wolpertinger reasoner can be coupled with the off-the-shelf justification components
of Protégé, and finally we introduce a dedicated encoding of the whole problem into
answer-set programming. Our contributions in this paper are:

1. A formal framework for justifications under the fixed-domain semantics.
2. A novel translation for SROIQ into answer-set programming that allows for stan-

dard reasoning and model enumeration.
3. An extended version of the translation enabling to compute justifications where the

problem is encoded entirely into answer-set programming.
4. A comparison of three different approaches: one using standard OWL technology

employing an axiomatization of the fixed-domain semantics, one using our dedi-
cated fixed-domain reasoner Wolpertinger in combination with standard jus-
tification computation technology, and one with our novel translation where the
problem is encoded entirely into answer-set programming.

The paper is organized as follows. We briefly recall the description logic SROIQ
and a sufficient background on answer-set programming in Section 2. In Section 3,
we introduce the notion of justifications, especially under the fixed-domain semantics.
Each possible approach to compute justifications is then depicted in detail in Section 4.
Finally, we compare the introduced methodologies in Section 5.

2 Preliminaries

OWL 2 DL, the version of the Web Ontology Language we focus on, is defined based
on description logics (DLs, [1,24]). We briefly recap the description logic SROIQ (for
details see [14]). Let NI , NC , and NR be finite, disjoint sets called individual names,
concept names and role names respectively. These atomic entities can be used to form
complex ones as displayed in Table 1.

1 https://github.com/wolpertinger-reasoner

https://github.com/wolpertinger-reasoner

A SROIQ knowledge base K is a tuple (A, T ,R) where A is a SROIQ ABox,
T is a SROIQ TBox andR is a SROIQ RBox. Table 2 presents the respective axiom
types available in the three parts.2 We use NI(K), NC(K), and NR(K) to denote the
sets of individual names, concept names, and role names occurring in K, respectively.

Table 1. Syntax and semantics of role and concept constructors in SROIQ, where a1, . . . an
denote individual names, s a role name, r a role expression and C and D concept expressions.

Name Syntax Semantics

inverse role s− {(x, y) ∈ ∆I ×∆I | (y, x) ∈ sI}
universal role u ∆I ×∆I
top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
nominals {a1, . . . , an} {aI1 , . . . , aIn}
univ. restriction ∀r.C {x | ∀y.(x, y) ∈ rI → y ∈ CI}
exist. restriction ∃r.C {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
Self concept ∃r.Self {x | (x, x) ∈ rI}
qualified number 6n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≤ n}
restriction >n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≥ n}

Table 2. Syntax and semantics of SROIQ axioms.

Axiom α I |= α, if

r1 ◦ · · · ◦ rn v r rI1 ◦ · · · ◦ rIn ⊆ rI RBoxR
Dis(s, r) sI ∩ rI = ∅
C v D CI ⊆ DI TBox T
C(a) aI ∈ CI ABox A
r(a, b) (aI , bI) ∈ rI
a
.
= b aI = bI

a 6 .= b aI 6= bI

The semantics of SROIQ is defined via interpretations I = (∆I , ·I) composed
of a non-empty set ∆I called the domain of I and a function ·I mapping individual
names to elements of ∆I , concept names to subsets of ∆I , and role names to subsets
of ∆I × ∆I . This mapping is extended to complex role and concept expressions (cf.
Table 1) and finally used to define satisfaction of axioms (see Table 2). We say that I

2 The original definition of SROIQ contained more RBox axioms (expressing transitivity,
(a)symmetry, (ir)reflexivity of roles), but these can be shown to be syntactic sugar. Moreover,
the definition of SROIQ contains so-called global restrictions which prevents certain axioms
from occurring together. These complicated restrictions, while crucial for the decidability of
classical reasoning in SROIQ are not necessary for fixed-domain reasoning considered here,
hence we omit them for the sake of brevity.

satisfies a knowledge base K = (A, T ,R) (or I is a model of K, written: I |= K) if it
satisfies all axioms of A, T , and R. We say that a knowledge base K entails an axiom
α (written K |= α) if all models of K are models of α.

Answer-Set Programming We review the basic notions of answer set programming [19]
under the stable model semantics [8], for further details we refer to [4,7].

