

Iterated contraction of propositions and conditionals under the principle of conditional preservation

2nd Workshop on Human Reasoning and Computational Logic
Dresden, April 2018

(First published and presented at GCAI 2017)

Motivation

Classical [AGM belief change theory](#) deals only with changes of propositional belief sets¹ K by propositional information A ; major operations are

- revision $K * A$ (“integrate A in your beliefs”), and
- contraction $K - A$ (“give up belief in A ”).

[Revision and contraction](#) are connected (e.g., via the Levi identity), they are [dual](#) in some sense.

¹A belief set is a deductively closed theory

Motivation (cont'd)

However, AGM theory is limited wrt iterated revision because it does not provide a full revision strategy independent of the prior K :

$$(K *_K A) *_{K*A} B$$

→ iterated revision [Darwiche & Pearl, AIJ 1997]: “double- $*$ ” postulates, basic idea was a “principle of conditional preservation”.

[Konieczny & Pino Perez, SUM 2017] did nearly the same for iterated contraction, but without mentioning conditional preservation.

Contributions of this talk

- We show that the same basic principle of conditional preservation can guide both iterated revision and contraction
 - in the sense of [Darwiche & Pearl, 1997] and [Konieczny & Pino Perez, 2017].
- More precisely, an axiomatized principle of conditional preservation for iterated contraction in the context of OCFs implies all postulates of [Konieczny & Pino Perez 2017], together with few other mild and obvious postulates (e.g., “success”).
- Our approach can handle revisions of epistemic states (represented by Spohn’s ranking functions) by sets of conditional beliefs and hence is much more general.

Overview of the talk

- Motivation and overview of this talk
- Previous work on iterated revision and contraction
- A generic principle of conditional preservation (PCP) for belief change
- Iterated contraction by a single conditional resp. proposition
- Conclusions

Overview of the talk

- Motivation and overview of this talk
- **Previous work on iterated revision and contraction**
- A generic principle of conditional preservation (PCP) for belief change
- Iterated contraction by a single conditional resp. proposition
- Conclusions

AGM revision in a nutshell

The basic theory for belief revision is the [AGM theory](#) [Alchourron, Gärdenfors, and Makinson 1985].

The AGM postulates are [recommendations](#) for rational belief change within classical propositional logic:

- The beliefs of the agent should be deductively closed, i.e., the agent should apply logical reasoning whenever possible.
- The change operation should be successfull. (This does not mean that the agent should believe everything!)
- In case of consistency, belief change should be performed via expansion, i.e., by just adding beliefs.
- The result of belief change should only depend upon the semantical content of the new information.
- and more ...

A basic theorem for AGM revision

Proposition ([Darwiche & Pearl, 1997])

A revision operator \star that assigns a posterior epistemic state $\Psi \star A$ to a prior epistemic state Ψ and a proposition A is an AGM revision operator for epistemic states iff there exists a (total) preorder \preceq_Ψ for an epistemic state Ψ with associated belief set $K = \text{Bel}(\Psi)$, such that for every proposition A it holds that:

$$K \star A = \text{Bel}(\Psi \star A) = \mathcal{T}(\min(\preceq_\Psi, A))$$

- In the context of belief revision, epistemic states can be represented by a total preorder on possible worlds
- Iterated revision is on strategies how to revise total preorders so that a new total preorder is available after each revision step

Belief revision and conditionals

An epistemic state Ψ may also contain conditional beliefs $(B|A)$ – “If A then (usually, probably, plausibly . . .) B ”:

$$\begin{aligned}\Psi \models (B|A) \quad \text{iff} \quad & AB \text{ is more plausible than } A\bar{B}, \\ \text{iff} \quad & A \sim B,\end{aligned}$$

where plausibility is measured with respect to a total preorder \preceq_Ψ .

Via the [Ramsey test](#)

$$\Psi \models (B|A) \quad \text{iff} \quad \Psi * A \models B,$$

revision can be encoded by conditionals $(B|A)$.

Ranking functions (OCF)

Ranking functions are a popular means to implement total preorders and provide semantics for conditionals conveniently:

An **Ordinal Conditional Function (OCF)** or **ranking function** κ [Spohn 1988] assigns a degree of (im)plausibility to any possible world $\omega \in \Omega$.

Definition (OCF κ)

$\kappa := \Omega \rightarrow \mathbb{N}_0^\infty$ such that:

$$\kappa^{-1}(0) \neq \emptyset$$

$$\kappa(A) = \min_{\omega \models A} \kappa(\omega)$$

$$\kappa \models (B|A) \text{ iff } \kappa(AB) < \kappa(A\bar{B})$$

Example (ranked flyers)

$$\kappa(\omega) = 4$$

$p\bar{b}f$

$$\kappa(\omega) = 2$$

$pbf \quad p\bar{b}\bar{f}$

$$\kappa(\omega) = 1$$

$pb\bar{f} \quad \bar{p}\bar{b}\bar{f}$

$$\kappa(\omega) = 0$$

$\bar{p}bf \quad \bar{p}\bar{b}f \quad \bar{p}\bar{b}\bar{f}$

$$\kappa \models (\bar{f}|p), \text{ resp. } p \succ_{\kappa} \bar{f}$$

Rankings can be understood as **qualitative abstractions of probabilities**.

