Technisch X
o u?\?vé'r'ifta'i International Center
Dresden for Computational Logic

COMPLEXITY THEORY

Lecture 23: Probabilistic Complexity Classes (2)

Sergei Obiedkov
Knowledge-Based Systems

TU Dresden, 12 Jan 2026

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2025)
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Review: PP and BPP

Definition 21.4: A language L is in Polynomial Probabilistic Time (PP) if there is
a PTM M such that:

¢ there is a polynomial function f such that M will always halt after f(jw|) steps
on all input words w,

* if w € L, then Pr[M accepts w] > 1,

* if w ¢ L, then Pr[M accepts w] < 1.

Definition 21.11: A language L is in Bounded-Error Polynomial Probabilistic Time
(BPP) if there is a PTM M such that:

® there is a polynomial function f such that M will always halt after f(jw|) steps
on all input words w,

® if we L, then Pr[M accepts w] >

W= WIN

e if w¢ L, then Pr[M accepts w] <

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 2 of 32

Review: Polynomial Identity Testing in BPP

Algorithm: For a polynomial p(xy,...,x,) encoded by a circuit of size <n
e Randomly select a number k € {1,...,2%"}.
® Randomly select ay,...,a, € {1,...,10-2"} (a total of O(n - m) random bits).
® Evaluate the circuit modulo &k to compute p(ay,...,a,) mod k.
® Repeat this experiment for 4n times and accept iff all the outcomes are 0.

This leads to a constant error probability of < 0.5 for polynomials that are non-zero
(which can be amplified to be < %) and an error probability of 0 for polynomials that are.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 3 of 32

BPP and other classes

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 4 of 32

The neighbours of BPP

We have already observed that P C BPP.

Moreover, since PP uses less strict conditions on probabilities, we immediately get
BPP ¢ PP ¢ PSpace.

Another interesting result is the following:

Fheorem 23.1 (Adleman’s' Theorem): BPP C P/, \

(remember that we also know that P C Py, but not whether NP C Py,;)

1) Adleman is the A in RSA.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 5 of 32

Proving Adleman’s Theorem

Fheorem 23.1 (Adleman’s Theorem): BPP C P/, \

Proof: By Theorem 21.13, any language in BPP is decided by a PTM M with error
probability < 2% for an input of size n. Moreover, M uses a polynomial (in n) number m
of random bits r € {0, 1} (verifier perspective on PTMs).

® String r is bad for input w € {0, 1} if M returns the wrong answer on w for random
bits r; otherwise r is good for w.

® Since the error probability < 2#, there are < 22—m, bad strings for any w.

* Intotal, for all 2" inputs, there are < 2" 2 = - bad strings.

® Therefore, there are strings r that are good for all inputs.

Take one such universally good string 7; build a circuit for a deterministic verifier TM of
inputs w#r as in Theorem 19.7; hardwire 7 as input for the certificate. O

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 6 of 32

BPP and the Polynomial Hierarchy

Recall: The polynomial hierarchy can be defined via
® polynomial-time ATMs with a constant-bounded number of alternations
® oracle (N)TMs using oracles for lower levels of the hierarchy

Example: = = NPN" = NP’ These are languages decided by polynomial-time ATMs
starting in an existential state and possibly alternating to a universal state.

At first sight, there seems to be no connection to BPP, yet:

Fheorem 23.2 (Sipser-Gacs-Lautemann Theorem): BPP C 22" N Hg \

Notes:
® Sipser showed BPP C PH; Gacs strengthened the result; Lautemann gave the
readable proof we will present — all in 1983.
e Stronger inclusions are known, but no separation from other classes we have
covered is.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 7 of 32

Proving Sipser-Gacs-Lautemann (1)

Fheorem 23.2 (Sipser-Gacs-Lautemann Theorem): BPP C 37 N 115 \

Proof: Overall proof outline:
* We will show that BPP C £7. This implies coBPP c IT} and hence BPP c 115,
since BPP is closed under complement.
® We will show the inclusion for an arbitrary language L € BPP.
® For such L, there is a PTM M with the following features:
— M runs in time p(n) for some polynomial p, using p(n) random bits;
— M accepts L with error probability < 27"
(using probability amplification as in Theorem 21.13).
We can view the computation of M as a deterministic polytime computation over
an input of length n and an additional string of p(n) random bits, as before.
® The key to the proof is the extreme difference between acceptance and rejection:
— either > (1 — 27)27™ of random vectors r € {0, 1}’™ lead to acceptance,
— oronly <272 = 2P of random vectors r € {0, 117 |ead to acceptance.
~ we want to tell the two situations apart in £5

