

Restricted Chase Termination

You Want More than Fairness

David Carral¹

Lukas Gerlach²

Lucas Larroque³

Michaël Thomazo³

¹LIRMM, Inria, University of Montpellier, CNRS, France

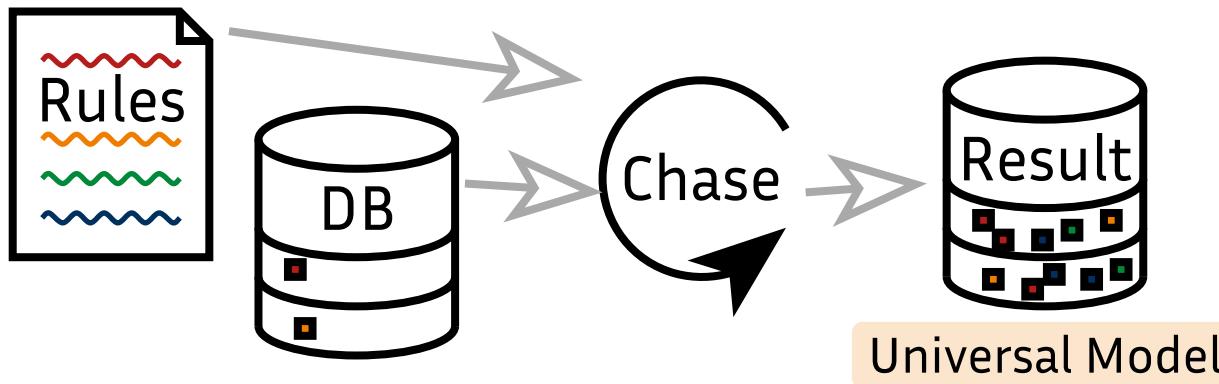
²Knowledge-Based Systems Group, TU Dresden, Germany