We fix a countable set U of (domain) elements, also called constants; and suppose a
total order < over the domain elements. An atom is an expression p(t1, . . . , tn), where
p is a predicate of arity n ≥ 0 and each ti is either a variable or an element from U . An
atom is ground if it is free of variables. BU denotes the set of all ground atoms over U .
A (disjunctive) rule ρ is of the form

a1, . . . , an ← b1, . . . , bk, not bk+1, . . . , not bm.
with m ≥ k ≥ 0, where a1, . . . , an, b1, . . . , bm are atoms, and “not ” denotes default
negation. The head of ρ is the set H(ρ) = {a1, . . . , an} and the body of ρ is B(ρ) =
{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(ρ) = {b1, . . . , bk} and B−(ρ)
= {bk+1, . . . , bm}. A rule ρ is safe if each variable in ρ occurs in B+(r). A rule ρ is
ground if no variable occurs in ρ. A fact is a ground rule with empty body. An (input)
database is a set of facts. A (disjunctive) program is a finite set of disjunctive rules.
For a program Π and an input database D, we often write Π(D) instead of D ∪ Π. For
any program Π, let UΠ be the set of all constants appearing in Π. Gr(Π) is the set of
rules ρσ obtained by applying, to each rule ρ ∈ Π, all possible substitutions σ from the
variables in ρ to elements of UΠ.

An interpretation I ⊆ BU satisfies a ground rule ρ iff H(ρ) ∩ I 6= ∅ whenever
B+(ρ) ⊆ I , B−(ρ) ∩ I = ∅. I satisfies a ground program Π, if each ρ ∈ Π is satisfied
by I . A non-ground rule ρ (resp., a program Π) is satisfied by an interpretation I iff
I satisfies all groundings of ρ (resp., Gr(Π)). I ⊆ BU is an answer set (also called
stable model) of Π iff it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct
ΠI = {H(ρ) ← B+(ρ) | I ∩ B−(ρ) = ∅, ρ ∈ Gr(Π)}. For a program Π, we denote
the set of its answer sets by AS(Π).

For a program Π, we denote the set of its answer sets by AS(Π), and might use
AS(Π)|P to project on the predicates P = {p1, . . . , pn}.

We make use of further syntactic extensions, namely integrity constraints and count
expressions, which both can be recast to ordinary normal rules as described in [7]. An
integrity constraint is a rule ρ where H(ρ) = ∅, intuitively representing an undesirable
situation; i.e. it has to be avoided that B(ρ) evaluates positively. Count expressions are
of the form #count{l : l1, . . . , li} ./ u, where l is an atom and lj = pj or lj = not pj ,
for pj an atom, 1 ≤ j ≤ i, u a non-negative integer, and ./ ∈ {≤, <,=, >,≥}. The
expression {l : l1, . . . , ln} denotes the set of all ground instantiations of l, governed
through {l1, . . . , ln}. We restrict the occurrence of count expressions in a rule ρ to
B+(ρ) only. Intuitively, an interpretation satisfies a count expression, if N ./ u holds,
whereN is the cardinality of the set of ground instantiations of l,N = |{l | l1, . . . , ln}|,
for ./ ∈ {≤, <,=, >,≥} and u a non-negative integer.

In order to handle (subset) preferences over answer-sets w.r.t. to ground instances
of a specific atom, we make use of asprin [3]. The framework is designed to support
and simplify the incorporation of preferences over answer-sets.

3 Justifications under Fixed-Domain Semantics

3.1 Fixed-Domain Semantics

The standard semantics of DLs is defined on arbitrary domains. While finite model
reasoning (a natural assumption in database theory) has become the focus of studies in
DLs [5,18,23], where one is interested in models over arbitrary but finite domains, we
consider the case where the domain has an a-priori known cardinality and use the term
fixed-domain. This restriction yields an advantage regarding computational complexity
for expressive DLs, but it also seems to reflect the intuitive model-theoretic expectations
of practitioners in the industrial use cases we were confronted with.

Definition 1 (Fixed-Domain Semantics [6]). Let ∆ be a non-empty finite set called
fixed domain. An interpretation I = (∆I , ·I) is said to be ∆-fixed, if ∆I = ∆, and
aI = a for all a ∈ ∆. For a DL knowledge base K, we call an interpretation I a
∆-model of K (and write I |=∆ K), if I is a ∆-fixed interpretation and I |= K. A
knowledge baseK is called ∆-satisfiable, if it has a∆-model. A knowledge base is said
to K ∆-entail an axiom α (K |=∆ α), if I |= α for every I |=∆ K.

Satisfiability checking in SROIQ under the standard semantics is N2EXPTIME-
complete [16], while being NP-complete in the fixed-domain setting [6].

3.2 Justifications

Logical modeling is prone to error, and it is therefore important to provide debugging
support. One of the most investigated methods is to determine explanations of certain
entailments. These explanations are usually (minimal) subsets of the input knowledge
base that suffice to entail the axiom in question. Several terms have been coined to refer
to such (sub)sets. In the context of lightweight description logics Minimal Axiom Sets
(MinAs) is used, while the task of finding them is called Axiom Pinpointing [2,21].
Instead, for propositional logic, the term Minimal Unsatisfiable Subformula (MUS) to
explain unsatisfiability was introduced long before [20]. In this paper we use the notion
of justification, introduced in the context of highly expressive description logics [15].