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 8 of 32

Proving Sipser-Gacs-Lautemann (2)

Fheorem 23.2 (Sipser-Gacs-Lautemann Theorem): BPP C 37 N 115 \

Proof (continued): Idea for telling apart acceptance and rejection:
e Forinput w, let S,, C {0, 1}’™ be the set of all random vectors r such that M
accepts w when using r.
e S, C{0,1)P™ is either almost all of {0, 1}’™ or a tiny fraction thereof.
* We consider “shifted copies” of S,,, created by some uniform bit-flipping S,, vectors:

— I S,, is large, then polynomially many such copies can cover all of {0, 1}P.
— I S,, is small, then polynomially many copies are too small to cover {0, 1}7.

* Making a “shifted copy”:
for some u € {0, 1}’ set S, @u = {r®u|reS,}, where @ is XOR (sum mod 2).

® Number of shifted copies: we will use k = [’%W + 1 copies (a polynomial number).

We will show that k shifts can cover {0, 1} if and only if S, is “large”.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 9 of 32

Proving Sipser-Gacs-Lautemann (3)

Fheorem 23.2 (Sipser-Gacs-Lautemann Theorem): BPP c % n 11} \

Proof (continued):

Claim 1: If S,,| < 2°™~" then, for every set of k = [”(”)] + 1 vectors uy, ..., u; € {0, 1},
we have U~ (S, @ u;) € {0, 1)P®.

The result follows from the cardinalities of the involved sets:
Using IS, @ u;] = |S,,|, we obtain

k

LJsweu

i=1

<klS,| < ({p()} " 1) op(my—n _ sz(n) _ 0(21’(")),

211

Therefore, the claim holds for sufficiently large n.
This suffices, since inputs of shorter length can surely be decided in 25 as well.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 10 of 32

Proving Sipser-Gacs-Lautemann (4)

Fheorem 23.2 (Sipser-Gacs-Lautemann Theorem): BPP C 37 N 115 \

Proof (continued):
Claim 2: If S,,| > (1 — 27")2"™ then there is a set of k = [”(")] + 1 vectors
ui,. .. u €10, 1" such that 5 (S, @ u;) = {0, 1}P™.

We argue that, for independently and randomly chosen uy, ..., u;, we have
Pr[UL, (S @ u;) = {0, 1}"™] > 0. The claim follows from this.

For a particular » € {0, 1}, we compute
a) o)
Pr[re UL Sy @un| €T Prir¢ S, @u)] < 1,27 = 27k = 275 1+) < 200,
since: (a) u; are selected independently; (b) Pr[r ¢ (S, ®u;)] =Prréu; ¢ S,] <27
Therefore: Pr[there is r € {0, 1"™ \ UL, (S, ® u)| < 27 - 277 = 1. In particular, there

is at least one choice of uy, ..., u; where this event does not occur, i.e., where all r are in
k
Uizl(Sw ® u;).

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 11 of 32

Proving Sipser-Gacs-Lautemann (5)

Fheorem 23.2 (Sipser-Gacs-Lautemann Theorem): BPP C 37 N 115 \

Proof (continued): In summary, we have shown:
e If S, is “small”, then there are no vectors uj, ..., u; such that L, (S,, @ u;) = {0, 1),
* If S, is “large”, then there are vectors uj, . .., u; such that UL, (S, & u;) = {0, 1)/,
Hence, we can check the acceptance of M by computing if the following holds true:

k
Jur, .. e Nr e {0, 1P r e U(SW ® u,).

i=1
Using the DTM version of PTMs, this becomes

k
Quy, ..., Nre {0, 1)PM, \/ M accepts w for random vector r @ u;.
i=1

This is a =F computation. O
Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 12 of 32

Hierarchy Theorems for BPP

The Time Hierarchy Theorems for deterministic and non-deterministic Turing machines
show that, when given (sufficiently) more time, such TMs can solve more problems. In
particular:

® P~ ExpTime
* NP = NExpTime

The proofs were based on diagonalisation arguments that enabled TMs with more time
to deliberately differ from all TMs with less time.

Unfortunately, no such arguments are known for BPP:

* The difficulty of applying diagonalisation arguments is related to the semantic
definition of BPP.

® Currently, we don’t even know if BPP # NExpTime!

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 13 of 32

Relationship of BPP and P

We know P € BPP c PP ¢ PSpace but not even if BPP # NExpTime.

However, most experts expect that . ..

BPP is equal to P!

® Many BPP algorithms have been de-randomised successfully.

