SPARQL Beyond Subgraph Matching

Birte Glimm and Markus Krotzsch

Oxford University Computing Laboratory, UK

Abstract. We extend the Semantic Web query language SPARQL by defining
the semantics of SPARQL queries under the entailment regohBDF, RDFS,

and OWL. The proposed extensions are part of the SPARQL 1tailEent
Regimes working draft which is currently being developegag of the W3C
standardization process of SPARQL 1.1. We review the cumditthat SPARQL
imposes on such extensions, discuss the practifiadulties of this task, and ex-
plicate the design choices underlying our proposals. Intiatg we include an
overview of current implementations and their underlyiaghniques.

1 Introduction

SPARQL provides a query language for querying RDF data thaigained significant
popularity since its standardization by the World Wide Gutism (W3C) in January
2008 [12]. Almost all RDF stores support SPARQL either directly oadedicated
SPARQL wrappers. The main mechanism for computing quemylteesn SPARQL is

subgraph matching: RDF triples in both the queried RDF daththe query pattern
are interpreted as nodes and edges of directed graphs, @anektiiting query graph is
matched to the data graph using variables as wild cards.

Various W3C standards, including RDB] [and OWL [9], provide semantic inter-
pretations for RDF graphs that allow additional RDF statet:i¢o be inferred from
explicitly given assertions. It is desirable to utilize S®BL as a query language in
these cases as well, but this requires basic graph pattaaohimgito be defined using
semantic entailment relations instead of explicitly giggaph structures. Such exten-
sions of the SPARQL semantics are knowreagilment regimes

The subject of this paper is to introduce SPARQL entailmegimes for RDF and
RDFS entailment3], OWL Direct Semanticsq], and OWL RDF-Based Semantics
[14]. The proposed extensions are part of the SPARQL 1.1 ErgailfRegimes specifi-
cation, which is currently being developed by the W3C SPAR®irking group The
goal of this paper is to provide a detailed outline of thesgppsals that is valuable to
practitioners and researchers alike. We provide extengedskions of the considera-
tions that have led to our design, and we survey principalémgntation techniques.

Although SPARQL has been designed to allow for the definitdrentailment
regimes, their precise definition is not straightforwardivé approaches easily lead to
infinite query results that are of no practical interest.ditile reasons include trivial re-
namings of blank nodes, RDFS’s infinitely many axiomatiple$, and the entailment
of arbitrary consequences from inconsistent inputs, edahh@ch suggests dierent

L httpy/www.w3.0rg2009spargiwiki/

http://www.w3.org/2009/sparql/wiki/

handling as discussed below. A second problem is that OWbtiprimarily based on
RDF triples but defines entailments in terms of ontologitgéots. Thus, triples can be
genuine input data or merely part of the encoding of a comgpiigect.

The paper is structured as follows. Sectbgives a short introduction to RDF(S)
and OWL, and SectioB reviews the basics of SPARQL subgraph matching. In Sec-
tion 4, we dfer our interpretation of the conditions that SPARQL 1.0 dedfifor en-
tailment regimes. The entailment regimes for RDF and RDESJafined in SectioB,
and the extensions of SPARQL with OWL's RDF-Based Semaatidthe OWL Direct
Semantics are presented in SecoFRinally, Section§ and8 explain basic implemen-
tation techniques for SPARQL entailment regimes and dsstursher related work.

2 RDF Graphs and Their Semantics

SPARQL queries are evaluated over RDF graphs which remaihakic data structure
even when adopting a more elaborate semantic interpret&®ioF is based on the set
| of all International Resource Identifie(iRIs), the seRDF-L of all RDF literals, and
the selRDF-B of all blank nodesThe seRDF-T of RDF termss | U RDF-L U RDF-B.
We generally abbreviate IRIs using prefixd§ rdfs, owl, andxsd to refer to the RDF,
RDFS, OWL, and XML Schema Datatypes namespaces, resggclite prefixex is
used for an imaginary example namespace.

An RDF graphis a set ofRDF triples of the form Gubject, predicate, object) €
(lURDF-B) x | x RDF-T. We normally omit “RDF” in our terminology if no confusion
is likely, and we use Turtle syntad][for all examples. ThezocabularyVoc(G) of a
graphG is the set of all terms that occur @&.

Semantically, RDF graphs can be interpreted in a number g§Wwased on various
W3C recommendations. Thlsmple semantics3] considers only the graph structure of
RDF, whereas more elaborate semantics such as RDFS emtgjBher OWL Direct
SemanticsT] provide a special meaning to certain RDF terms.

The common basis for all such semantics is that they werefsgueby defining a
model theory: one defines a suitable kindrgérpretation and specifies necessary and
sufficient conditions for one such interpretationdatisfya given RDF graph. When
defining a semantids (such as RDF, RDFS, etc.) one often speaks-ofterpretations
andE-satisfaction. The set of alt-interpretations thak-satisfy a graptG are called
theE-modelsof G. Semantic entailment follows from this notion: a grapk-entailsa
graphG’, writtenG g G’, if and only if everyE-model ofG is also arE-model ofG’.