Definition 2 (Justification [15]). Let K be a knowledge base such that K |= α. J is a
justification for α in K if J ⊆ K and J |= α, and for all J ′ ⊂ J ,J ′ 6|= α.

Obviously, there may be multiple justifications for an axiom α. Dually to justifications,
one might be interested in minimal subsets that can be retracted in order to restore
consistency, or remove the unwanted entailment; commonly called repair. These two
notions are strongly related in the sense that any repair has a non-empty intersection
with each justification. However, in this work we restrict ourselves to justifications only.

Regarding the fixed-domain semantics, any justification needs to adhere to the con-
sidered fixed domain. Note that fixed-domain reasoning is monotonic, since otherwise,
the subset minimality criterion in the definition of justifications would not be reason-
able.

Definition 3 (Fixed-Justification). Let K be a knowledge base, and ∆ a fixed-domain
such that K |=∆ α. J is a ∆-justification for α in K if J ⊆ K and J |=∆ α, and for
all J ′ ⊂ J ,J ′ 6|=∆ α.

It is the case that, ifK |= α, thenK |=∆ α for any fixed-domain∆. However, it does not
hold that, if J is a justification for K |= α, then J is a ∆-justification for K |=∆ α for
any fixed-domain∆. Due to a stronger restriction on models, there might exist J ′ ⊂ J ,
such that J ′ 6|= α but J ′ |=∆ α. Nonetheless, giving a justification J under the
standard semantics is helpful, since only subsets of J need to be considered. Formally,
if J is a justification for K |= α, then there exist no ∆-justification J ′ ⊃ J for
K |=∆ α, for any fixed-domain ∆. This holds for any restricted reasoning maintaining
monotonicity (e.g. finite model reasoning).

We focus on finding justifications for inconsistency, since entailment checking in
SROIQ can be reduced to satisfiability checking. For example, K |=∆ A v B, iff
K ∪ {(A u ¬B)(a)} is ∆-inconsistent, where a is a fresh individual not occurring in
K. In the same way, justifications for entailments can be reduced to finding justifications
for inconsistency. The caveat is that the introduced axiom should be fixed and not be
part of candidate subset guessing.

Example 1. We consider a simple assignment problem, encoded in Kas. We let the
domain be ∆ = {p1, p2, p3, l1, l2, l3, t1, t2, t3}.

Lecture v ∃teach−.Prof Prof v ≤ 1 teach.Lecture (α1−2)

SpecialLecture v Lecture SpecialLecture v ∀teach−.{p2} (α3−4)
Lecture v ¬Prof Lecture v ¬Time Prof v ¬Time (α5−7)

∃heldOn v Lecture > v ∀heldOn.T ime (α8−9)
teach ◦ heldAt v busyAt (α10)

First, we introduce the core of the knowledge base. Axioms α1−2 specify that a lecture
must be taught by a professor, but one professor teaches at most one lecture. Axioms
α3−4 introduce special lectures that can only be taught by professor p2. Pairwise dis-
jointness of the classes of lectures, professors and times is represented by axioms α5−7.
The domain and the range of heldOn are restricted by α8−9. Finally, axiom α10 defines
that a professor is busy at a certain time if he teaches a lecture at that time.

We specify the ABox for Kas in Figure 1. As shown by the graph, this knowl-
edge base is designed to find a suitable teach “configuration”. Then, we add addi-
tional constraints ¬busyAt(p1, t2) [α25] and {p3} v ≤ 1 busyAt.T ime [α26]. It is
easy to see that those constraints enforce p1 and p3 to teach l1. However, l1 is a
special lecture that can only be taught by p2. Consequently, Kas is inconsistent. Let
J as = Kas \ {α11−13, α15, α17−19, α21−22}, J as is a ∆-justification for Kas incon-
sistency.

Several things can be noticed. First, some assertions can be concluded implicitly.
For example, using the axioms in J as, we can infer that p1, p2, p3 must be professors
since other elements in the domain are lectures and time points. Thus, we can remove
them to get a minimal justification. Second, there are more ∆-justifications than just
J as. Last, Kas is consistent under the standard semantics since new professors can be
introduced to teach problematic lectures.

p1 p2 p3

l1 l2 l3

t1 t2 t3

?teach

heldAt

Prof (p1) Prof (p2) Prof (p3) (α11−13)

Lecture(l2) Lecture(l3) (α14−15)

SpecialLecture(l1) (α16)

T ime(t1) T ime(t2) T ime(t3) (α17−19)

heldAt(l1, t1) (α20)

heldAt(l2, t1) heldAt(l2, t2) (α21−22)

heldAt(l3, t2) heldAt(l3, t3) (α23−24)

Fig. 1. Kas ABox representation and axioms.

