

Sebastian Rudolph (based on slides by Stefan Woltran and Sarah Gaggl)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Abstract Argumentation

Lecture 10, 5th Jan 2026 // Foundations of Knowledge Representation, WS 2025/26

Overview

Overall Process

Argumentation Frameworks

AFs - Semantics

AFs - Outlook

Overall Process

Introduction

Argumentation:

The study of processes "concerned with how assertions are proposed, discussed, and resolved in the context of issues upon which several diverging opinions may be held".

[Bench-Capon and Dunne, Argumentation in Al, AlJ 171:619-641, 2007]

Formal Models of Argumentation are concerned with

- representation of an argument (i.e. an expression of opinion)
- representation of the relationship between arguments
- resolving conflicts between the arguments ("acceptability")

Overall Process

The overall process of using argumentation frameworks consists of the steps listed below.

Starting point: Knowledge base

- 1. Form arguments
- 2. Identify conflicts
- 3. Abstract from internal structure
- 4. Resolve conflicts
- 5. Draw conclusions

Overall Process - Form Arguments

Consider the following knowledge base:

Knowledge Base

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

From this, form arguments:

$$\Big(\langle \{W, W \rightarrow \neg S\}, \neg S \rangle \Big)$$

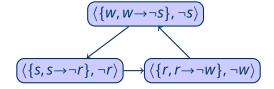
$$(\langle \{s, s \rightarrow \neg r\}, \neg r \rangle)$$

$$\left(\langle \{s, s \rightarrow \neg r\}, \neg r \rangle\right) \quad \left(\langle \{r, r \rightarrow \neg w\}, \neg w \rangle\right)$$

Overall Process – Identify Conflicts

Knowledge Base

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

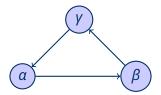


Overall Process – Abstract from Internal Structure

Knowledge Base

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

 F_{Δ} :

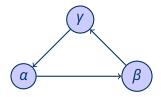


Overall Process - Resolve Conflicts

Knowledge Base

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

 F_{Δ} :



$$pref(F_{\Delta}) = \{\emptyset\}$$

 $stage(F_{\Delta}) = \{\{\alpha\}, \{\beta\}, \{\gamma\}\}\}$

Overall Process - Draw Conclusions

Knowledge Base

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$



$$Cn_{pref}(F_{\Delta}) = Cn(\top)$$

 $Cn_{stage}(F_{\Delta}) = Cn(\neg r \lor \neg w \lor \neg s)$

The Overall Process (ctd.)

Some Remarks

- Main idea dates back to the seminal work of Phan Minh Dung [1995]; has then been refined by several authors (Prakken, Gordon, Caminada, ...)
- Separation between logical (forming arguments) and non-monotonic reasoning ("abstract argumentation frameworks")
- Abstraction allows to compare several KR formalisms on a conceptual level ("calculus of conflict")

Main Challenge

- All steps in the argumentation process are, in general, intractable.
- This calls for:
 - careful complexity analysis (identification of tractable fragments)
 - re-use of established tools for implementations (reduction method)

Approaches to Form Arguments

Classical Arguments [Besnard & Hunter, 2001]

- Given is a KB (a set of propositions) ∆
- An **argument** is a pair (Φ, α) , such that $\Phi \subseteq \Delta$ is consistent, $\Phi \models \alpha$ and for no $\Psi \subsetneq \Phi$, $\Psi \models \alpha$
- An argument (ϕ, α) **attacks** argument (ϕ', α') iff $\phi' \cup \{\alpha\}$ is inconsistent

Example

$$(\langle \{s, s \to \neg r\}, \neg r \rangle) \longrightarrow (\langle \{r, r \to \neg w\}, \neg w \rangle)$$

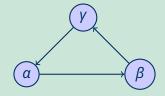
Other Approaches:

- arguments are trees (or directed acyclic graphs) of statements
- claims are obtained via strict and defeasible rules
- different notions of conflict: rebuttal, undercut, etc.