³Inria, DI ENS, ENS, CNRS, PSL University, France

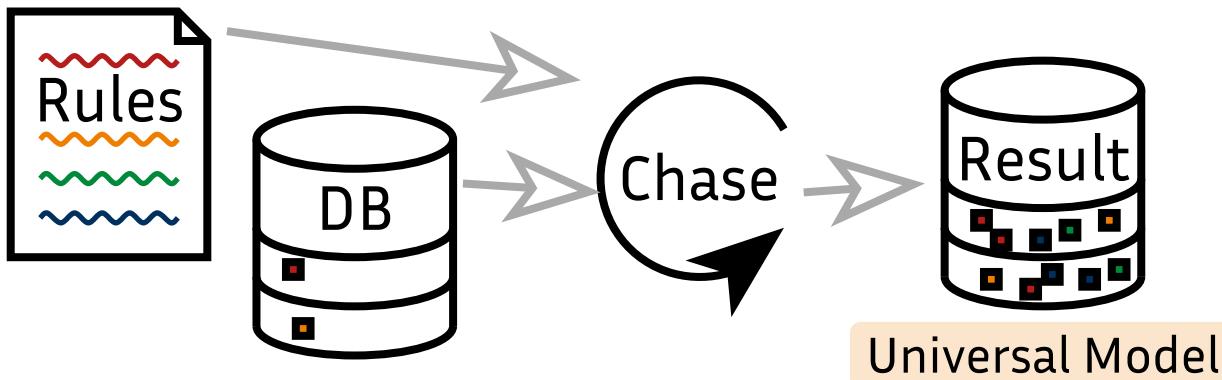
25.06.2025

International Center
for Computational Logic

Chase Crash Course



Chase Crash Course

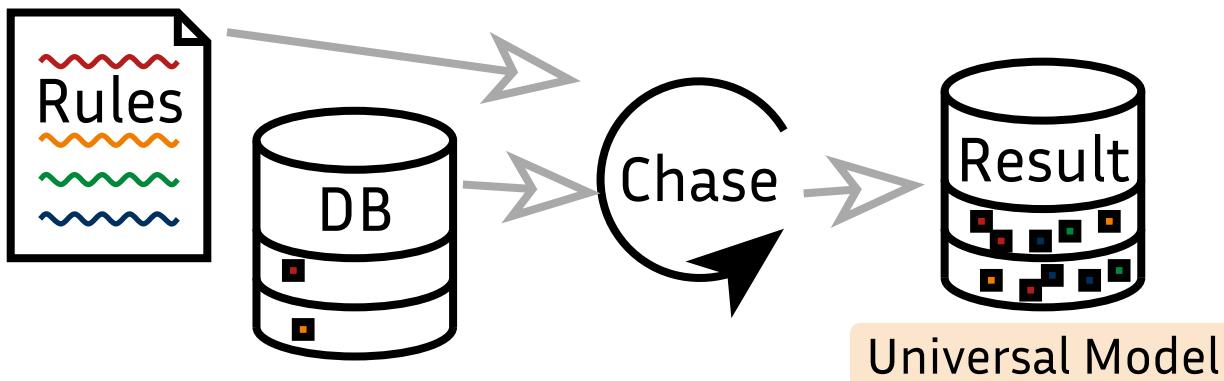


$$A(x) \rightarrow \exists z. R(x, z) \wedge B(z)$$

$$B(x) \rightarrow A(x)$$

$$R(x, y) \rightarrow R(y, x)$$

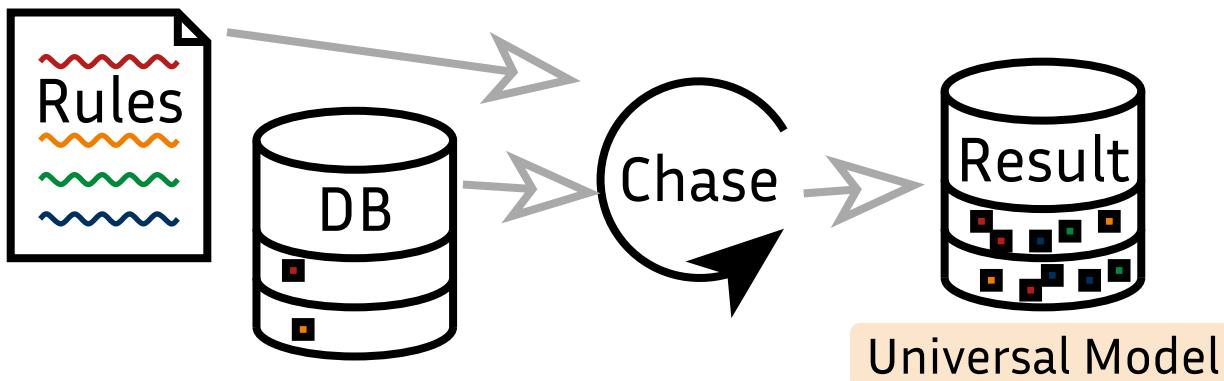
Chase Crash Course



$A(x) \rightarrow \exists z. R(x, z) \wedge B(z)$
 $B(x) \rightarrow A(x)$
 $R(x, y) \rightarrow R(y, x)$

DB: $A(c), B(c)$

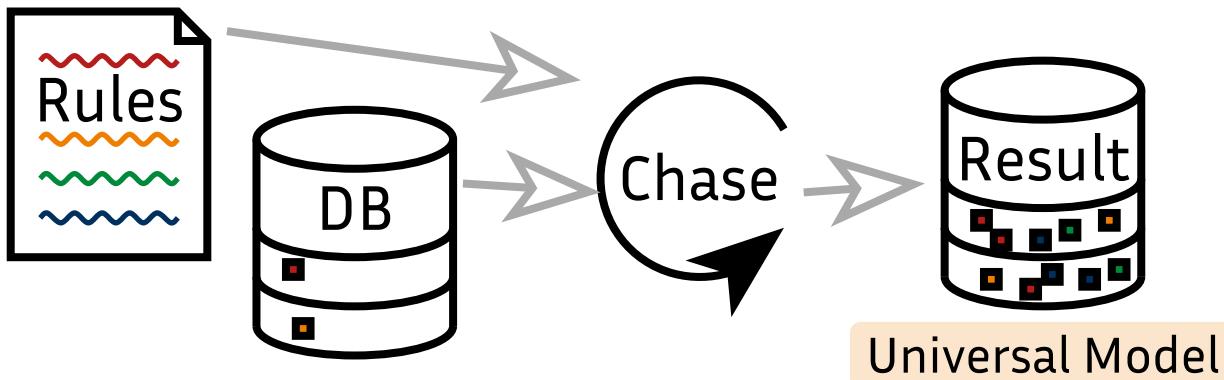
Chase Crash Course



$A(x) \rightarrow \exists z. R(x, z) \wedge B(z)$
 $B(x) \rightarrow A(x)$
 $R(x, y) \rightarrow R(y, x)$

