Exercise 3.1. Use the approach presented in lecture 4 to create a quine in your favourite programming language (or just use Python). What is the equivalent of “TM concatenation” here? Also note that the function q is often more complicated than one might think, due to character escaping.

Exercise 3.2. A language $L \in P$ is complete for P under polynomial-time reductions if $L' \leq_p L$ for every $L' \in P$. Show that every language in P except \emptyset and Σ^* is complete for P under polynomial-time reductions.

Exercise 3.3. Let
$$A_{PNTM} = \{ \langle M, p, w \rangle \mid M \text{ is a non-deterministic TM that accepts } w \text{ in time } p(|w|) \text{ with } p \text{ a polynomial function} \}$$

Show that A_{PNTM} is NP-complete.

Exercise 3.4. Show that the following problem is NP-complete:

Input: A propositional formula φ in CNF
Question: Does φ have at least 2 different satisfying assignments?

Exercise 3.5. We recall some definitions.

- Given some language L, $L \in \text{coNP}$ if and only if $\overline{L} \in \text{NP}$.
- L is coNP-hard if and only if $L' \leq_p L$ for every $L' \in \text{coNP}$.
- L is coNP-complete if and only if $L \in \text{coNP}$ and L is coNP-hard.

Show that if any coNP-complete problem is in NP, then $\text{NP} = \text{coNP}$.

Exercise 3.6. If G is an undirected graph, a vertex cover of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size.

$$\text{VERTEX-COVER} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph that has a } k \text{-node vertex cover} \}$$

Show that VERTEX-COVER is NP-complete.

Hint: This most modular 3-