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VC-dimension

Definition
The VC-dimension of a hypothesis class H, denoted

VCdim(H), Is the maximal size of a set C c X that can be
by H. If H can shatter sets of arbitrarily large size

we say that H has infinite VC-dimension.

* Note: VC = Vapnik-Chervonenkis,
from Vladimir Vapnik and Alexey Chervonenkis
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How to compute VCdim

To show that VCdim(H) = d we need to
show that

1. There exists a set C of size d that Is
shattered by H.

2. Every set C of size d + 11s not shattered
by H.
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Example 1

Threshold Functions

* Let H be the class of threshold functions over R. In
previous example, we have shown that for an arbitrary
set C = {c,}, H shatters C; therefore VCdim(H) > 1.

* We have also shown that for an arbitrary set C = {c,, c,}
where cl < c2, H does not shatter C; therefore VCdim(H)

<1.
 We conclude that VCdim(H) = 1.
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Example 2

Axis Aligned Rectangles

« Let H be the class of axis aligned rectangles:
H — {h(al,az,bl,bz): al S a2 and b]. S bZ}

where

1 ifal<x <a2andbl <y < b2

h(al,az,bl,bz)(x;Y) = {O otherwise

. VCdim(H) = 4.

* Proof:;
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We need to find a set of 4 points that are shattered by H, and show
that no set of 5 points can be shattered by H.

There is a set of 4 points that is shattered by H:

Next consider any set C <= R? of 5 points. In C, select a leftmost
point, a rightmost point, a lowest point, and a highest point. Without
loss of generality, denote C = { c1, c2, c3, ¢4, c5 } and let c5 be the
point that was not selected.

Now, define the labeling (1, 1, 1, 1, 0). It is impossible to obtain this
labeling by an axis aligned rectangle. Indeed, such a rectangle must
contain cl, c2, c3, c4; but it must also contain c5, because the
coordinates of c5 are within the intervals defined by the selected
points. So, C is not shattered by H, and therefore VCdim(H) = 4.
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Example 3

Finite Classes

 Let H be a finite class.

« Then, for any set C we have |H;| < |H| and thus C cannot
be shattered if |H| < 2I°l, namely, if |C| > log,(|H]).

* This implies that VCdim(H) < log,(|H|).

« However, the VC-dimension of a finite class H can be
significantly smaller than log,(|H|).

* For example, let X = {1, ..., k}, for some integer k, and
consider the class of threshold functions. Then, |H| = k
but VCdim(H) = 1.

« Since k can be arbitrarily large, the gap between
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THEOREM 6.7 (The Fundamental Theorem of Statistical Learning) LetH be a
hypothesis class of functions from a domain X to {0,1} and let the loss funetion
be the 0 — 1 loss. Then, the following are equivalent:

1. ‘H has the uniform convergence property.

2. Any ERM rule is a successful agnostic PAC' learner for H.
7. ‘H is agnostic PAC learnable.

/. H is PAC learnable.

. Any ERM rule is a successful PAC learner for H.

. H has a finite VC-dimension.
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Non-uniform
Learnabllity
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Non-uniform Learnability

* The notions of PAC learnabllity allow the sample sizes to
depend on the accuracy and condence parameters, but
they are uniform with respect to the labeling rule and the
underlying data distribution.

« Conseqguently, classes that are learnable in that respect are
limited, namely, they must have a finite VC-dimension

* Next, we consider a strict relaxation of agnostic PAC
learnability: non-uniform learnability, which allows the
sample size to depend also on the hypothesis to which the
learner is compared.
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* Non-uniform learnabllity allows the sample size to be
non-uniform with respect to the different hypotheses. It
allows the sample size to be of the form my (e, 6, h),
namely, it depends also on the hypothesis h.

DEFINITION 7.1 A hypothesis class H is nonuniformly learnable if there exist a
learning algorithm, A, and a function mjj™ : (0,1)* x’H — N such that, for every
e.0 € (0,1) and for every h € H, if m > mi™(e, d, h) then for every distribution

D, with probability of at least 1 — & over the choice of S ~ D™, it holds that

Lp(A(S)) < Lp(h) + €.

* Note that that non-uniform learnability is a relaxation of
agnostic PAC learnability. That is, if a class is agnostic
PAC learnable then it is also non-uniformly learnable.