DB: $A(c), B(c)$
Step 1: $R(c, n_1), B(n_1)$

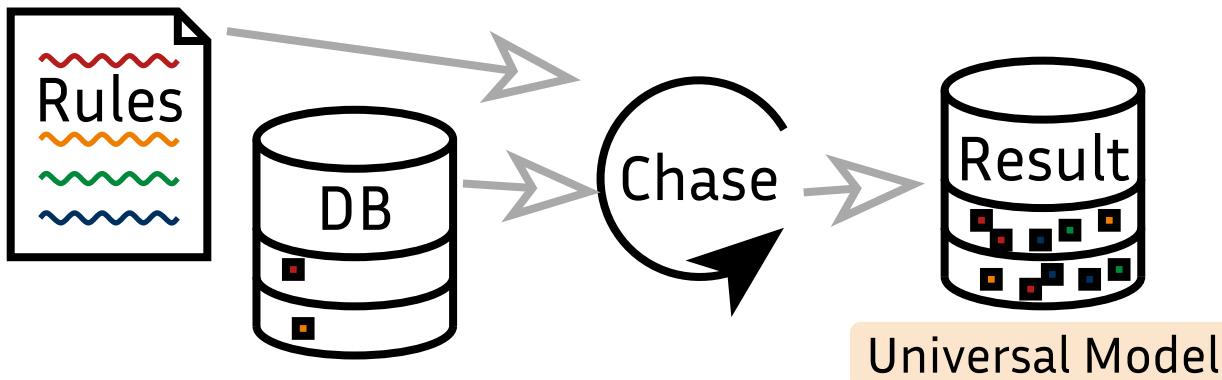
Chase Crash Course



$A(x) \rightarrow \exists z. R(x, z) \wedge B(z)$
 $B(x) \rightarrow A(x)$
 $R(x, y) \rightarrow R(y, x)$

DB: $A(c), B(c)$
Step 1: $R(c, n_1), B(n_1)$
Step 2: $A(n_1)$; Step 3: $R(n_1, c)$

Chase Crash Course



$A(x) \rightarrow \exists z. R(x, z) \wedge B(z)$
 $B(x) \rightarrow A(x)$
 $R(x, y) \rightarrow R(y, x)$

DB: $A(c), B(c)$
Step 1: $R(c, n_1), B(n_1)$
Step 2: $A(n_1)$; Step 3: $R(n_1, c)$

Universal Models are “most general” and can answer conjunctive queries.

Chase Termination is Undecidable

$A(x) \rightarrow \exists z. R(x, z) \wedge B(z)$
 $B(x) \rightarrow A(x)$
 $R(x, y) \rightarrow R(y, x)$

DB: $A(c), B(c)$
Step 1-2: $R(c, n_1), B(n_1), A(n_1)$

Chase Termination is Undecidable

$A(x) \rightarrow \exists z. R(x, z) \wedge B(z)$
 $B(x) \rightarrow A(x)$
 $R(x, y) \rightarrow R(y, x)$

DB: $A(c), B(c)$
Step 1-2: $R(c, n_1), B(n_1), A(n_1)$
Step 3: $R(n_1, n_2), B(n_2)$

Chase Termination is Undecidable

```
A(x) → ∃z. R(x, z) ∧ B(z)  
B(x) → A(x)  
R(x, y) → R(y, x)
```

DB: A(c), B(c)
Step 1-2: R(c, n₁), B(n₁), A(n₁)
Step 3: R(n₁, n₂), B(n₂)
Step N: R(n₁, c) (due to Fairness)

Chase Termination is Undecidable

```
A(x) → ∃z. R(x, z) ∧ B(z)  
B(x) → A(x)  
R(x, y) → R(y, x)
```

DB: A(c), B(c)
Step 1-2: R(c, n₁), B(n₁), A(n₁)
Step 3: R(n₁, n₂), B(n₂)
Step N: R(n₁, c) (due to Fairness)

Termination of the example depends on rule application order (and more)!

Chase Termination is Undecidable

```
A(x) → ∃z. R(x, z) ∧ B(z)  
B(x) → A(x)  
R(x, y) → R(y, x)
```

DB: A(c), B(c)
Step 1-2: R(c, n₁), B(n₁), A(n₁)
Step 3: R(n₁, n₂), B(n₂)
Step N: R(n₁, c) (due to Fairness)

Termination of the example depends on rule application order (and more)!

