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VC-dimension

Definition
The VC-dimension of a hypothesis class 𝐻, denoted 

VCdim(𝐻), is the maximal size of a set 𝐶 ⊂ 𝑋 that can be 

shattered by 𝐻. If 𝐻 can shatter sets of arbitrarily large size 

we say that 𝐻 has infinite VC-dimension.

• Note: VC = Vapnik-Chervonenkis, 

from Vladimir Vapnik and Alexey Chervonenkis
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How to compute VCdim

To show that VCdim(𝐻) = 𝑑 we need to 

show that

1. There exists a set 𝐶 of size 𝑑 that is 

shattered by 𝐻.

2. Every set 𝐶 of size 𝑑 + 1 is not shattered 

by 𝐻.
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Example 1

Threshold Functions
• Let H be the class of threshold functions over R. In 

previous example, we have shown that for an arbitrary 

set C = {c1}, H shatters C; therefore VCdim(H)  1. 

• We have also shown that for an arbitrary set C = {c1, c2} 

where c1  c2, H does not shatter C; therefore VCdim(H) 

 1.

• We  conclude that VCdim(H) = 1.
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Example 2

Axis Aligned Rectangles
• Let 𝐻 be the class of axis aligned rectangles:

𝐻 = { ℎ 𝑎1,𝑎2,𝑏1,𝑏2 ∶ 𝑎1 ≤ 𝑎2 and 𝑏1 ≤ 𝑏2 }

where

ℎ 𝑎1,𝑎2,𝑏1,𝑏2 𝑥, 𝑦 =  
1 if 𝑎1 ≤ 𝑥 ≤ 𝑎2 and 𝑏1 ≤ 𝑦 ≤ 𝑏2

0 otherwise

• VCdim(𝐻) = 4.

• Proof:
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• We need to find a set of 4 points that are shattered by H, and show 

that no set of 5 points can be shattered by H. 

• There is a set of 4 points that is shattered by H:

• Next consider any set C ⸦ R2 of 5 points. In C, select a leftmost 

point, a rightmost point, a lowest point, and a highest point. Without 

loss of generality, denote C = { c1, c2, c3, c4, c5 } and let c5 be the 

point that was not selected. 

• Now, define the labeling (1, 1, 1, 1, 0). It is impossible to obtain this 

labeling by an axis aligned rectangle. Indeed, such a rectangle must 

contain c1, c2, c3, c4; but it must also contain c5, because the 

coordinates of c5 are within the intervals defined by the selected 

points. So, C is not shattered by H, and therefore VCdim(H) = 4.

■
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Example 3

Finite Classes
• Let H be a finite class. 

• Then, for any set C we have |HC|  |H| and thus C cannot 

be shattered if |H| < 2|C| , namely, if |C| > log2(|H|).

• This implies that VCdim(H)  log2(|H|). 

• However, the VC-dimension of a finite class H can be 

significantly smaller than log2(|H|). 

• For example, let X = {1, …, k}, for some integer k, and 

consider the class of threshold functions. Then, |H| = k 

but VCdim(H) = 1. 

• Since k can be arbitrarily large, the gap between 

log2(|H|)  and VCdim(H) can be arbitrarily large.
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Non-uniform 

Learnability
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Non-uniform Learnability

• The notions of PAC learnability allow the sample sizes to 

depend on the accuracy and condence parameters, but 

they are uniform with respect to the labeling rule and the 

underlying data distribution. 

• Consequently, classes that are learnable in that respect are 

limited, namely, they must have a finite VC-dimension

• Next, we consider a strict relaxation of agnostic PAC 

learnability: non-uniform learnability, which  allows the 

sample size to depend also on the hypothesis to which the 

learner is compared.
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• Non-uniform learnability allows the sample size to be 

non-uniform with respect to the different hypotheses. It 

allows the sample size to be of the form 𝑚𝐻 𝜖, 𝛿, ℎ , 

namely, it depends also on the hypothesis ℎ.