® BPP = P is equivalent to the existence of strong pseudo-random number
generators, which many experts consider likely.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 14 of 32

Further probabilistic classes

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 15 of 32

Types of errors

We have defined BPP by restricting the probability of error to < %

However, there are two types of errors:
® False positives: the PTM accepts a word that is not in the language
® False negatives: the PTM rejects a word that is in the language

Common BPP algorithms can often avoid one of these errors:

Example 23.3: Our previous algorithm for polynomial identity testing aimed to
decide ZeroP. For inputs w € ZeroP, the algorithm accepted with probability 1 (no
false negatives). Uncertainty only occurred for inputs w ¢ ZeroP (false positives
were possible, though unlikely).

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 16 of 32

Randomised Polynomial Time

Excluding false positives/negatives from BPP leads to classes with one-sided error:

Definition 23.4: A language L is in Randomised Polynomial Time (RP) if there is
a PTM M satisfying the following conditions:

¢ there is a polynomial function f such that M halts after f(jw|) steps on every
input word w;

* if w € L, then Pr[M accepts w] > ;
e if w¢ L, then Pr[M accepts w] = 0.

Definition 23.5: A language L is in coRP if its complement is in RP, i.e., if there
is a polynomially time-bounded PTM M satisfying the following conditions:

® if we L, then Pr[M accepts w] = 1;
* if w¢ L, then Pr[M accepts w] < 1.

FExample 23.6: ZeroP < coRP. \

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 17 of 32

Probability amplification for RP and coRP

It is clear from the definitions that RP € BPP and coRP < BPP.

Hence, we can apply Theorem 21.13 to amplify the output probability.

However, the situation for one-sided error classes is actually much simpler:

Theorem 23.7: Consider a language L and a polynomially time-bounded PTM M
for which there is a constant ¢ > 0 such that, for every word w € Z*,

e if we L, then Pr[M accepts w] > |w|™¢;
e if w¢ L, then Pr[M accepts w] = 0.

Then, for every constant d > 0, there is a polynomially time-bounded PTM M’
such that

e if w €L, then Pr[M’ accepts w] > 1 —27";
e if w¢ L, then Pr[M’ accepts w] = 0.

Proof: Much simpler than for BPP (exercise). O

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 18 of 32

RP and NP

The asymmetric acceptance conditions of RP reminds us of NP, since already “some”
accepting runs are enough to prove acceptance.

Indeed, we get

Fheorem 23.8: RP C NP \

Proof: If M satisfies the RP acceptance conditions for L, then M can be considered as
an NTM that accepts L with respect to the usual non-deterministic acceptance
conditions. Indeed, M has an accepting run on input |w| if and only if w € L. O

Similarly, we find coRP C coNP.

Recall: While RP C BPP, we do not know whether BPP C NP.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 19 of 32

Zero-sided error

Instead of admitting a possibly false answer (positive or negative), one can also require
the correct answer while making some concessions on runtime:

Definition 23.9: A PTM M has expected runtime f: N — R if, for any input w, the
expectation E[T,,] of the number T,, of steps taken by M on input w is T,, < f(lw)).

ZPP is the class of all languages for which there is a PTM M that

® returns the correct answer whenever it halts;

® has expected runtime f for some polynomial function f.

ZPP is for zero-error probabilistic polynomial time.

Note: In general, algorithms that produce correct results while giving only prob-
abilistic guarantees on resource usage are called Las Vegas algorithms, as op-
posed to Monte Carlo algorithms, which have guaranteed resource bounds but

probabilistic correctness (as in the case of BPP).

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 20 of 32

Zero-sided vs. one-sided error

In spite of the different approaches of expected error vs. expected runtime, we find a
close relation between ZPP, RP, and coRP:

Fheorem 23.10: ZPP = RP N coRP \

Proof: ZPP C RP: Given a ZPP algorithm M, construct an RP algorithm by running M
for three times the expected (polynomial) runtime z. If it stops, return the same answer; if

it times out, reject.
® For any random variable X and ¢ > 0, Markov’s inequality implies
Pr(X > cE[X]] < fggg] =1

* Hence, the probability of M running for > 3z is < 3.
® Therefore, the probability of a false negative (due to a timeout) is

b.)l»—t

ZPP C coRP is dual; we just have to accept after timeout.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 21 of 32

Zero-sided vs. one-sided error

In spite of the different approaches of expected error vs. expected runtime, we find a
close relation between ZPP, RP, and coRP:

Fheorem 23.10: ZPP = RP N coRP \

Proof: ZPP 2 RP n coRP: Assume we have an RP algorithm A and a coRP algorithm
for the same language L. To obtain a ZPP algorithm, we run A and B on input w:

® |f A accepts, accept.