CTK_∀^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (forall) restricted (r) chase sequence terminates.

Chase Termination is Undecidable

```
A(x) → ∃z. R(x, z) ∧ B(z)  
B(x) → A(x)  
R(x, y) → R(y, x)
```

DB: A(c), B(c)
Step 1-2: R(c, n₁), B(n₁), A(n₁)
Step 3: R(n₁, n₂), B(n₂)
Step N: R(n₁, c) (due to Fairness)

Termination of the example depends on rule application order (and more)!

CTK_∀^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (forall) restricted (r) chase sequence terminates. CTR_∀^r is analogous for rule sets by ∀-quantifying over all databases.

Chase Termination is Undecidable (2)

CTK_{\forall}^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (\forall) restricted (r) chase sequence terminates.

CTR_{\forall}^r is analogous for rule sets by \forall -quantifying over all databases.

Chase Termination is Undecidable (2)

CTK_{\forall}^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (\forall) restricted (r) chase sequence terminates.

CTR_{\forall}^r is analogous for rule sets by \forall -quantifying over all databases.

Overview from (Grahne and Onet 2018)

CTX_{\exists}^r	\exists	\forall
K	Σ_1^0 -complete	Σ_1^0 -complete
R	Π_2^0 -complete	Π_2^0 -complete

Chase Termination is Undecidable (2)

CTK_{\forall}^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (\forall) restricted (r) chase sequence terminates.

CTR_{\forall}^r is analogous for rule sets by \forall -quantifying over all databases.

Overview from (Grahne and Onet 2018)

$\text{CTX}_{\forall Q}^r$	\exists	\forall
K	Σ_1^0 -complete	Σ_1^0 -complete
R	Π_2^0 -complete	Π_2^0 -complete

Σ_1^0 - Semi-Decidable Languages
(e.g. Halting Problem)

Π_2^0 - Co-Semi-Decidable with
Semi-Decision Oracle
(e.g. Universal Halting Problem)

Chase Termination is Undecidable (2)

CTK_{\forall}^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (\forall) restricted (r) chase sequence terminates.

CTR_{\forall}^r is analogous for rule sets by \forall -quantifying over all databases.

Overview from (Grahne and Onet 2018)

CTX_{\exists}^r	\exists	\forall
K	Σ_1^0 -complete	Σ_1^0 -complete
R	Π_2^0 -complete	Π_2^0 -complete

Membership: Run all Chase Sequences in Parallel

Hardness: TM can be simulated with Existential Rules

Chase Termination is Undecidable (2)

CTK_{\forall}^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (\forall) restricted (r) chase sequence terminates.

CTR_{\forall}^r is analogous for rule sets by \forall -quantifying over all databases.

Overview from (Grahne and Onet 2018)

$\text{CTX}_{\exists Q}^r$	\exists	\forall
K	Σ_1^0 -complete	Σ_1^0 -complete
R	Π_2^0 -complete	Π_2^0 -complete

Membership: Use CTK_{\exists}^r oracle.

Hardness: (more involved)
see (Grahne and Onet 2018)

Chase Termination is Undecidable (2)

CTK_{\forall}^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (\forall) restricted (r) chase sequence terminates.
 CTR_{\forall}^r is analogous for rule sets by \forall -quantifying over all databases.

Overview from (Grahne and Onet 2018)

$\text{CTX}_{\forall Q}^r$	\exists	\forall
K	Σ_1^0 -complete	Σ_1^0 -complete
R	Π_2^0 -complete	Π_2^0 -complete

Membership: Run all Chase Sequences in Parallel ?

Chase Termination is Undecidable (2)

CTK_{\forall}^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (\forall) restricted (r) chase sequence terminates. CTR_{\forall}^r is analogous for rule sets by \forall -quantifying over all databases.

Overview from (Grahne and Onet 2018)

$\text{CTX}_{\forall Q}^r$	\exists	\forall
K	Σ_1^0 -complete	Σ_1^0 -complete
R	Π_2^0 -complete	Π_2^0 -complete

Membership: Run all Chase Sequences in Parallel ?

This does not work because of *fairness*!

Chase Termination is Undecidable (2)

CTK_{\forall}^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (\forall) restricted (r) chase sequence terminates.

CTR_{\forall}^r is analogous for rule sets by \forall -quantifying over all databases.

