How to Measure Query Answering Complexity

Query answering as decision problem
\(\leadsto \) consider Boolean queries

Various notions of complexity:
- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:
\[
L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace \subseteq ExpTime
\]

An Algorithm for Evaluating FO Queries

function \(\text{Eval}(\varphi, I) \)

01 switch (\(\varphi \)) {
02 case \(p(c_1, \ldots, c_n) \): return \(\langle c_1, \ldots, c_n \rangle \in p^I \)
03 case \(\neg \psi \): return \(\neg \text{Eval}(\psi, I) \)
04 case \(\psi_1 \land \psi_2 \): return \(\text{Eval}(\psi_1, I) \land \text{Eval}(\psi_2, I) \)
05 case \(\exists x. \psi \):
06 for \(c \in \Delta^I \) {
07 if \(\text{Eval}(\psi[x \mapsto c], I) \) then return true
08 }
09 return false
10 }

FO Algorithm Worst-Case Runtime

Let \(m \) be the size of \(\varphi \), and let \(n = |I| \) (total table sizes)

- How many recursive calls of \(\text{Eval} \) are there?
 \(\leadsto \) one per subexpression: at most \(m \)
- Maximum depth of recursion?
 \(\leadsto \) bounded by total number of calls: at most \(m \)
- Maximum number of iterations of for loop?
 \(\leadsto |\Delta^I| \leq n \) per recursion level
 \(\leadsto \) at most \(n^m \) iterations
- Checking \(\langle c_1, \ldots, c_n \rangle \in p^I \) can be done in linear time w.r.t. \(n \)

Runtime in \(m \cdot n^m \cdot n = m \cdot n^{m+1} \)
Time Complexity of FO Algorithm

Let m be the size of φ, and let $n = |I|$ (total table sizes)

Runtime in $m \cdot n^{m+1}$

- Combined complexity: in ExpTime
- Data complexity (m is constant): in P
- Query complexity (n is constant): in ExpTime

Space Complexity of FO Algorithm

Let m be the size of φ, and let $n = |I|$ (total table sizes)

Memory in $m \log m + (m + 1) \log n$

- Combined complexity: in PSpace
- Data complexity (m is constant): in L
- Query complexity (n is constant): in PSpace

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let m be the size of φ, and let $n = |I|$ (total table sizes)

- For each (recursive) call, store pointer to current subexpression of φ: $\log m$
- For each variable in φ (at most m), store current constant assignment (as a pointer): $m \cdot \log n$
- Checking $\langle c_1, \ldots, c_n \rangle \in p^I$ can be done in logarithmic space w.r.t. n

Memory in $m \log m + m \log n + \log n = m \log m + (m + 1) \log n$

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace.

Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO query evaluation \leadsto QBF satisfiability

Let $O_1 X_1, O_2 X_2, \cdots, O_n X_n, \psi[X_1, \ldots, X_n]$ be a QBF (with $O_i \in \{\forall, \exists\}$)

- Database instance I with $\Delta I = \{0, 1\}$
- One table with one row: $\text{true}(1)$
- Transform input QBF into Boolean FO query

$$O_1 x_1, O_2 x_2, \cdots, O_n x_n, \psi[X_1 \mapsto \text{true}(x_1), \ldots, X_n \mapsto \text{true}(x_n)]$$

It is easy to check that this yields the required reduction.
PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF $\exists p. \neg p$ leads to FO query $\exists x. \neg \text{true}(x)$

Better approach:
- Consider QBF $Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \varphi[x_1, \ldots, x_n]$ with φ in negation normal form: negations only occur directly before variables X_i (still PSpace-complete: exercise)
- Database instance I with $\Delta^I = \{0, 1\}$
- Two tables with one row each: true(1) and false(0)
- Transform input QBF into Boolean FO query $Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \varphi'$

where φ' is obtained by replacing each negated variable $\neg X_i$ with false(x_i) and each non-negated variable X_i with true(x_i).

Summary and Outlook

The evaluation of FO queries is
- PSpace-complete for combined complexity
- PSpace-complete for query complexity

Open questions:
- What is the data complexity of FO queries?
- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?