Iterated revision acc. to [Darwiche & Pearl, 1997]

Proposition ([Darwiche & Pearl, 1997])

Let \star be an AGM revision operator for epistemic states Ψ with corresponding faithful preorder \preceq_Ψ . Then \star is an iterative revision operator in the sense of [Darwiche & Pearl, 1997] iff it satisfies the postulates (CR1)–(CR4).

(CR1,2) as double- \star postulates: If $B \models (\neg)A$, then

$$Bel((\Psi * A) * B) \equiv Bel(\Psi * B)$$

(CR1,2) for conditional preservation: If $B \models (\neg)A$, then

$$\Psi \models (C|B) \text{ iff } \Psi * A \models (C|B)$$

(CR1,2) in its semantic form: If $\omega_1, \omega_2 \models (\neg)A$, then

$$\omega_1 \leqslant_\Psi \omega_2 \text{ iff } \omega_1 \leqslant_{\Psi * A} \omega_2$$

Iterated contraction

Similarly to [Darwiche & Pearl, 1997], [Konieczny & Pino Perez, 2017] proposed that

- iterative contraction operators – for epistemic states Ψ should satisfy four postulates (IC1)–(IC4),

the semantic version of the first two postulates being as follows:

(IC1,2) if $\omega_1, \omega_2 \models (\neg)A$, then $\omega_1 \preceq_\Psi \omega_2$ iff $\omega_1 \preceq_{\Psi-A} \omega_2$.

They built upon a result by [Caridroit et al., 2015] proving that total preorders are also fundamental for AGM contraction.

However, Konieczny and Pino Perez did not talk about conditional preservation ...

Overview of the talk

- Motivation and overview of this talk
- Previous work on iterated revision and contraction
- **A generic principle of conditional preservation (PCP) for belief change**
- Iterated contraction by a single conditional resp. proposition
- Conclusions

Conditional structures

Let

$\mathcal{R} = \{(B_1|A_1), \dots, (B_n|A_n)\}$ be a finite set of conditionals
 $\mathbf{a}_1^+, \mathbf{a}_1^-, \dots, \mathbf{a}_n^+, \mathbf{a}_n^-$ be distinct algebraic symbols

$$\sigma_{\mathcal{R}}(\omega) := \prod_{1 \leq i \leq n} \sigma_i(\omega) = \prod_{\substack{1 \leq i \leq n \\ \omega \models A_i B_i}} \mathbf{a}_i^+ \prod_{\substack{1 \leq i \leq n \\ \omega \models A_i \overline{B}_i}} \mathbf{a}_i^-$$

describes the all-over effect of \mathcal{R} on ω and is called the **conditional structure of ω wrt \mathcal{R}** [GKI, 2001, 2004].

A generic principle of conditional preservation

(PCP_{\circ}^{ocf}) Let \circ be a change operation on OCFs, and let

$$\mathcal{R} = \{(B_1|A_1), \dots, (B_n|A_n)\}.$$

If two multisets of possible worlds $\Omega = \{\omega_1, \dots, \omega_m\}$ and $\Omega' = \{\omega'_1, \dots, \omega'_m\}$ fulfill

$$\prod_{j=1}^m \sigma_{\mathcal{R}}(\omega_j) = \prod_{j=1}^m \sigma_{\mathcal{R}}(\omega'_j),$$

i.e., for each conditional $(B_i|A_i)$ in \mathcal{R} , Ω and Ω' show the same number of verifications resp. falsifications, then prior κ and posterior $\kappa^{\circ} = \kappa \circ \mathcal{R}$ are balanced by:

$$\begin{aligned} & (\kappa(\omega_1) + \dots + \kappa(\omega_m)) - (\kappa(\omega'_1) + \dots + \kappa(\omega'_m)) \\ &= (\kappa^{\circ}(\omega_1) + \dots + \kappa^{\circ}(\omega_m)) - (\kappa^{\circ}(\omega'_1) + \dots + \kappa^{\circ}(\omega'_m)) \end{aligned}$$

Example

$\prod_{j=1}^m \sigma_{\mathcal{R}}(\omega_j) = \prod_{j=1}^m \sigma_{\mathcal{R}}(\omega'_j)$ implies

$$\begin{aligned} & (\kappa(\omega_1) + \dots + \kappa(\omega_m)) - (\kappa(\omega'_1) + \dots + \kappa(\omega'_m)) \\ &= (\kappa^\circ(\omega_1) + \dots + \kappa^\circ(\omega_m)) - (\kappa^\circ(\omega'_1) + \dots + \kappa^\circ(\omega'_m)) \end{aligned}$$