Overview from (Grahne and Onet 2018)

$\text{CTX}_{\forall Q}^r$	\exists	\forall
K	Σ_1^0 -complete	Π_2^0 -hard
R	Π_2^0 -complete	Π_2^0 -hard

(Carral et al. 2022) have shown CTK_{\forall}^r to be at least Π_2^0 -hard.

Chase Termination is Undecidable (2)

CTK_{\forall}^r is the set of all knowledge bases, i.e. pairs of rule sets, and databases, on which every (\forall) restricted (r) chase sequence terminates.

CTR_{\forall}^r is analogous for rule sets by \forall -quantifying over all databases.

Overview from (Grahne and Onet 2018)

CTX_Q^r	\exists	\forall
K	Σ_1^0 -complete	Π_2^0 -hard
R	Π_2^0 -complete	Π_2^0 -hard

(Carral et al. 2022) have shown CTK_{\forall}^r to be at least Π_2^0 -hard.

The upper bound was still unknown! (Until slide 6)

Fairness Complicates Things

Why does the CTK_{\forall}^r membership idea (parallel chase) not work?

Fairness Complicates Things

Why does the CTK_{\forall}^r membership idea (parallel chase) not work?

There could be an inf. unfair sequence while all fair sequences are finite.

Fairness Complicates Things

Why does the CTK_{\forall}^r membership idea (parallel chase) not work?

There could be an inf. unfair sequence while all fair sequences are finite.

Example from (Gogacz et al. 2023)

DB: $R(a, b, b)$

$R(x, y, y) \rightarrow \exists z. R(x, z, y) \wedge R(z, y, y)$

$R(x, y, z) \rightarrow R(z, z, z)$

Fairness Complicates Things

Why does the CTK_{\forall}^r membership idea (parallel chase) not work?

There could be an inf. unfair sequence while all fair sequences are finite.

Example from (Gogacz et al. 2023)

DB: $R(a, b, b)$

$R(x, y, y) \rightarrow \exists z. R(x, z, y) \wedge R(z, y, y)$

$R(x, y, z) \rightarrow R(z, z, z)$

We can derive a chain of
 $R(n_1, b, b), R(n_2, b, b), \dots$
but $R(b, b, b)$ stops
everything eventually.

Fairness Complicates Things

Why does the CTK_{\forall}^r membership idea (parallel chase) not work?

There could be an inf. unfair sequence while all fair sequences are finite.

Example from (Gogacz et al. 2023)

DB: $R(a, b, b)$

$R(x, y, y) \rightarrow \exists z. R(x, z, y) \wedge R(z, y, y)$

$R(x, y, z) \rightarrow R(z, z, z)$

We can derive a chain of $R(n_1, b, b), R(n_2, b, b), \dots$ but $R(b, b, b)$ stops everything eventually.

Fairness demands that rules are applied after finitely many steps.

Fairness Complicates Things

Why does the CTK_{\forall}^r membership idea (parallel chase) not work?

There could be an inf. unfair sequence while all fair sequences are finite.

Example from (Gogacz et al. 2023)

DB: $R(a, b, b)$

$R(x, y, y) \rightarrow \exists z. R(x, z, y) \wedge R(z, y, y)$

$R(x, y, z) \rightarrow R(z, z, z)$

We can derive a chain of $R(n_1, b, b), R(n_2, b, b), \dots$ but $R(b, b, b)$ stops everything eventually.

Fairness demands that rules are applied after finitely many steps.

Possible Fix: We could demand something stronger, e.g. "breadth-first".

Fairness for NTMs - based on (Harel 1986)

Decide if a given non-deterministic Turing machine admits a run on ε that visits a designated state q_r infinitely often. (Harel 1986)

Fairness for NTMs - based on (Harel 1986)

Decide if a given non-deterministic Turing machine admits a run on w that visits a designated state q_r recurrently after finitely many steps.

If this is the case, we say that the NTM is recurring through q_r on w .

Fairness for NTMs - based on (Harel 1986)

Decide if a given non-deterministic Turing machine admits a run on w that visits a designated state q_r recurrently after finitely many steps.

If this is the case, we say that the NTM is recurring through q_r on w .

This problem is Σ_1^1 -complete - first analytical hierarchy level - beyond infinitely many Turing jumps. (Harel 1986)

Back to CTK $_{\forall}^r$: Π_1^1 Membership

Decide if a given non-deterministic Turing machine admits a run on w that visits a designated state q_r recurrently after finitely many steps.