Argumentation Frameworks

Dung's Abstract Argumentation Frameworks

Example



Main Properties

- Abstract from the concrete content of arguments; only consider the relation between them
- Semantics select subsets of arguments respecting certain criteria
- Simple, yet powerful formalism
- Most active research area in the field of argumentation

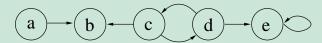
Dung's Abstract Argumentation Frameworks

Definition

An **argumentation framework** (AF) is a pair F = (A, R) where

- A is a set of arguments,
- $R \subseteq A \times A$ is a relation representing the conflicts ("attacks").

$$F = (\{a, b, c, d, e\}, \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\})$$



Definition (Conflict-Free Sets)

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **conflict-free** in F iff for each $a, b \in S$ we have $(a, b) \notin R$.

Definition (Conflict-Free Sets)

Let F = (A, R) be an AF.

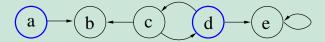
A set $S \subseteq A$ is **conflict-free** in F iff for each $a, b \in S$ we have $(a, b) \notin R$.

$$cf(F) = \{\{a,c\},$$

Definition (Conflict-Free Sets)

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **conflict-free** in F iff for each $a, b \in S$ we have $(a, b) \notin R$.



$$cf(F) = \{\{a, c\}, \{a, d\}, a, d\},\$$

Definition (Conflict-Free Sets)

Let F = (A, R) be an AF.

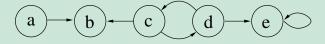
A set $S \subseteq A$ is **conflict-free** in F iff for each $a, b \in S$ we have $(a, b) \notin R$.

$$cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \}$$

Definition (Conflict-Free Sets)

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **conflict-free** in F iff for each $a, b \in S$ we have $(a, b) \notin R$.



$$cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}$$

Definition (Admissible Sets [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **admissible** in F iff

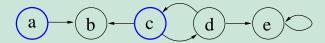
- S is conflict-free in F,
- each $a \in S$ is defended by S in F, where
 - $a \in A$ is **defended** by S in F iff for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$ such that $(c, b) \in R$.

Definition (Admissible Sets [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **admissible** in F iff

- S is conflict-free in F,
- each $a \in S$ is defended by S in F, where
 - $a \in A$ is **defended** by S in F iff for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$ such that $(c, b) \in R$.



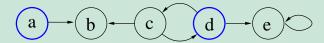
$$adm(F) = \{\{a, c\},$$

Definition (Admissible Sets [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **admissible** in F iff

- S is conflict-free in F,
- each $a \in S$ is defended by S in F, where
 - $a \in A$ is **defended** by S in F iff for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$ such that $(c, b) \in R$.



$$adm(F) = \{\{a, c\}, \{a, d\}, \}$$

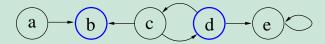
Definition (Admissible Sets [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **admissible** in F iff

- *S* is conflict-free in *F*,
- each $a \in S$ is defended by S in F, where
 - $a \in A$ is **defended** by S in F iff for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$ such that $(c, b) \in R$.

Example



 $adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{b, d\}, \{a, d\}, \{a$

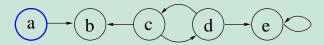
Definition (Admissible Sets [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **admissible** in F iff

- *S* is conflict-free in *F*,
- each $a \in S$ is defended by S in F, where
 - $a \in A$ is **defended** by S in F iff for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$ such that $(c, b) \in R$.

Example



 $adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}$

Dung's Fundamental Lemma

Let S be admissible in an AF F and a, a' arguments in F defended by S in F. Then,

- 1. $S' = S \cup \{a\}$ is admissible in F.
- 2. a' is defended by S' in F.

AFs – Semantics

Definition (Naive Sets/Extensions)

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **naive** in F iff

- S is conflict-free in F,
- there is no conflict-free $T \subseteq A$ in F such that $S \subsetneq T$.

Naive sets are subset-maximally conflict-free sets.