• Note that that non-uniform learnability is a relaxation of 

agnostic PAC learnability. That is, if a class is agnostic 

PAC learnable then it is also non-uniformly learnable.
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Characterization of 

Non-uniform Learnability

Theorem 7.2 
• A hypothesis class H of binary classifiers is non-

uniformly learnable if and only if it is a countable union of 

agnostic PAC learnable hypothesis classes.
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Example

• Consider a binary classification problem with the instance 

domain being 𝑋 = 𝑅. For every 𝑛 ∈ 𝑁 let 𝐻𝑛 be the class 

of polynomial classifiers of degree 𝑛; namely, 𝐻𝑛 is the set 

of all classifiers of the form ℎ(𝑥) = sign(𝑝(𝑥)) where 𝑝 ∶
𝑅 → 𝑅 is a polynomial of degree 𝑛.

𝑝 𝑥 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥
𝑛

• Let 𝐻 =  𝑛∈ℕ𝐻𝑛. Therefore, 𝐻 is the class of all 

polynomial classifiers over R. VCdim(H) = ∞ while 

VCdim(Hn) = n + 1. Hence, H is not PAC learnable, but H

is non-uniformly learnable.
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SRM (Structural Risk Minimization)

• So far, we have encoded our prior knowledge by specifying 

a hypothesis class H, which we believe includes a good 

predictor for our learning task.

• Another way to express our prior knowledge is by 

specifying preferences over hypotheses within H. 

• In the Structural Risk Minimization (SRM) paradigm, we do 

so by first assuming that H can be written as 𝐻 =  𝑛∈ℕ𝐻𝑛

and then specifying a weight function, 𝑤: ℕ → [0,1], which 

assigns a weight to each hypothesis class, Hn, such that a 

higher weight reflects a stronger preference for the 

hypothesis class.
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• Let H be a hypothesis class that can be written as     

𝐻 =  𝑛∈ℕ𝐻𝑛. Assume that for each n, the class Hn has 

the uniform convergence property with a sample 

complexity function 𝑚𝐻𝑛
UC(𝜖, 𝛿). Let us also define the 

function 𝜖𝑛: ℕ × (0,1) → (0,1) by

𝜖𝑛 𝑚, 𝛿 = min{𝜖 ∈ 0,1 : 𝑚𝐻𝑛
UC 𝜖, 𝛿 ≤ 𝑚} . (7.1)

• In words, we have a fixed sample size m, and we are 

interested in the lowest possible upper bound on the gap 

between empirical and true risks achievable by using a 

sample of m examples.

• The goal of the SRM paradigm is to find a hypothesis 

that minimizes a certain upper bound on the true risk. 

The bound that the SRM rule wishes to minimize is given 

in the following theorem.
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• Unlike the ERM paradigm, in SRM we no longer just 

care about the empirical risk, LS(h), but we are willing to 

trade some of our bias toward low empirical risk with a 

bias toward classes for which 𝜖𝑛 ℎ (𝑚,𝑤(𝑛 ℎ ) ⋅ 𝛿) is 

smaller, for the sake of a smaller estimation error.

• The next theorem shows that the SRM paradigm can be 

used for non-uniform learning of every class, which is a 

countable union of uniformly converging hypothesis 

classes.
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No-Free-Lunch Theorem for Non-uniform 

Learnability

• We have learned that any countable union of classes of 

finite VC-dimension is non-uniformly learnable.

• It turns out that, for any infinite domain set, X, the class of all 

binary valued functions over X is not a countable union of 

classes of finite VC-dimension. 

• Therefore, the no free lunch theorem holds for non-uniform 

learning as well: namely, whenever the domain is not finite, 

there exists no universal non-uniform learner with respect to 

the class of all deterministic binary classifiers (although for 

each such classifier there exists an algorithm that learns it).
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Minimum Description Length

• There is a convenient way to define a weight function w 

over H, which is derived from the length of descriptions 

given to hypotheses.

• Having a hypothesis class, one can wonder about how we 

describe, or represent, each hypothesis in the class. 

• We fix some description language. This can be English, or 

a programming language, or some set of mathematical 

formulas.