Back to CTK $_{\forall}^r$: Π_1^1 Membership

Decide if a given non-deterministic Turing machine admits a run on w that visits a designated state q_r recurrently after finitely many steps.

Proof Idea: Describe NTM that computes a chase sequence for a KB.

-
-

Back to CTK $_{\forall}^r$: Π_1^1 Membership

Decide if a given non-deterministic Turing machine admits a run on w that visits a designated state q_r recurrently after finitely many steps.

Proof Idea: Describe NTM that computes a chase sequence for a KB.

- Keep a backlog of applicable rules R_i for each step i and a counter j .
-

Back to CTK $_{\forall}^r$: Π_1^1 Membership

Decide if a given non-deterministic Turing machine admits a run on w that visits a designated state q_r recurrently after finitely many steps.

Proof Idea: Describe NTM that computes a chase sequence for a KB.

- Keep a backlog of applicable rules R_i for each step i and a counter j .
- If during the chase computation, all applications in R_j are obsolete, increment j and visit the designated state.

Back to CTK_{\forall}^r : Π_1^1 Membership

Decide if a given non-deterministic Turing machine admits a run on w that visits a designated state q_r recurrently after finitely many steps.

Proof Idea: Describe NTM that computes a chase sequence for a KB.

- Keep a backlog of applicable rules R_i for each step i and a counter j .
- If during the chase computation, all applications in R_j are obsolete, increment j and visit the designated state.

Run visiting the desig. state infinitely often iff infinite fair chase sequence.
Hence: Complement of CTK_{\forall}^r is in Σ_1^1 ; therefore CTK_{\forall}^r is in Π_1^1 .

A Better Lower Bound for CTK_{\forall}^r ?

We know that we can simulate (N)TMs with existential rules.

Can we simulate the non-recurrence problem through q_r on ε with rules?

A Better Lower Bound for CTK_{\forall}^r ?

We know that we can simulate (N)TMs with existential rules.

Can we simulate the non-recurrence problem through q_r on ε with rules?

Goal: Construct KB that is in CTK_{\forall}^r iff NTM has this property.

A Better Lower Bound for CTK_{\forall}^r ?

We know that we can simulate (N)TMs with existential rules.

Can we simulate the non-recurrence problem through q_r on ε with rules?

Goal: Construct KB that is in CTK_{\forall}^r iff NTM has this property.

Issue: NTM has infinite runs that visit the desig. state only finitely often but we need to ensure that the chase terminates in such cases.

A Better Lower Bound for CTK_{\forall}^r ?

We know that we can simulate (N)TMs with existential rules.

Can we simulate the non-recurrence problem through q_r on ε with rules?

Goal: Construct KB that is in CTK_{\forall}^r iff NTM has this property.

Issue: NTM has infinite runs that visit the desig. state only finitely often but we need to ensure that the chase terminates in such cases.

Idea: With **emergency brakes**, we can force the chase to terminate after finitely many steps. If the designated state is visited, we create a new brake.

Differences in the CTR_{\forall}^r Case

Membership: Similar to CTK_{\forall}^r case using universal non-recurrence.

Differences in the CTR_{\forall}^r Case

Membership: Similar to CTK_{\forall}^r case using universal non-recurrence.

Hardness: Tricky even with robust non-recurrence since ill-shaped databases may not correspond to TM configurations...

Differences in the CTR_{\forall}^r Case

Membership: Similar to CTK_{\forall}^r case using universal non-recurrence.

Hardness: Tricky even with robust non-recurrence since ill-shaped databases may not correspond to TM configurations...

Key Observation: The simulation “heals” malformed configurations, giving us a proper configuration after finitely many steps, which is good enough!

Differences in the CTR_{\forall}^r Case

Membership: Similar to CTK_{\forall}^r case using universal non-recurrence.

Hardness: Tricky even with robust non-recurrence since ill-shaped databases may not correspond to TM configurations...

Key Observation: The simulation “heals” malformed configurations, giving us a proper configuration after finitely many steps, which is good enough!

CTX_{\forall}^r	\exists	\forall
K	Σ_1^0 -complete	Π_1^1 -complete
R	Π_2^0 -complete	Π_1^1 -complete

Summing up...

Fairness makes Chase Termination
highly Undecidable.

Stricter, finitely verifiable conditions
could solve this (e.g. breadth-first).