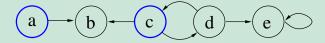
Definition (Naive Sets/Extensions)

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **naive** in F iff

- *S* is conflict-free in *F*,
- there is no conflict-free $T \subseteq A$ in F such that $S \subseteq T$.

Naive sets are subset-maximally conflict-free sets.



$$naive(F) = \{ \{a, c\}, \}$$

Definition (Naive Sets/Extensions)

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **naive** in F iff

- *S* is conflict-free in *F*,
- there is no conflict-free $T \subseteq A$ in F such that $S \subseteq T$.

Naive sets are subset-maximally conflict-free sets.



$$naive(F) = \{\{a, c\}, \{a, d\}, \}$$

Definition (Naive Sets/Extensions)

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **naive** in F iff

- *S* is conflict-free in *F*,
- there is no conflict-free $T \subseteq A$ in F such that $S \subseteq T$.

Naive sets are subset-maximally conflict-free sets.

Example

 $naive(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \}$

Definition (Naive Sets/Extensions)

Let F = (A, R) be an AF.

A set $S \subseteq A$ is **naive** in F iff

- *S* is conflict-free in *F*,
- there is no conflict-free $T \subseteq A$ in F such that $S \subseteq T$.

Naive sets are subset-maximally conflict-free sets.

Example

 $naive(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}\}$

Grounded

Definition (Grounded Extension [Dung, 1995])

Let F = (A, R) be an AF. The unique **grounded extension** of F is defined as the outcome S (initially empty) of the following "algorithm":

- 1. put each argument $a \in A$ that is not attacked in F into S; if no such arguments exist, return S;
- 2. remove from *F* all (new) arguments in *S* and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.

Grounded

Definition (Grounded Extension [Dung, 1995])

Let F = (A, R) be an AF. The unique **grounded extension** of F is defined as the outcome S (initially empty) of the following "algorithm":

- 1. put each argument $a \in A$ that is not attacked in F into S; if no such arguments exist, return S;
- 2. remove from *F* all (new) arguments in *S* and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.



$$ground(F) = \{\{a\}\}$$

Complete

Definition (Complete Extension [Dung, 1995])

Let (A, R) be an AF.

A set $S \subseteq A$ is **complete** in F iff

- S is admissible in F,
- each $a \in A$ defended by S in F is contained in S.
 - Recall: $a \in A$ is defended by S in F iff for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

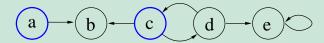
Complete

Definition (Complete Extension [Dung, 1995])

Let (A, R) be an AF.

A set $S \subseteq A$ is **complete** in F iff

- S is admissible in F,
- each $a \in A$ defended by S in F is contained in S.
 - Recall: $\alpha \in A$ is defended by S in F iff for each $b \in A$ with $(b, \alpha) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.



$$comp(F) = \{ \{a, c\}, \}$$

Complete

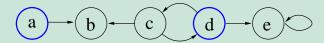
Definition (Complete Extension [Dung, 1995])

Let (A, R) be an AF.

A set $S \subseteq A$ is **complete** in F iff

- S is admissible in F,
- each $a \in A$ defended by S in F is contained in S.
 - Recall: $\alpha \in A$ is defended by S in F iff for each $b \in A$ with $(b, \alpha) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example



 $comp(F) = \{\{a, c\}, \{a, d\}, \}$

Complete

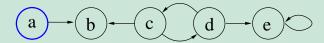
Definition (Complete Extension [Dung, 1995])

Let (A, R) be an AF.

A set $S \subseteq A$ is **complete** in F iff

- S is admissible in F,
- each $a \in A$ defended by S in F is contained in S.
 - Recall: $\alpha \in A$ is defended by S in F iff for each $b \in A$ with $(b, \alpha) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example



Complete

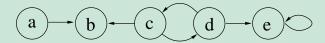
Definition (Complete Extension [Dung, 1995])

Let (A, R) be an AF.