4 Computing Justifications

Algorithms for finding justifications can be categorized coarsely into black-box and
glass-box approaches. Black-box approaches use a reasoner to conduct the reasoning
tasks it was designed for, i.e. entailment checking. Contrarily, in the glass-box approach,
existing reasoners are modified, i.e. the internal reasoning algorithms are tweaked to-
wards justifications. Generally, black-box approaches are more robust and easier to im-
plement, whereas the glass-box approaches provide more potential for optimization.
Subsequently, we introduce two black-box approaches, followed by a dedicated glass-
box approach.

4.1 Black-box Approaches

The ontology editor Protégé, has built-in functionality to compute justifications under
the standard semantics, which is based on the OWL Explanation Workbench3 [12]. The
underlying algorithm is based on the Hitting-Set Tree (HST) algorithm originating from
Reiter’s theory of diagnosis [22]. For the details of the implementation we refer to [11].

Axiomatization of ∆-models. Given a knowledge base K and a fixed domain ∆ =
{a1, . . . , an}, one can axiomatize the fixed-domain semantics, such that K |=∆ α iff
K ∪ FD∆ |= α, where FD∆ = {> v {a1, ...an}} ∪ {ai 6

.
= aj | 1 ≤ i < j ≤ n}.

It is easy to see, that those axioms enforce reasoning over ∆. A black-box algorithm
for finding justifications merely exploits inconsistency or entailment checking, which
is a standard reasoning task, thus standard DL reasoners can be used for fixed-domain
standard reasoning. In Section 5 we will therefore use the explanation workbench with
HermiT as black-box reasoner.

A Fixed-Domain Reasoner as a Black-box. Wolpertinger has been introduced as
reasoner adhering to the fixed-domain semantics [26], which can easily be plugged into
the explanation workbench. We will evaluate the performance of this approach, and
expect the performance to correlate with the performance of entailment checking. With
W-black-box we refer to this approach in the subsequent evaluation.

3 Subsequently just called explanation workbench.

4.2 A Glass-box Approach Using Answer-Set Programming

We now introduce a glass-box approach for computing justifications using an encod-
ing into answer-set programming. The translation is based on the naïve translation
[6], which has already been implemented in Wolpertinger, but some fundamental
changes needed to be made in order to compute justifications. Since finding justifica-
tions is about finding the corresponding (minimal) subsets of a knowledge base, another
“layer” is required, on the top of the model correspondence established in the naïve
translation, which is not straightforward to encode in ASP. We will therefore avoid
negation-as-failure, and hence refer to this new translation as naff (negation-as-failure
free). Subsequently, the translation is depicted in detail.

Let K = (A, T ,R) be a normalized SROIQ knowledge base, and ∆ a fixed do-
main.4 With Π(K, ∆) = Πgen(K, ∆)∪Πchk (K)∪Πinc(K), we denote the translation
of K into a logic program w.r.t. ∆. Intuitively, Πgen(K, ∆) generates candidate inter-
pretations w.r.t. ∆, and each axiom is translated into rules in Πchk (K), in such a way,
that any violation will cause a dedicated propositional atom to be true. If so, the Princi-
ple of Explosion (POE) is applied via appropriate rules. For every translated axiom, an
additional dedicated propositional activator is added in the body of the resulting rule,
allowing to activate or deactivate the rule, thus indicating whether to include or exclude
the axiom in a candidate justification.

With the disjunctive rules in Πgss(K, ∆), the generation of extensions for every
concept and role name is realized.

Πgss(K, ∆) = {A(X), not_A(X):−>(X) | A ∈ NC(K)}∪
{r(X,Y), not_r(X,Y):−>(X),>(Y) | r ∈ NR(K}∪
{>(a) | a ∈ ∆}.

Atomic clashes need to be detected explicitly, which is done via simple rules in
Πobv(K). Note that clashes are not represented by constraints, but rules with the dedi-
cated propositional variable inc.

Πobv(K) = {inc :− A(X), not_A(X) | A ∈ NC(K)} ∪
{inc :− r(X,Y), not_r(X,Y) | r ∈ NR(K}.

Based on the detection of atomic clashes, in Πpoe(K) the rules encode the POE, that is,
every concept and role assertion follows whenever inc holds.

Πpoe(K) = {A(X) :− inc,>(X) | A ∈ NC(K)} ∪
{not_A(X) :− inc,>(X) | A ∈ NC(K)} ∪
{r(X,Y) :− inc,>(X),>(Y) | r ∈ NR(K} ∪
{not_r(X,Y) :− inc,>(X),>(Y) | r ∈ NR(K}.

Qualified Number Restriction Encoding One problem that we encountered is the
usage of the <-operator in the translation of at-least cardinality restrictions. Consider

4 We do not provide details on the normalization part, an refer instead to our previous work [6].

the concept ≥ n r.C, which restricts an individual to have at least n r-neighbors,
that are a member of C. The intuitive translation is a constraint that counts how many
outgoing r-connections exist, satisfying also the membership in C, thus failing if there
are less than n r-neighbors not satisfying the condition.