• In any of these languages, a description consists of finite 

strings of symbols drawn from some fixed alphabet Σ. 
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Minimum Description Length

• The set of all finite length strings is denoted Σ∗.

• A description language for H is a function 𝑑:𝐻 → Σ∗, 

mapping each member h of H to a string d(h), the 

description of h, and its length is denoted by |h|.

• We shall require that description languages be prefix-free; 

namely, for every distinct h, h’, we do not allow that any 

string d(h) is exactly the first |h| symbols of any longer 

string d(h’). 
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Minimum Description Length
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Example of MDL

• Let H be the class of all predictors that can be 

implemented using some programming language, such 

as Python, Java or C++. 

• Let us represent each program using the binary string 

obtained by running the gzip command on the program. 

This yields a prefix-free description language over the 

alphabet Σ = 0,1 . Then, |h| is simply the length (in bits) 

of the output of gzip when running on the program 

corresponding to h.

Slides 07
24



Occam’s Razor

• The MDL paradigm suggests that, having two 

hypotheses sharing the same empirical risk, the true risk 

of the one that has shorter description can be bounded 

by a lower value. 

• This result corresponds to a philosophical message:

A short explanation (that is, a hypothesis that has a short 

length) tends to be more valid than a long explanation.

• This is a well known principle, called Occam's razor, 

after William of Ockham, a 14th-century English logician.
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Discussion : How to Learn? How to Express 

Prior Knowledge?

• Maybe the most useful aspect of the theory of machine 

learning is in providing an answer to the question of “how 

to learn.” 

• The definition of PAC learning yields the limitation of 

learning (via the No-Free-Lunch theorem) and the 

necessity of prior knowledge. It gives us a well-defined 

way to encode prior knowledge by choosing a 

hypothesis class, and once this choice is made, we have 

a generic learning rule, namely ERM. 
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Discussion : How to Learn? How to Express 

Prior Knowledge?

• The definition of non-uniform learnability also yields a 

well-defined way to encode prior knowledge by 

specifying weights over (subsets of) hypotheses of H. 

Once this choice is made, we again have a generic 

learning rule, namely SRM. 
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Discussion : How to Learn? How to Express 

Prior Knowledge?

• Consider the problem of fitting a one dimensional 

polynomial to data; namely, our goal is to learn a function, 

h : R → R, and as prior knowledge we consider the 

hypothesis class of polynomials. 

• However, we might be uncertain regarding which degree d

would give the best results for our data set: A small degree 

might not fit the data well (i.e., it will have a large 

approximation error), whereas a high degree might lead to 

overfitting (i.e., it will have a large estimation error).

• The following picture shows the result of fitting a 

polynomial of degrees 2, 3, and 10 to the same training 

data set.
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• Empirical risk decreases as the degree of the polynomial increases.

• Therefore, if we choose H to be the class of all polynomials up to 

degree 10 then the ERM rule with respect to this class would output a 

polynomial of degree 10 and would overfit. 

• On the other hand, if we choose too small a hypothesis class, say, 

polynomials up to degree 2, then the ERM would suffer from 

underfitting (i.e., a large approximation error). 

• In contrast, we can use the SRM rule on the set of all polynomials, 

while ordering subsets of H according to their degree, and this will yield 

a polynomial of degree 3 since the combination of its empirical risk and 

the bound on its estimation error is the smallest.



Computational Complexity

• Arguably, the class of all predictors that we can 

implement in a programming language such as C++ is a 

powerful class of functions and probably contains all that 

we can hope to learn in practice.

• The ability to learn this class is impressive, and, 

seemingly, our lectures should end here. This is not the 

case, because of the computational aspect of learning: 

that is, the runtime needed to apply the learning rule. 
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Computational Complexity

• For example, the implementation of the ERM paradigm 

w.r.t. all C++ programs of description length at most 

1000 bits requires an exhaustive search over 21000

hypotheses. While the sample complexity of learning this 

class is not too large, the runtime is  ≥ 21000. This is 

much larger than the number of atoms in the visible 

universe. 

• Next we will study hypothesis classes for which the ERM 

or SRM schemes can be implemented efficiently.
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