——
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Characterization of
Non-uniform Learnability

Theorem 7.2

* A hypothesis class H of binary classifiers is non-
uniformly learnable if and only if it is a countable union of
agnostic PAC learnable hypothesis classes.
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Example

« Consider a binary classification problem with the instance
domain being X = R. Foreveryn € N let H,, be the class
of polynomial classifiers of degree n; namely, H,, is the set
of all classifiers of the form h(x) = sign(p(x)) where p :

R — R s a polynomial of degree n.
p(x) =ay+a;x+ -+ a,x"

 LetH = U,y H,. Therefore, H Is the class of all
polynomial classifiers over R. VCdim(H) = co while
VCdim(H,) = n + 1. Hence, H is not PAC learnable, but H
IS non-uniformly learnable.
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SRM (Structural Risk Minimization)

« So far, we have encoded our prior knowledge by specifying
a hypothesis class H, which we believe includes a good
predictor for our learning task.

« Another way to express our prior knowledge is by
specifying preferences over hypotheses within H.

 In the Structural Risk Minimization (SRM) paradigm, we do
so by first assuming that H can be writtenas H = U, cy H,
and then specifying a weight function, w: N — [0,1], which
assigns a weight to each hypothesis class, H,, such that a
higher weight reflects a stronger preference for the
hypothesis class.
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* Let H be a hypothesis class that can be written as
H = U,y Hy- Assume that for each n, the class H,, has

the uniform convergence property with a sample

complexity function m}},g (¢,0). Let us also define the
function €,;: N x (0,1) — (0,1) by

€,(m,5) = min{e € (0,1): mg,g(e, d)<m}. (7.1)

* In words, we have a fixed sample size m, and we are
Interested In the lowest possible upper bound on the gap
between empirical and true risks achievable by using a
sample of m examples.

« The goal of the SRM paradigm is to find a hypothesis
that minimizes a certain upper bound on the true risk.
The bound that the SRM rule wishes to minimize is given
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THEOREM 7.4 Let w: N — [0,1] be a function such that > . w(n) < 1. Let
H be a hypothesis class that can be written as H = |J,,cy Hn, where for each n,
‘H,. satisfies the uniform convergence property with a sample complexity function

" . Let €, be as defined in Equation (7.1). Then, for every ¢ € (0,1) and
distribution D, with probability of at least 1 — & over the choice of S ~ D™, the
following bound holds (simultaneously) for every n € N and h € H,,.

|L'L" (h’} —Lg (h’H < Eﬁ_{'m,i‘_ﬂl:ﬂ) - d).

Therefore, for every 6 € (0,1) and distribution D, with probability of at least
1 — 4 it holds that

YVheH, Lp(h)<Lg(h)4+ min e,(m,w(n)-s). (7.3)

n:heHn
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Structural Risk Minimization (SEM)

prior knowledge:
H =, Hn where H,, has uniform convergence with m3’
w: N — [0,1] where > w(n) <1
define: €, as in Equation (7.1) ; n(h) as in Equation (7.4)
input: training set 5 ~ D™, confidence 9§

output: i € argming -y [Ls{h} + €nn)(m,w(n(h)) - 5]]

€n(m,0) = min{e € (0,1) : my (¢, 8) < m}.
n(h) =min{n : h e H,},
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* Unlike the ERM paradigm, in SRM we no longer just
care about the empirical risk, Lg(h), but we are willing to
trade some of our bias toward low empirical risk with a
bias toward classes for which e, (m, w(n(h)) - §) is

smaller, for the sake of a smaller estimation error.

* The next theorem shows that the SRM paradigm can be
used for non-uniform learning of every class, which is a
countable union of uniformly converging hypothesis
classes.

THEOREM 7.5 Let H be a hypothesis class such that H = |J . Hn, where
each ‘H,, has the uniform convergence pmprrtu with sample complexity m3y . Let
: N — [0,1] be such that w(n) = Then, ‘H is nonuniformly learnable

s fr"'

using the SEM rule with rate

NITL i ::.ﬂ' - ,{Irlj _ II|' .—:'
ma (€,0,h) < mygg (+
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No-Free-Lunch Theorem for Non-uniform
Learnabllity

* We have learned that any countable union of classes of
finite VC-dimension is non-uniformly learnable.

It turns out that, for any infinite domain set, X, the class of all
binary valued functions over X is not a countable union of
classes of finite VC-dimension.

* Therefore, the no free lunch theorem holds for non-uniform
learning as well: namely, whenever the domain is not finite,
there exists no universal non-uniform learner with respect to
the class of all deterministic binary classifiers (although for
each such classifier there exists an algorithm that learns it).
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Minimum Description Length

« There is a convenient way to define a weight function w
over H, which is derived from the length of descriptions
given to hypotheses.

