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Motivation and contributions of this talk Motivation

Motivation

Classical AGM belief change theory deals only with changes of
propositional belief sets’ K by propositional information A;
major operations are

e revision K * A (“integrate A in your beliefs"), and
e contraction K — A (“give up belief in A").

Revision and contraction are connected (e.g., via the Levi identity), they
are dual in some sense.

A belief set is a deductively closed theory

)
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Motivation and contributions of this talk Motivation

Motivation (cont'd)

However, AGM theory is limited wrt iterated revision because it does not
provide a full revision strategy independent of the prior K:

(K*K A) *K*AB

— iterated revision [Darwiche & Pearl, AlJ 1997]: “double-*" postulates,
basic idea was a “principle of conditional preservation”.

[Konieczny & Pino Perez, SUM 2017] did nearly the same for iterated
contraction, but without mentioning conditional preservation.



Motivation and contributions of this talk Contributions

Contributions of this talk

@ We show that the same basic principle of conditional preservation can
guide both iterated revision and contraction

o in the sense of [Darwiche & Pearl, 1997] and [Konieczny & Pino Perez,
2017].

@ More precisely, an axiomatized principle of conditional preservation for
iterated contraction in the context of OCFs implies all postulates of
[Konieczny & Pino Perez 2017], together with few other mild and
obvious postulates (e.g., “success”).

@ Our approach can handle revisions of epistemic states (represented by
Spohn's ranking functions) by sets of conditional beliefs and hence is
much more general.
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Previous work on iterated revision and contraction AGM belief change

AGM revision in a nutshell

The basic theory for belief revision is the AGM theory [Alchourron,
Gardenfors, and Makinson 1985].

The AGM postulates are recommendations for rational belief change
within classical propositional logic:

@ The beliefs of the agent should be deductively closed, i.e., the agent
should apply logical reasoning whenever possible.

@ The change operation should be successfull. (This does not mean
that the agent should believe everything!)

@ In case of consistency, belief change should be performed via
expansion, i.e., by just adding beliefs.

@ The result of belief change should only depend upon the semantical
content of the new information.

@ and more ...
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Previous work on iterated revision and contraction Epistemic AGM revision

A basic theorem for AGM revision

Proposition ([Darwiche & Pearl, 1997])

A revision operator * that assigns a posterior epistemic state ¥ x A to a
prior epistemic state W and a proposition A is an AGM revision operator
for epistemic states iff there exists a (total) preorder <y for an epistemic
state ¥ with associated belief set K = Bel (V), such that for every
proposition A it holds that:

K x A= Bel(V*A) =T (min(=y, 4))

— In the context of belief revision, epistemic states can be represented
by a total preorder on possible worlds

— Iterated revision is on strategies how to revise total preorders so that
a new total preorder is available after each revision step



Previous work on iterated revision and contraction Conditionals

Belief revision and conditionals

An epistemic state U may also contain conditional beliefs (B|A) — “If A
then (usually, probably, plausibly ...) B":

U = (B|A) iff  AB is more plausible than AB,
iff AR B,

where plausibility is measured with respect to a total preorder <y.
Via the Ramsey test
V= (B|A) iff Ux AR B,

revision can be encoded by conditionals (B|A) .
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Previous work on iterated revision and contraction  Ranking functions (OCF)

Ranking functions (OCF)

Ranking functions are a popular means to implement total preorders and
provide semantics for conditionals conveniently:

An Ordinal Conditional Function (OCF) or ranking function k [Spohn
1988| assigns a degree of (im)plausibility to any possible world w € .

Definition (OCF k) Example (ranked flyers)
k= — Ng° such that: -
K(w) =4 pbf
KTH0) £ 0 kw)=2| pbf pby
M) = minsw) W) =1| pbF poF
k| (B|A) iff k(AB) < k(AB) #(w)=0 | pbf Fbf BbS
sk (flp), resp. ph . f

Rankings can be understood as qualitative abstractions of probabilities.
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Previous work on iterated revision and contraction  Ranking functions (OCF)

lterated revision acc. to [Darwiche & Pearl, 1997]

Proposition ([Darwiche & Pearl, 1997])

Let x be an AGM revision operator for epistemic states ¥ with
corresponding faithful preorder <. Then x is an iterative revision operator
in the sense of [Darwiche & Pearl, 1997] iff it satisfies the postulates
(CR1)—(CR4).