We therefore introduce a different view of the semantics of cardinality restrictions in
the fixed-domain setting. For simplicity, we define r.C(a) = {x ∈ CI | (a, x) ∈ rI}.
Hence r.C(a) consists of all members of concept C that are connected via r starting
in a. The idea is to count individuals which are not a member of the concept where
this restriction applies. There are two possibilities that an individual b is not in r.C(a):
(a, b) /∈ r or b /∈ C. Let n = |∆I | and m = |{b ∈ ∆I | b /∈ r.C(a)}|. Hence, the
number of individuals in r.C(a) is n−m. This is only possible due to the given fixed
domain.

Proposition 1. Let K be a SROIQ knowledge base, ∆ be a fixed-domain, and I a
∆-model of K. Then (≥ n r.C)I = {x ∈ ∆ | #{y ∈ ∆ | y /∈ CI or (x, y) /∈ rI} ≤
|∆| − n}.

Hence, we can compute such a relation between two individuals to be used later in the
translation of axioms. A new auxiliary predicate is introduced for each pair of concept
(and its negation) and role. We define:

Πnra(K) = {not_r_C(X,Y) :− not_C(Y) | C ∈ NC(K), r ∈ NR(K)} ∪
{not_r_C(X,Y) :− not_r(X,Y) | C ∈ NC(K), r ∈ NR(K)} ∪
{not_r_not_C(X,Y) :− C(Y) | C ∈ NC(K), r ∈ NR(K)} ∪
{not_r_not_C(X,Y) :− not_r(X,Y) | C ∈ NC(K), r ∈ NR(K)}.

Πnra(K) does not change the interpretation built by Πgen(K). It merely collects all
those individuals satisfying the previously mentioned conditions. Additionally, we have
to take care about inverse roles, for which the rules look similar, but variables need to
be swapped. Finally, Πgen(K, ∆) = Πgss(K, ∆) ∪Πobv(K) ∪Πpoe(K) ∪Πnra(K).

ABox Translation The first pruning of the search space originates from ABox asser-
tions. As the input is a normalized knowledge base, each assertion contains only a literal
concept, or literal role, respectively. It it then straightforward to encode:

Πchk (A) = {inc :− active(i), not_A(a) | A(a) ∈ A} ∪
{inc :− active(i), A(a) | ¬A(a) ∈ A} ∪
{inc :− active(i), not_r(a, b) | r(a, b) ∈ A} ∪
{inc :− active(i), r(a, b) | ¬r(a, b) ∈ A}.

TBox Translation Each TBox axiom is normalized and of form > v
⊔n
i=1 Ci, with

each Ci being non-complex, i.e. one of the concept constructors depicted in Table 3. It
is then easy to turn normalized axioms into appropriate rules to detect any violation.

Πchk (T) = {inc :− active(j), τ(C1), ..., τ(Cn),>(X) | > v
n⊔
i=1

Ci ∈ T }

Table 3. Translation of concept constructors. Note: Oa is a new concept name unique for a, and
m = |∆I |.

C τ(C)

A not_A(X)
¬A A(X)
{a} {not_Oa(X)}, {Oa(a)}
∀r.A {not_A(Y), r(X,Y)}
∀r.¬A {A(Y), r(X,Y)}
∃r.Self not_r(r,X,X)
¬∃r.Self r(r,X,X)
≥ n r.A #count{Y : not_r_A(X,Y)} > (m− n)
≥ n r.¬A #count{Y : not_r_not_A(X,Y)} > (m− n)
≤ n r.A #count{Y : r(X,Y),A(Y)} > n
≤ n r.¬A #count{Y : r(X,Y), not_A(Y)} > n

RBox Translation Since normalized, each axiom in an RBoxR is either a (simplified)
role chain, disjointness or role inclusion axiom. As for TBox axioms, each axiom inR
is translated into a rule that enforces the propositional variable inc to be true, whenever
the axiom is violated.

Πchk (R) = {inc :− active(i), r(X,Y), s(X,Y) | Dis(r, s) ∈ R} ∪
{inc :− active(i), r(X,Y), not_s(X,Y) | r v s ∈ R} ∪
{inc :− active(i), s1(X,Y), s2(Y,Z), not_r(X,Z) | s1 ◦ s2 v r ∈ R}.

For example, α2 and α10 in Example 1 are encoded as:

i n c :− a c t i v e (2) , p r o f (X) , # c o u n t {Y: t e a c h (X,Y) , l e c t u r e (Y)} >1 .
i n c :− a c t i v e (1 0) , t e a c h (X,Y) , h e l dA t (Y, Z) , no t_busyAt (X, Z) .