« Having a hypothesis class, one can wonder about how we
describe, or represent, each hypothesis in the class.

« We fix some description language. This can be English, or
a programming language, or some set of mathematical
formulas.

 In any of these languages, a description consists of finite
strings of symbols drawn from some fixed alphabet X.
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Minimum Description Length

« The set of all finite length strings is denoted X*.

« A description language for H is a function d: H — X7,
mapping each member h of H to a string d(h), the
description of h, and its length is denoted by |h|.

« We shall require that description languages be prefix-free;
namely, for every distinct h, h’, we do not allow that any
string d(h) is exactly the first |h| symbols of any longer
string d(h’).
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Minimum Description Length

Minimum Description Length (MDL)

prior knowledge:
H is a countable hypothesis class

H is described by a prefix-free language over {0, 1}

For every h € H, |h| is the length of the representation of h
input: A training set S ~ D™, confidence ¢

output: h € argming, 4, [Ls(h) + '\"# M

- & TR
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Example of MDL

« Let H be the class of all predictors that can be
Implemented using some programming language, such
as Python, Java or C++.

» Let us represent each program using the binary string
obtained by running the gzip command on the program.
This yields a prefix-free description language over the
alphabet £ = {0,1}. Then, |h| is simply the length (in bits)
of the output of gzip when running on the program
corresponding to h.
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Occam’s Razor

 The MDL paradigm suggests that, having two
hypotheses sharing the same empirical risk, the true risk
of the one that has shorter description can be bounded
by a lower value.

« This result corresponds to a philosophical message:

A short explanation (that is, a hypothesis that has a short
length) tends to be more valid than a long explanation.

« This is a well known principle, called Occam's razor,
after William of Ockham, a 14th-century English logician.
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Discussion : How to Learn? How to Express
Prior Knowledge?

« Maybe the most useful aspect of the theory of machine
learning is in providing an answer to the question of “"how
to learn.”

« The definition of PAC learning yields the limitation of
learning (via the No-Free-Lunch theorem) and the
necessity of prior knowledge. It gives us a well-defined
way to encode prior knowledge by choosing a
hypothesis class, and once this choice is made, we have
a generic learning rule, namely ERM.
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Discussion : How to Learn? How to Express
Prior Knowledge?

« The definition of non-uniform learnability also yields a
well-defined way to encode prior knowledge by
specifying weights over (subsets of) hypotheses of H.
Once this choice is made, we again have a generic
learning rule, namely SRM.
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Discussion : How to Learn? How to Express
Prior Knowledge?

« Consider the problem of fitting a one dimensional
polynomial to data; namely, our goal is to learn a function,
h: R — R, and as prior knowledge we consider the
hypothesis class of polynomials.

 However, we might be uncertain regarding which degree d
would give the best results for our data set: A small degree
might not fit the data well (i.e., it will have a large
approximation error), whereas a high degree might lead to
overfitting (i.e., it will have a large estimation error).

* The following picture shows the result of fitting a
polynomial of degrees 2, 3, and 10 to the same training
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degree 3 degree 10

« Empirical risk decreases as the degree of the polynomial increases.

 Therefore, if we choose H to be the class of all polynomials up to
degree 10 then the ERM rule with respect to this class would output a
polynomial of degree 10 and would overfit.

* On the other hand, if we choose too small a hypothesis class, say,
polynomials up to degree 2, then the ERM would suffer from
underfitting (i.e., a large approximation error).

* In contrast, we can use the SRM rule on the set of all polynomials,
while ordering subsets of H according to their degree, and this will yield
a polynomial of degree 3 since the combination of its empirical risk and

the bound on its estimation error is the smallest. ‘
29

Slides 07



Computational Complexity

« Arguably, the class of all predictors that we can
Implement in a programming language such as C++ Is a
powerful class of functions and probably contains all that
we can hope to learn in practice.

« The ability to learn this class Is impressive, and,
seemingly, our lectures should end here. This is not the
case, because of the computational aspect of learning:
that is, the runtime needed to apply the learning rule.

Slides 07 -



Computational Complexity

* For example, the implementation of the ERM paradigm
w.r.t. all C++ programs of description length at most
1000 bits requires an exhaustive search over 21000
hypotheses. While the sample complexity of learning this
class is not too large, the runtime is > 21090, This is
much larger than the number of atoms in the visible
universe.

* Next we will study hypothesis classes for which the ERM
or SRM schemes can be implemented efficiently.
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