(CR1,2) as double-x postulates: If B |= (—)A, then
Bel (¥ % A) x B) = Bel (V % B)

(CR1,2) for conditional preservation: If B |=(—)A, then
U = (C|B) iff U x A= (C|B)

(CR1,2) in its semantic form: If wy,wy = (—)A, then
w1 <y wa iff wi <ysea w2
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Previous work on iterated revision and contraction  Ranking functions (OCF)

I[terated contraction

Similarly to [Darwiche & Pearl, 1997], [Konieczny & Pino Perez, 2017]
proposed that

@ iterative contraction operators — for epistemic states ¥ should satisfy

four postulates (IC1)—(1C4),
the semantic version of the first two postulates being as follows:
(IC1,2) if wi,wa = (—)A, then wy Sy wo iff wy <g_4 wo.

They built upon a result by [Caridroit et al., 2015] proving that total
preorders are also fundamental for AGM contraction.

However, Konieczny and Pino Perez did not talk about conditional
preservation ...
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A generic PCP for belief change Conditional structures

Conditional structures

Let
R ={(B1|A1),...,(Bn|An)} be a finite set of conditionals
af,af, alan be distinct algebraic symbols
or(w) = H oi(w) = H al H a;,
1<isn 1<i<n 1<ign
wi=4;B; wi=A;B;

describes the all-over effect of R on w and is called the conditional
structure of w wrt R [GKI, 2001, 2004].
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A generic PCP for belief change Generic PCP

A generic principle of conditional preservation

(PCP%/) Let o be a change operation on OCFs, and let
R = {(BI‘A1>a cee (Bn|An)}
If two multisets of possible worlds 2 = {w;,...,wy,} and
O ={wl,...,w,} fulfill

[[or(w;) =] orw)),
= =1

i.e., for each conditional (B;|A4;) in R, 2 and ' show the
same number of verifications resp. falsifications, then prior k
and posterior k° = kK o R are balanced by:

(k(w1) + ...+ K(wm)) — (K(w]) + ...+ K(W),))
= (K°(w1) + ...+ £%(wm)) — (K°(w]) + ... + £°(W),))
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A generic PCP for belief change Generic PCP
Example
H;.n:l or(wj) = H;”:l or (wj) implies

(k(w1) + ... + Klwn)) = (k(w)) .
= (&%(w1) + ...+ & (Wm)) = (KO (W) + ... + & (W)

+
+
N
€
&

Let R = {r1 = (c|a),r2 = (c|b)}; consider

w or(w) W’ or (W)
w1 = abc aj w) =abe 1
we =abc af wh = abc afaj

or(w1)or(ws) = or(w))or (ws)

Hence

(k(wr) + K(w2)) = (K(w) + K(wz)) = (5°(w1) + £ (w2)) = (5°(w1) + K (w2)).
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A generic PCP for belief change PCP characterization

Characterizing (PCP°“/)-compatible belief changes

Theorem

Let R = {(Bi1|A1),...,(Bn|An)} be a finite set of conditionals, and let
ko R = k° be a belief change of k by R. Then this change satisfies
(PCP21) iff there are rationalP numbers k0,77, 1 < i < n such that

k% (w) = ko + K(w) + Z v+ Z Vi - (1)

1<i<n 1<i<n
wEA;B; wEA;B;

Iterated belief change operators of the form (1) are called c-change
operators.

“Note that indeed, mo,'y;L,fy[ can be rational, but x° has to satisfy the
requirements for OCF, in particular, all K°(w) must be non-negative integers.