Finally, letΠchk (K) = Πchk (A)∪Πchk (T)∪Πchk (R), be the translation of all axioms
in a knowledge base. It remains to remove any candidate answer-set not including inc,
as well as guessing the set of active rules. As a result, any answer-set now indicates
(considering the ground instances of active) which axioms jointly cause inconsistency.
Then, preferring answer-sets that are subset-minimal w.r.t. the set of ground instances
of active yield exactly the desired justifications. The following program captures these
requirements and completes the translation Π(K, ∆) = Πgen(K, ∆) ∪ Πchk (K) ∪
Πinc(K).

Πinc(K) = { :− not inc.
{active(X) :− X = 1..n}.
#optimize(p).

#preference(p, subset){active(C) : C = 1..n}. }

Theorem 1. Let ACT (K) = {active(1), . . . , active(n)}, where n = |K| and KX =
{αi ∈ K | active(i) ∈ X}. Then AS(Π(K, ∆))|{active} = {X ∈ 2ACT (K) |
KX is ∆-inconsistent}.

Proof sketch. Using the well-known splitting theorem [17], we split Π(K, ∆) into two
parts: axiom (subset) guessing and inconsistency checking. First, we show that each X
representing a potential subset can be used to reduce the program toΠ(KX , ∆). For the
second part, we show that if KX is ∆-inconsistent, AS(Π(KX), ∆) consists only of
exactly one answer set, the UIM. Combining both arguments via the splitting theorem,
it can be concluded that each answer set of Π(K, ∆) corresponds to a ∆-justification
for inconsistency of K. ut

We implemented this glass-box approach into Wolpertinger. In the evaluation,
we refer to this approach as glass-box. While our translated programs need to be
evaluated by asprin (which needs Clingo), it would be easy to remove the minimality
preference, such that each answer set then corresponds to an inconsistent subset of the
knowledge base. One could the also define (other) preferences, e.g. prioritizing some
axioms to be necessarily included.

5 Evaluation

We introduce several simple constraint-type combinatorial problems that are aligned
with our approach. We deliberately make them inconsistent, with a controlled number
of justifications. The evaluations were performed on an HPC system at the Center for
Information Services and High Performance Computing (ZIH) at TU Dresden, using
partition Haswell and 4GB memory limit. Unless stated differently, the timeout for
each evaluation was 30 minutes.

We reused an unsatisfiable knowledge base described in [6]. The knowledge base
represents a Pigeonhole-type problem. We specified the axioms such that we want a
model that depicts an r-chain of length n + 1, but fixed the domain to n elements, for
which a model cannot exist. For Kn = (T n,An), we have:

T n = {A1 v ∃r.A2, . . . , An v ∃r.An+1} ∪
{Ai uAj v ⊥ | 1 ≤ i < j ≤ n+ 1}

An = {A1(a1)}
∆n = {a1, ..., an}

Table 4. Runtimes for checking unsatisfiability of Kn (left table), and runtimes of each approach
for computing justifications.

Instance naff naïve
1 K5 0.013s 0.010s
2 K6 0.042s 0.025s
3 K7 0.092s 0.063s
4 K8 0.429s 0.320s
5 K9 5.324s 3.805s
6 K10 105.202s 78.208s
7 K11 TO 1423.463s
8 K12 TO TO

Instances H-black-box W-black-box glass-box
1 K5 6.212s 6.742s 0.207s
2 K6 7.023s 6.284s 0.277s
3 K7 8.197s 7.735s 0.352s
4 K8 9.521s 9.057s 2.510s
5 K9 25.752s 23.959s 17.397s
6 K10 206.457s 518.377s TO
7 K11 2274.480s TO TO

First, we checked the comparison between naïve and naff translations. We expected
the naff translation to be somewhat slower due to the overhead of computing some
auxiliary atoms, which is confirmed as depicted in Table 4. Afterwards, we checked
the performance of each approach to compute (∆)-justifications (of inconsistency) of
this knowledge base. While we know there is only one justification for each case, all
justifications have been requested. Since the only justification is the whole knowledge
base, there is no major difference between requesting only one, or all justifications, in
this case. However, this would be different if the only justification is a proper subset,
because the algorithm has to make sure there is no other justification. Table 5 shows the
result. It can be stressed, that for smaller instances, the glass-box approach performs
best, followed by W-black-box. However, they do not scale well for bigger instances
where H-black-box outperforms both of them. The timeout of this evaluation was set
to one hour since the result for K11 is significant.