Let $\mathcal{R} = \{r_1 = (c|a), r_2 = (c|b)\}$; consider

ω	$\sigma_{\mathcal{R}}(\omega)$	ω'	$\sigma_{\mathcal{R}}(\omega')$
$\omega_1 = a\bar{b}c$	\mathbf{a}_1^+	$\omega'_1 = \bar{a}\bar{b}c$	1
$\omega_2 = \bar{a}bc$	\mathbf{a}_2^+	$\omega'_2 = abc$	$\mathbf{a}_1^+ \mathbf{a}_2^+$
$\sigma_{\mathcal{R}}(\omega_1)\sigma_{\mathcal{R}}(\omega_2) = \sigma_{\mathcal{R}}(\omega'_1)\sigma_{\mathcal{R}}(\omega'_2)$			

Hence

$$(\kappa(\omega_1) + \kappa(\omega_2)) - (\kappa(\omega'_1) + \kappa(\omega'_2)) = (\kappa^\circ(\omega_1) + \kappa^\circ(\omega_2)) - (\kappa^\circ(\omega'_1) + \kappa^\circ(\omega'_2)).$$

Characterizing (PCP_{\circ}^{ocf}) -compatible belief changes

Theorem

Let $\mathcal{R} = \{(B_1|A_1), \dots, (B_n|A_n)\}$ be a finite set of conditionals, and let $\kappa \circ \mathcal{R} = \kappa^{\circ}$ be a belief change of κ by \mathcal{R} . Then this change satisfies (PCP_{\circ}^{ocf}) iff there are rational^a numbers $\kappa_0, \gamma_i^+, \gamma_i^-$, $1 \leq i \leq n$ such that

$$\kappa^{\circ}(\omega) = \kappa_0 + \kappa(\omega) + \sum_{\substack{1 \leq i \leq n \\ \omega \models A_i B_i}} \gamma_i^+ + \sum_{\substack{1 \leq i \leq n \\ \omega \models A_i \overline{B_i}}} \gamma_i^- \quad (1)$$

Iterated belief change operators of the form (1) are called *c-change operators*.

^aNote that indeed, $\kappa_0, \gamma_i^+, \gamma_i^-$ can be rational, but κ° has to satisfy the requirements for OCF, in particular, all $\kappa^{\circ}(\omega)$ must be non-negative integers.

This provides a clear and simple schema for complex iterated change operators.

Overview of the talk

- Motivation and overview of this talk
- Previous work on iterated revision and contraction
- A generic principle of conditional preservation (PCP) for belief change
- **Iterated contraction by a single conditional resp. proposition**
- Conclusions

Iterated contraction by a single conditional

$$\mathcal{R} = \{(B|A)\}:$$

Then a c-contracted ranking function $\kappa^\ominus = \kappa \ominus (B|A)$ has the form

$$\kappa^\ominus(\omega) = \kappa_0 - \min\{\gamma^- + \kappa(A\bar{B}), \kappa(\bar{A})\} + \begin{cases} \gamma^+ & \text{if } \omega \models AB \\ \gamma^- & \text{if } \omega \models A\bar{B} \\ 0 & \text{if } \omega \models \bar{A} \end{cases},$$

where

$$\gamma^- - \gamma^+ \leq \kappa(AB) - \kappa(A\bar{B}).$$

to ensure

$$\kappa \ominus (B|A) \not\models (B|A) \quad (\text{Success}).$$

Iterated contraction by a single proposition

Via $A \equiv (A|\top)$, we obtain easily an iterative strategy for contracting by a single proposition:

$$\kappa \ominus A(\omega) = \kappa(\omega) - \kappa(\overline{A}) + \begin{cases} \gamma^+ - \gamma^- & \text{if } \omega \models A \\ 0 & \text{if } \omega \models \overline{A} \end{cases}, \quad (2)$$

such that $\gamma^- - \gamma^+ \leq \kappa(A) - \kappa(\overline{A})$.