® |f B rejects, reject.

® |f A rejects and B accepts, repeat the experiment.

Since RP has no false positives and coRP has no false negatives, this can only return
the correct answer.

The probability of repetition is < % since it requires one of the algorithms to be in error.

Hence, the probability of k repetitions is < 37*, for an expected runtime of < Y- “‘;Pp,

where p is the combined (polynomial) runtime of A and 8. This is polynomial. O
Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 22 of 32

A Randomised Algorithm for Max-3SAT
and lts Derandomisation

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 23 of 32

3SAT in Monte Carlo

Let ¢ be a 3CNF with variables x1, ..., x, and clauses Cy, ..., C,,.

Algorithm: For each x;, choose a value with probability %

* |f ¢ is unsatisfiable, the algorithm will detect this.
® |f ¢ is satisfiable, the algorithm finds a satisfying assignment with probability > 27".

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 24 of 32

Max-3SAT

Let ¢ be a 3CNF with variables xi, ..., x, and clauses Ci,..., C,."
Problem: Find an assignment that satisfies as many clauses as possible.

Algorithm: For each x;, choose a value with probability %

® Sis arandom variable equal to the number of satisfied clauses.
® §;is an indicator random variable that is 1 when C; is satisfied.

S= iSi E[S] = iE[Si] = iPr[Si =1]= %m
i=1 i=1 i=1

L

In expectation, the algorithm computes a 7/8-approximate solution.

TAll three variables in each C; are different.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 25 of 32

Max-3SAT

Let ¢ be a 3CNF with variables xi, ..., x, and clauses Ci,..., C,."
Algorithm: For each x;, choose a value with probability %

The expected number of satisfied clauses is %m for any ¢.

Fence, every 3CNF ¢ with m clauses has an assignment satisfying at least %m
clauses.

Let’s run the algorithm until we find one.

TAll three variables in each C; are different.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 26 of 32

Max-3SAT in Las Vegas

Algorithm: For each x;, choose a value with probability % Repeat until at least

%m clauses are satisfied.

Let p and p; be the probabilities of satisfying, respectively, at least %m and exactly i

clauses with a random assignment.

%m:Zmlipiz Z ip; + Z
i=0

0<i<? gm —m<z<m
<w' Q powm) p
0<i<l gm —m<z<m
<m(l —p) + mp <m' +mp

7 sl 1
Then,mp > gm—m’ > gandp > ¢~

The expected number of iterations is < 8m.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory

7
m':max{neN|n<§m}

slide 27 of 32

Great expectations

® When we choose a random assignment for a 3CNF ¢ with m clauses, the expected
number of satisfied clauses E(¢) > %m

® When we select a value for one variable, the expectation may change.

® |f we make sure it never decreases, we will have at least %m satisfied clauses after
we assign values to all the variables.

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 28 of 32

Great expectations

Let ¢y be ¢ with x = 0 and ¢, be ¢ with x = 1.

Then | |
E(¢) = EE(¢0) + EE(¢')'
Since ;
we have E(¢o) > m or E($y) > {m.

Choose a value i that gives E(¢;) > %m and fix it for x!

But how do we compute expectations?

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 29 of 32

What happens to clauses when we select a value?

x:=0

Sergei Obiedkov; 12 Jan 2026

Before After
(pVvagVvr) | (pVgqVr)
xVyVvz) yVz)
(~xVyVz) 1

(x) 0

Before After
(pvagvr) | (pVgVr)
(xVyVvz 1
(xVyvz | (yV2)

(=x) 0

Complexity Theory

slide 30 of 32

What is the probability of making a clause true?

® We can compute E(¢) by summing up these values for all the clauses.

(xvyvz | 7/8
(xVy) 3/4
x) 12
0 0
1 1

* |f ¢ has n variables, we only need to do this for n formulas each having m clauses.

* No randomness in the running time!

Sergei Obiedkov; 12 Jan 2026

Complexity Theory

slide 31 of 32

Summary and Outlook

Complexity relationships: see board (or make your own drawing).

Probabilistic classes with ones-sided error — RP and coRP — are common.

ZPP defines random computations with zero-sided error but probabilistic runtime.
Many experts believe (or expect) that

P = ZPP = RP = coRP = BPP ¢ PP.

What’s next?
® Quantum computing
® |nteractive Proofs
® Solving NP-hard problems
® Examinations

Sergei Obiedkov; 12 Jan 2026 Complexity Theory slide 32 of 32

	Probabilistic Complexity Classes
	BPP and other classes
	Further probabilistic classes
	A Randomised Algorithm for Max-3SAT and Its Derandomisation