The second knowledge base we used is a simple scaling knowledge base K(m,n),
that heavily uses cardinality restrictions. We introduce a source concept that has to
be connected with n individuals that are each members of the concept Ci, where
1 ≤ i ≤ m. However, we only provide m + 1 individuals in ∆ (one for the source
individual). Finally, we impose a constraint such that all concepts are disjoint. Obvi-
ously the existence of two axioms will lead to inconsistency. The result is shown in
Table 5. For K(m,n) = (T (m,n),A) we have:

T (m,n) = {C v ≤ n r.A1, ..., C v ≤ n r.Am} ∪
{C v ¬A1, ..., C v ¬An} ∪
{A1 v ¬A2, A1 v ¬A3;, ..., An−1 v ¬An}

A = {C(a)}
∆n = {a, x1, ..., xn}

The black-box approach with HermiT failed to compute the justifications for any case
within the time limit. This result indicates that standard reasoners struggle in handling
cardinality restrictions under the fixed-domain semantics. We suppose that the result
originates from the fact that ≥-cardinality is handled easily in standard semantics since
the reasoner can introduce new individuals to construct to satisfy the restriction. While
H-black-box is able to solve some of the instances, glass-box computes all of them in
reasonable time. The third evaluation is based on the graph-coloring problem. We en-
code some instances of the Mycielskian graphs5. Since the chromatic number of each
instance is provided, making them non-colorable is trivial. For a graph with chromatic
number n, we only provide n− 1 colors. The result is shown in Table 6. Each approach
exceeded the timeout for the larger instances. Similar to the cardinality evaluation, the
glass-box approach performs best. For the small instance, H-black-box performs bet-
ter than W-black-box. For the second instance, we find that H-black-box provided
merely one justification before the timeout, while W-black-box was able to compute at
least five justifications.

As shown in Table 4, H-black-box performs better in some cases. While finding
justifications is a hard problem, asking for several of them is more feasible. The neces-

5 http://mat.gsia.cmu.edu/COLOR/instances.html

Table 5. Runtime for Individual Cardinality.

Instances H-black-box W-black-box glass-box
1 K10,10 TO 94.787s 3.461s
2 K10,20 TO 75.107s 5.141s
3 K10,30 TO 104.382s 8.029s
4 K20,10 TO 448.757s 45.578s
5 K20,20 TO TO 66.123s
6 K20,30 TO TO 103.721s
7 K30,10 TO 634.572s 331.576s
8 K30,20 TO TO 476.985s
9 K30,30 TO TO 548.865s

Table 6. Runtime for n-Coloring Problems.

Instances #Nodes #Edges H-black-box W-black-box glass-box
1 Kmyciel3 11 20 43.335s 71.347s 1.423s
2 Kmyciel4 23 71 TO TO 11.327s
3 Kmyciel5 47 236 TO TO TO

sary adjustments can easily be done for each tool. Another important note to mention
is, we only use one thread for evaluation, though the problem itself could be done in
parallel. However, for the black-box approach we have to look deeper into the code
to do it. Meanwhile, it is easily done in glass-box since most of ASP solvers have a
parallelization option.

6 Conclusion

We considered the task of computing justifications for entailments under the fixed-
domain semantics, a task of general high importance in the modeling phase of ontolo-
gies. We proposed three different approaches to this problem and comparatively eval-
uated one using standard OWL technology employing an axiomatization of the fixed-
domain semantics, one using our dedicated fixed-domain reasoner Wolpertinger
in combination with Protégé’s explanation workbench, and one where the problem is
encoded entirely into answer-set programming.

The evaluation suggests that each of the proposed approaches do have their diffi-
culties as well as individual advantages. Hence, it remains imperative to conduct more
experiments with different setups. Also, all tools were used in their standard configura-
tion, which gives another optimization angle. Moreover, it would be a great feature for
users if a tool actually recommended automatic repairs in addition to the justifications.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
second edn. (2007)

2. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic EL+. In:
Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007: Advances in Artificial Intelligence. pp.
52–67. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

3. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer set prefer-
ences without a headache. In: AAAI. pp. 1467–1474. AAAI Press (2015)

4. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12), 92–103 (2011)

5. Calvanese, D.: Finite model reasoning in description logics. In: Proc. of the 5th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 1996). pp. 292–303.
Morgan Kaufmann (1996)

6. Gaggl, S.A., Rudolph, S., Schweizer, L.: Fixed-Domain Reasoning for Description Logics.
In: Kaminka, G.A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., van
Harmelen, F. (eds.) Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI 2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 819 – 827.
IOS Press (September 2016)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning 6, 1–238 (2012)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991), http://dx.doi.org/10.1007/BF03037169

9. Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A., Presutti, V. (eds.): Ontology Engineer-
ing with Ontology Design Patterns - Foundations and Applications, Studies on the Semantic
Web, vol. 25. IOS Press (2016)

10. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL˜2 Web
Ontology Language: Primer. W3C Recommendation