CTX_Q^r	\exists	\forall
K	Σ_1^0 -complete	Π_1^1 -complete
R	Π_2^0 -complete	Π_1^1 -complete

Summing up...

Fairness makes Chase Termination highly Undecidable.

Stricter, finitely verifiable conditions could solve this (e.g. breadth-first).

CTX_Q^r	\exists	\forall
K	Σ_1^0 -complete	Π_1^1 -complete
R	Π_2^0 -complete	Π_1^1 -complete

Some Open Problems:

- Disjunctive Skolem Chase Termination complete for Π_1^1 ? (Likely true.)
-

Summing up...

Fairness makes Chase Termination highly Undecidable.

Stricter, finitely verifiable conditions could solve this (e.g. breadth-first).

CTX_Q^r	\exists	\forall
K	Σ_1^0 -complete	Π_1^1 -complete
R	Π_2^0 -complete	Π_1^1 -complete

Some Open Problems:

- Disjunctive Skolem Chase Termination complete for Π_1^1 ? (Likely true.)
- What about single-head rules (in the CTR_\forall^r case)?

Summing up...

Fairness makes Chase Termination highly Undecidable.

Stricter, finitely verifiable conditions could solve this (e.g. breadth-first).

CTX_Q^r	\exists	\forall
K	Σ_1^0 -complete	Π_1^1 -complete
R	Π_2^0 -complete	Π_1^1 -complete

Some Open Problems:

- Disjunctive Skolem Chase Termination complete for Π_1^1 ? (Likely true.)
- What about single-head rules (in the CTR_\forall^r case)?

📢 *Talk to me about Lean and Typst 😎*

References

Carral D, Dragoste I, Krötzsch M (2017) Restricted Chase (Non)Termination for Existential Rules with Disjunctions. In: Sierra C (ed) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017. ijcai.org, pp 922–928

Carral D, Gerlach L, Larroque L, Thomazo M (2025) Restricted Chase Termination: You Want More than Fairness. Proc ACM Manag Data 3: <https://doi.org/10.1145/3725246>

References

Carral D, Larroque L, Mugnier M-L, Thomazo M (2022) Normalisations of Existential Rules: Not so Innocuous!. In: Kern-Isbner G, Lakemeyer G, Meyer T (eds) Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, July 31 - August 5, 2022

Gerlach L, Carral D (2023a) General Acyclicity and Cyclicity Notions for the Disjunctive Skolem Chase. In: Williams B, Chen Y, Neville J (eds) Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial

References

Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023. AAAI Press, pp 6372–6379

Gerlach L, Carral D (2023b) Do Repeat Yourself: Understanding Sufficient Conditions for Restricted Chase Non-Termination. In: Marquis P, Son TC, Kern-Isbner G (eds) Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023. pp 301–310

Gerlach L, Carral D, Hecher M (2024) Finite Groundings for ASP with Functions: A Journey through Consistency. In: Proceedings of the Thirty-

References

Third International Joint Conference on Artificial Intelligence, IJCAI 2024,
Jeju, South Korea, August 3-9, 2024. ijcai.org, pp 3386–3394

Gogacz T, Marcinkowski J, Pieris A (2023) Uniform Restricted Chase Termination. *SIAM J Comput* 52:641–683. <https://doi.org/10.1137/20M1377035>

Grahne G, Onet A (2018) Anatomy of the Chase. *Fundam Informaticae* 157:221–270. <https://doi.org/10.3233/FI-2018-1627>

References

Grau BC, Horrocks I, Krötzsch M, et al (2013) Acyclicity Notions for Existential Rules and Their Application to Query Answering in Ontologies. *J Artif Intell Res* 47:741–808. <https://doi.org/10.1613/JAIR.3949>

Harel D (1986) Effective transformations on infinite trees, with applications to high undecidability, dominoes, and fairness. *J ACM* 33:224–248. <https://doi.org/10.1145/4904.4993>

Ivliev A, Gerlach L, Meusel S, et al (2024) Nemo: Your Friendly and Versatile Rule Reasoning Toolkit. In: Marquis P, Ortiz M, Pagnucco M (eds) *Proceedings of the 21st International Conference on Principles of*

References

Knowledge Representation and Reasoning, KR 2024, Hanoi, Vietnam.
November 2-8, 2024

Krötzsch M, Marx M, Rudolph S (2019) The Power of the Terminating Chase (Invited Talk). In: Barceló P, Calautti M (eds) 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp 1–17