A set $S \subseteq A$ is **complete** in F iff

- S is admissible in F,
- each $a \in A$ defended by S in F is contained in S.
 - Recall: $\alpha \in A$ is defended by S in F iff for each $b \in A$ with $(b, \alpha) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example



 $comp(F) = \{\{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset\}\}$

Grounded vs. Complete

Properties of the Grounded Extension

For any AF *F*, the grounded extension of *F* is the subset-least complete extension of *F*.

Grounded vs. Complete

Properties of the Grounded Extension

For any AF *F*, the grounded extension of *F* is the subset-least complete extension of *F*.

Remark

Since there exists exactly one grounded extension for each AF F, we often write ground(F) = S instead of $ground(F) = \{S\}$.

Preferred

Definition (Preferred Extensions [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is a **preferred extension** of F iff

- S is admissible in F,
- there is no admissible $T \subseteq A$ in F such that $S \subseteq T$.

Preferred extensions are subset-maximally admissible sets.

Preferred

Definition (Preferred Extensions [Dung, 1995])

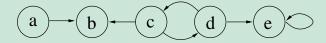
Let F = (A, R) be an AF.

A set $S \subseteq A$ is a **preferred extension** of F iff

- S is admissible in F,
- there is no admissible $T \subseteq A$ in F such that $S \subseteq T$.

Preferred extensions are subset-maximally admissible sets.

Example



$$pref(F) = \{\{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset\}\}$$

Definition (Stable Extensions [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subset A$ is a **stable extension** of F iff

- S is conflict-free in F,
- for each $a \in A \setminus S$, there exists a $b \in S$ such that $(b, a) \in R$.

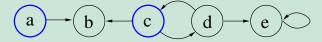
Definition (Stable Extensions [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subset A$ is a **stable extension** of F iff

- *S* is conflict-free in *F*,
- for each $a \in A \setminus S$, there exists a $b \in S$ such that $(b, a) \in R$.

Example



$$stable(F) = \{ \{a, c\} \}$$

Definition (Stable Extensions [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is a **stable extension** of F iff

- *S* is conflict-free in *F*,
- for each $a \in A \setminus S$, there exists a $b \in S$ such that $(b, a) \in R$.

Example

 $stable(F) = \{ \{ a, c \}, \{ a, d \},$

Definition (Stable Extensions [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subset A$ is a **stable extension** of F iff

- *S* is conflict-free in *F*,
- for each $a \in A \setminus S$, there exists a $b \in S$ such that $(b, a) \in R$.

Example

 $stable(F) = \{ \{ a, c \}, \{ a, d \}, \{ b, d \}, \}$

Definition (Stable Extensions [Dung, 1995])

Let F = (A, R) be an AF.

A set $S \subset A$ is a **stable extension** of F iff

- S is conflict-free in F,
- for each $a \in A \setminus S$, there exists a $b \in S$ such that $(b, a) \in R$.

Example

 $stable(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset, \} \}$

Relationships Between Semantics

Proposition

For any AF *F* the following relations hold:

- 1. Each stable extension of *F* is also a preferred one;
- 2. Each preferred extension of *F* is also a complete one;
- 3. Each complete extension of *F* is admissible in *F*.

Semi-Stable

Definition (Semi-Stable Extensions [Caminada, 2006])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is a **semi-stable extension** of F iff

- S is admissible in F,
- there is no admissible $T \subseteq A$ in F such that $S^+ \subsetneq T^+$, where
 - for $S \subseteq A$, define $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$.

Defined as admissible stages by Verheij [1996].

Semi-Stable

Definition (Semi-Stable Extensions [Caminada, 2006])

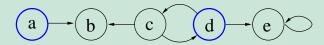
Let F = (A, R) be an AF.

A set $S \subseteq A$ is a **semi-stable extension** of F iff

- S is admissible in F,
- there is no admissible $T \subseteq A$ in F such that $S^+ \subsetneq T^+$, where
 - for $S \subseteq A$, define $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$.

Defined as admissible stages by Verheij [1996].