11. Horridge, M.: Justification based explanation in ontologies. Ph.D. thesis, University of
Manchester (2011)

12. Horridge, M., Parsia, B., Sattler, U.: Explanation of OWL entailments in protege 4. In: Bizer,
C., Joshi, A. (eds.) Proceedings of the Poster and Demonstration Session at the 7th Inter-
national Semantic Web Conference (ISWC2008), Karlsruhe, Germany, October 28, 2008.
CEUR Workshop Proceedings, vol. 401. CEUR-WS.org (2008), http://ceur-ws.org/Vol-401/
iswc2008pd_submission_47.pdf

13. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies. In:
Godo, L., Pugliese, A. (eds.) Scalable Uncertainty Management, Third International Con-
ference, SUM 2009, Washington, DC, USA, September 28-30, 2009. Proceedings. Lecture
Notes in Computer Science, vol. 5785, pp. 124–137. Springer (2009), https://doi.org/10.
1007/978-3-642-04388-8_11

14. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: Doherty, P., My-
lopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2006). pp. 57–67. AAAI Press (2006)

15. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In: Aberer, K., Choi, K., Noy, N.F., Allemang, D., Lee, K., Nixon, L.J.B., Gol-
beck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web
Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007. Lecture
Notes in Computer Science, vol. 4825, pp. 267–280. Springer (2007), https://doi.org/10.
1007/978-3-540-76298-0_20

http://dx.doi.org/10.1007/BF03037169
http://ceur-ws.org/Vol-401/iswc2008pd_submission_47.pdf
http://ceur-ws.org/Vol-401/iswc2008pd_submission_47.pdf
https://doi.org/10.1007/978-3-642-04388-8_11
https://doi.org/10.1007/978-3-642-04388-8_11
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-540-76298-0_20

16. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Brewka, G., Lang, J. (eds.)
Proc. of the 11th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2008). pp. 274–284. AAAI Press (2008)

17. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP. vol. 94, pp. 23–37 (1994)
18. Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in description

logics. Information and Computation 199(1-2), 132–171 (May 2005)
19. Niemelä, I.: Logic programs with stable model semantics as a constraint programming

paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999), http://dx.doi.org/10.1023/A:
1018930122475

20. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. Journal of Computer
and System Sciences 37(1), 2 – 13 (1988), http://www.sciencedirect.com/science/article/pii/
0022000088900426

21. Peñaloza, R., Sertkaya, B.: Understanding the complexity of axiom pinpointing in
lightweight description logics. Artif. Intell. 250, 80–104 (2017), https://doi.org/10.1016/j.
artint.2017.06.002

22. Reiter, R.: A theory of diagnosis from first principles. Artificial intelligence 32(1), 57–95
(1987)

23. Rosati, R.: Finite Model Reasoning in DL-Lite. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) Proceedings of the 5th European Semantic Web Conference (ESWC
2008). LNCS, vol. 5021, p. 215. Springer (2008)

24. Rudolph, S.: Foundations of Description Logics. In: Polleres, A., d’Amato, C., Arenas, M.,
Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P.F. (eds.) Reasoning Web. 7th In-
ternational Summer School 2011, Tutorial Lectures. LNCS, vol. 6848, pp. 76–136. Springer
(2011)

25. Rudolph, S., Schweizer, L.: Not too big, not too small... complexities of fixed-domain rea-
soning in first-order and description logics. In: Oliveira, E., Gama, J., Vale, Z.A., Cardoso,
H.L. (eds.) Progress in Artificial Intelligence - 18th EPIA Conference on Artificial Intel-
ligence, EPIA 2017, Porto, Portugal, September 5-8, 2017, Proceedings. Lecture Notes
in Computer Science, vol. 10423, pp. 695–708. Springer (2017), https://doi.org/10.1007/
978-3-319-65340-2_57

26. Rudolph, S., Schweizer, L., Tirtarasa, S.: Wolpertinger: A fixed-domain reasoner. In:
Nikitina, N., Song, D., Fokoue, A., Haase, P. (eds.) Proceedings of the ISWC 2017 Posters &
Demonstrations and Industry Tracks co-located with 16th International Semantic Web Con-
ference (ISWC 2017), Vienna, Austria, October 23-25, 2017. CEUR Workshop Proceedings,
vol. 1963. CEUR-WS.org (2017), http://ceur-ws.org/Vol-1963/paper622.pdf

http://dx.doi.org/10.1023/A:1018930122475
http://dx.doi.org/10.1023/A:1018930122475
http://www.sciencedirect.com/science/article/pii/0022000088900426
http://www.sciencedirect.com/science/article/pii/0022000088900426
https://doi.org/10.1016/j.artint.2017.06.002
https://doi.org/10.1016/j.artint.2017.06.002
https://doi.org/10.1007/978-3-319-65340-2_57
https://doi.org/10.1007/978-3-319-65340-2_57
http://ceur-ws.org/Vol-1963/paper622.pdf