This provides a clear and simple schema for complex iterated change

operators.
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Iterated contraction by a single conditional resp. proposition Iterated contraction by a single conditional

lterated contraction by a single conditional

R ={(B|A)}:

Then a c-contracted ranking function k° = k © (B|A) has the form

vt if wE AB
k2 (w) = ko —min{y~ + k(AB),k(A)} +< v~ if wE AB
0 ifwkEA
where
7~ —~T < K(AB) — k(AB).
to ensure

kO (B|A) £ (BJA) (Success).
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Iterated contraction by a single conditional resp. proposition Iterated contraction by a single proposition

lterated contraction by a single proposition

Via A = (A|T), we obtain easily an iterative strategy for contracting by a
single proposition:

— Tty ifwEA
kO Aw) —m(w)—m(AH{ g 7 o }:A : (2)
such that v~ — 4+ < k(4) — x(A).

— propositional c-contractions
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Iterated contraction by a single conditional resp. proposition Iterated contraction by a single proposition

Propositional c-contractions with AGMes

Theorem

A propositional c-contraction k© = k O A fulfills the epistemic AGM
postulates for contraction [Konieczny & PinoPerez, 2017] iff

e for k(A) > 0, it has the form
L
5 _ YT —T ifwEA
ﬁ(w)—ﬁ(w)—i-{o if w4 (3)
with v — v~ > k(A) — k(A),

@ while for k(A) = 0, it has the form

coma (N SEA W

21/28



Iterated contraction by a single conditional resp. proposition Iterated contraction by a single proposition

C-contractions — example

R: (f|b) birds (usually) fly
(blp)  penguins are birds

w  Kw) w K(w)
) pbf 0 pbf 0
K | R pbf 1 pbf 1
pbf 1 pbf 0
pbf 1 pbff 0

k= (f|p) — penguins fly, & F~ p, b — indifference wrt penguins and birds.

2One can also use (PCP) to build up an OCF inductively from R.



Iterated contraction by a single conditional resp. proposition Iterated contraction by a single proposition

C-contractions — example (cont'd)

We want to forget that penguins can fly — x © (f|p) = k°;

using c-contractions of type (3 (see paper) with minimal 4y = 1, we obtain

LifwE=pf
kO (flp)(w) =k(w)+{ 0ifwE=pf
OifwED
We find that

o % = (f|pb), whereas r K= (f|pb);

o still K K~ b, but k© =P — penguins are exceptionall
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Iterated contraction by a single conditional resp. proposition Iterated contraction by a single proposition

C-contractions — example (cont'd)

Now, we want to forget that penguins are exceptional:

9,0

K :/43@@]7

There is just one AGM-compatible c-contraction:

0,0 _ 0 0 ifwED
" (W)_K(M)Jr{—lifw):p
@ As expected, we find K°° £ p, b, as in k:

o however, also (f|b), (b|p) have been forgotten — k©:© [ (f|b), (bp) !
What about preserving conditional beliefs 7!

D

e k9 still remembers the original conditionals, but in a refined form:
k77 = (f[bp) and K77 = (blpf)
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Iterated contraction by a single conditional resp. proposition Iterated contraction by a single proposition

C-contractions — example (cont'd)

w  kw) KPWw) KO©
pbf 0 1 0
pbf 0 0 0
pbf 1 1 0
pbf 1 1 1
pbf 1 2 1
pbf 0 0 0
pbf 1 1 0
pbf 0 0 0
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Iterated contraction by a single conditional resp. proposition Iterated contraction by a single proposition

PCP also as a cornerstone for iterated contraction

The axioms (PCP**), (5), and the epistemic AGM contraction postulates

imply the axioms of [Konieczny & Pino Perez, 2017] in the context of
OCFs.

kO A(w) > k(w) for all w = A. (5)
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Conclusion

Conclusions

In the context of OCF (a major framework for belief change), the principle
of conditional preservation (PCP) makes iterated belief change easy:

It follows a simple schema for setting up the changed &,

and can be adapted to different belief change operations by imposing
supplementary, characteristic postulates (most importantly, a proper
notion of success, and AGM compatibility).

PCP belief change has a solid algebraic foundation based on
conditional logic,

and (basically) implies both [Darwiche & Pearl, 1997] and [Konieczny
& Pino Perez, 2017].

It solves much more complex iterated change tasks (changing an OCF
by a set of conditional beliefs) than any other approach,

and can also be used for inductive reasoning from knowledge bases.
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