Example



 $semi(F) = \{ \{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset \} \}$

Stage

Definition (Stage Extensions [Verheij, 1996])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is a **stage extension** of F iff

- *S* is conflict-free in *F*,
- there is no conflict-free $T \subseteq A$ in F such that $S^+ \subsetneq T^+$.
 - Recall: $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}.$

S⁺ is also called the range of *S*. Thus:

- Semi-stable extensions are range-maximally admissible sets.
- Stage extensions are range-maximally conflict-free sets.

Ideal

Definition (Ideal Extension [Dung, Mancarella & Toni 2007])

Let F = (A, R) be an AF.

A set $S \subseteq A$ is an **ideal extension** of F iff

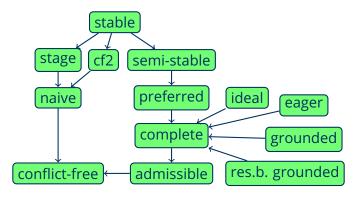
- S is admissible in F and contained in each preferred extension of F,
- there is no $T \supseteq S$ admissible in F and contained in each of pref(F).

Properties of Ideal Extensions

For any AF *F* the following observations hold:

- 1. There exists exactly one ideal extension of F.
- 2. The ideal extension of *F* is also a complete one.

Relations Between Semantics



An arrow from semantics σ to semantics τ means that each σ -extension is also a τ -extension.

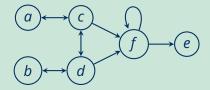
AFs - Outlook

Characteristics of Argumentation Semantics

Example

$$pref(F) = \{ \{a, d, e\}, \{b, c, e\}, \{a, b\} \}$$

$$naive(F) = \{ \{a, d, e\}, \{b, c, e\}, \{a, b, e\} \}$$



Natural Questions → Realizability

- How to change the AF if we want $\{a, b, e\}$ instead of $\{a, b\}$ in pref(F)?
- How to change the AF if we want $\{a, b, d\}$ instead of $\{a, b\}$ in pref(F)?
- Can we have equivalent AFs without argument f?

Some Properties ...

Theorem

For any AFs F and G, we have

- adm(F) = adm(G) implies $\sigma(F) = \sigma(G)$, for $\sigma \in \{pref, ideal\}$;
- comp(F) = comp(G) implies $\theta(F) = \theta(G)$, for $\theta \in \{pref, ideal, ground\}$;
- no other such relation between the different semantics (*adm*, *pref*, *ideal*, *semi*, *ground*, *comp*, *stable*) in terms of standard equivalence holds.

Decision Problems on AFs

Credulous Acceptance

Cred_{σ}: Given AF F = (A, R) and $\alpha \in A$;

is α contained in at least one σ -extension of F?

Skeptical Acceptance

Skept_{σ}: Given AF F = (A, R) and $\alpha \in A$; is α contained in every σ -extension of F?

If no extension exists then all arguments are skeptically accepted and no argument is credulously accepted.¹

¹This is only relevant for stable semantics.

Decision Problems on AFs

Hence we are also interested in the following problem:

Skeptically and Credulously Accepted

Skept' $_{\sigma}$: Given AF F = (A, R) and $\alpha \in A$;

is α contained in every and at least one σ -extension of F?

Further Decision Problems

Verifying an extension

Ver_{σ}: Given AF F = (A, R) and $S \subseteq A$;

is *S* a σ -extension of *F*?

Does there exist an extension?

Exists_{σ}: Given AF F = (A, R);

Does there exist a σ -extension for F?

Does there exist a nonempty extensions?

Exists $_{\sigma}^{\neg \emptyset}$: Given AF F = (A, R);

Does there exist a non-empty σ -extension for F?

Conclusion

- Abstract argumentation frameworks are constructed from KBs.
- Edges (attacks) between nodes (arguments) express (directed) conflicts.
- A variety of semantics for AFs try to make sense of acceptability:
 - Complete
 - Grounded
 - Preferred
 - Stable
 - ...
- Various inclusion relationships between the semantics hold, as they build on similar notions.