→ propositional c-contractions

Propositional c-contractions with AGMs

Theorem

A propositional c-contraction $\kappa^\ominus = \kappa \ominus A$ fulfills the epistemic AGM postulates for contraction [Konieczny & PinoPerez, 2017] iff

- for $\kappa(A) > 0$, it has the form

$$\kappa^\ominus(\omega) = \kappa(\omega) + \begin{cases} \gamma^+ - \gamma^- & \text{if } \omega \models A \\ 0 & \text{if } \omega \models \overline{A} \end{cases} \quad (3)$$

with $\gamma^+ - \gamma^- > \kappa(\overline{A}) - \kappa(A)$,

- while for $\kappa(A) = 0$, it has the form

$$\kappa^\ominus(\omega) = \kappa(\omega) + \begin{cases} 0 & \text{if } \omega \models A \\ -\kappa(\overline{A}) & \text{if } \omega \models \overline{A} \end{cases} \quad (4)$$

C-contractions – example

\mathcal{R} : $(f|b)$ birds (usually) fly
 $(b|p)$ penguins are birds

	ω	$\kappa(\omega)$	ω	$\kappa(\omega)$
$\kappa \models \mathcal{R}^2$:	$p b f$	0	$\bar{p} b f$	0
	$p b \bar{f}$	1	$\bar{p} b \bar{f}$	1
	$p \bar{b} f$	1	$\bar{p} \bar{b} f$	0
	$p \bar{b} \bar{f}$	1	$\bar{p} \bar{b} \bar{f} f$	0

$\kappa \models (f|p)$ – penguins fly, $\kappa \not\models \dot{p}, \dot{b}$ – indifference wrt penguins and birds.

²One can also use (PCP) to build up an OCF inductively from \mathcal{R} .

C-contractions – example (cont'd)

We want to forget that penguins can fly $\rightarrow \kappa \ominus (f|p) = \kappa^\ominus$;
 using c-contractions of type β (see paper) with minimal $\gamma^+ = 1$, we obtain

$$\kappa \ominus (f|p)(\omega) = \kappa(\omega) + \begin{cases} 1 & \text{if } \omega \models pf \\ 0 & \text{if } \omega \models p\bar{f} \\ 0 & \text{if } \omega \models \bar{p} \end{cases}$$

We find that

- $\kappa^\ominus \models (\bar{f}|p\bar{b})$, whereas $\kappa \not\models (\dot{f}|p\bar{b})$;
- still $\kappa^\ominus \not\models \dot{b}$, but $\kappa^\ominus \models \bar{p}$ – penguins are exceptional!

C-contractions – example (cont'd)

Now, we want to forget that penguins are exceptional:

$$\kappa^{\ominus, \ominus} = \kappa^{\ominus} \ominus \bar{p}$$

There is just one AGM-compatible c-contraction:

$$\kappa^{\ominus, \ominus}(\omega) = \kappa^{\ominus}(\omega) + \begin{cases} 0 & \text{if } \omega \models \bar{p} \\ -1 & \text{if } \omega \models p \end{cases}$$

- As expected, we find $\kappa^{\ominus, \ominus} \not\models \dot{p}, \dot{b}$, as in κ ;
- however, also $(f|b), (b|p)$ have been forgotten – $\kappa^{\ominus, \ominus} \not\models (\dot{f}|b), (\dot{b}|p)$!!
What about preserving conditional beliefs ?!
- $\kappa^{\ominus, \ominus}$ still remembers the original conditionals, but in a refined form:

$$\kappa^{\ominus, \ominus} \models (f|b\bar{p}) \text{ and } \kappa^{\ominus, \ominus} \models (b|pf)$$

C-contractions – example (cont'd)

ω	$\kappa(\omega)$	$\kappa^\Theta(\omega)$	$\kappa^{\Theta,\Theta}$
$p b f$	0	1	0
$\bar{p} b f$	0	0	0
$p b \bar{f}$	1	1	0
$\bar{p} b \bar{f}$	1	1	1
$p \bar{b} f$	1	2	1
$\bar{p} \bar{b} f$	0	0	0
$p \bar{b} \bar{f}$	1	1	0
$\bar{p} \bar{b} \bar{f}$	0	0	0

PCP also as a cornerstone for iterated contraction

Theorem

The axioms (PCP_{\ominus}^{ocf}) , (5), and the epistemic AGM contraction postulates imply the axioms of [Konieczny & Pino Perez, 2017] in the context of OCFs.

$$\kappa \ominus A(\omega) \geq \kappa(\omega) \text{ for all } \omega \models A. \quad (5)$$

Overview of the talk

- Motivation and overview of this talk
- Previous work on iterated revision and contraction
- A generic principle of conditional preservation (PCP) for belief change
- Iterated contraction by a single conditional resp. proposition
- **Conclusions**

Conclusions

In the context of OCF (a major framework for belief change), the principle of conditional preservation (PCP) makes iterated belief change easy:

- It follows a simple schema for setting up the changed κ ,
- and can be adapted to different belief change operations by imposing supplementary, characteristic postulates (most importantly, a proper notion of success, and AGM compatibility).
- PCP belief change has a solid algebraic foundation based on conditional logic,
- and (basically) implies both [Darwiche & Pearl, 1997] and [Konieczny & Pino Perez, 2017].
- It solves much more complex iterated change tasks (changing an OCF by a set of conditional beliefs) than any other approach,
- and can also be used for inductive reasoning from knowledge bases.