In this work, we encounter tr@mple semanticRkDF semanticandRDFS seman-
tics[3], as well as th®OWL Direct Semantic’] andOWL RDF-Based Semantics].
This order roughly mirrors the amount of entailments ot#dinnder each of these se-
mantics, e.g., all RDF-entailments are also RDFS-entaitmd his ideal compatibility
is not always given, especially since the OWL Direct Sentaris defined in the tradi-
tion of first-order logic, whereas the other semantics asethan a specific notion of
interpretation introduced for RDF. The latter was foun@dilt to extend to expressive
languages like OWL, and indeed entailment under the OWL Baked Semantics is
undecidable and is mostly used by tools that restrict to dautpuage of OWL.

On the other hand, the OWL Direct Semantics is only definedifaphs that respect
certain additional conditions. This is so since this seiwar$ defined based on OWL
objects of which RDF graphs are but an indirect represamtaiihe OWL 2 functional-
style syntax (FSS) directly corresponds to the OWL objegjtsHor example, the triple

ex:a owlsameAs exhb correspondsto Samelndividual(ex:a exb).

Since the mapping from RDF triples to OWL objects is not defifeg arbitrary RDF
graphs, the OWL 2 Direct Semantics makes restrictions ow#lieformedness of RDF
graphs that can be used with the semant®a/L 2 DLdescribes the largest subset of
RDF graphs for which the OWL 2 Direct Semantics is defined.

3 The SPARQL Query Language

We do not recall the complete surface syntax of SPARQL hetesibuply introduce
the underlying algebraic operations using our notation.efaied introduction to the
relationship of SPARQL queries and their algebra is givejd]n

Queries are built using a countably infinite $ebf query variabledisjoint from
RDF-T. SPARQL supports a variety €ifter expressionsor justfilters, built from RDF
terms, variables, and a number of built-in functions andatoes; seel2] for details.

Definition 1. Atriple patterris member of the S¢RDF-TUV) x (1UV) x (RDF-TUYV),
and abasic graph patter(BGP) is a set of triple patterns. More complgsaph pat-
ternsare inductively defined to be of the foBGP, Join(GPy, GP;), Union(GP, GP,),
Leftdoin(GP1, GP», F), andFilter(F, GP), whereBGP is a BGPF is a filter, andGPy;
are graph patterns that share no blank nodéhe sets of/ariablesandblank nodesn
a graph patternGP are denoted by/(GP) andB(GP), respectively.

SPARQL allows literals to be used as triple subjects althoRF graphs cannot
currently contain such triples. This is meant to suppotufe) extensions of RDF.

We exclude a number of SPARQL features from our discussiost, kve disre-
gard any of the new SPARQL 1.1 query constructs since theitagyand semantics
are still under discussion in the SPARQL working group. $e¢ave do not consider
output formats (e.gSELECT or CONSTRUCT) and solution modifiers (e.g.JMIT or
OFFSET) which are not fiected by entailment regimes. Third, we exclude SPARQL
datasets that allow SPARQL endpoints to cluster data interatnamed graphs and a
default graph. For simpler presentation, we omit dataseisels and assume that queries
are evaluated over the default graph, calledattive graphfor the query.

Evaluating a SPARQL graph pattern results Boéution sequendhat lists possible
bindings of query variables to RDF terms in the active gr&afch bindings are repre-
sented by partial functionsfrom V to RDF-T, calledsolution mappingd~or a solution
mappingu —and more generally for any (partial) function —the set efieénts on which
u is defined is thelomaindom(u) of u, and the setan(u) = {u(X) | x € dom(w)} is
therangeof u. For a graph patter@8P, we useu(GP) to denote the pattern obtained by

2 As in [12], disallowing GP; andGP; to share blank nodes is important to avoid unintended
co-references. This was not neededlii where blank nodes were not considered.

Table 1. Evaluation of algebraic operators in SPARQL

[Union(GPy, GP,)] g = {(x, 1) | N = My () + Ma(u) > Of
[30in(GPy1, GP2)] g = {(1.1) 1N = X umeagy (Ma(us) * Ma(i2)) > O} where
J(w) = {(u1, u2) | 1, 2 compatible ange = py U o}
[Filter(F, GP)] := {(u.1) | M(1)) = n > 0 and[u(F)] = true}
[Leftdoin(GPy, GP,, F)], := [Filter(F, Join(GP1, GP,))], U

{(,11, Mj(12)) | for all o with Ma(uz) > 0 : g andps are
incompatible off (s U 2)(F)] = false}

applyingu to all elements oGP in dom(u). This convention is extended in the obvious
way to filter expressions, and to all functions that are defmevariables or terms.

The order of solution sequences is relevant for later psicgssteps in SPARQL,
but not for obtaining the solutions for a graph pattern. Teretjard the order for-
mally, we usesolution multisetsA multisetover anunderlying set Ss a total function
M: S —» N*U{w}where N" are the positive natural numbers, and- nforallne N*.
The valueM(s) is themultiplicity of s € S, andw denotes a countably infinite number
of occurrences. Infinitely many occurrences of individudilion mappings are indeed
possible when considering SPARQL entailment regimes, améjar concern of this
work is to avoid this for the entailment regimes we define.

We often represent a multiskt with underlying se€ by the sef(s, M(s)) | s€ S}.
Accordingly, we may write g, n) € M if M(s) = n. Also, we assume tha\l(s) denotes
0 wheneves ¢ S. In some cases, it is also convenient to use a set-like notathere
repeated elements are allowed, e.g. wrifiad, b} for the multisetM with underlying
set{a, b}, M(a) = 1, andM(b) = 2.

To define the solution multiset for a BGP under the simple seits we still need
to consider the féect of blank nodes. Intuitively, these act like variablest thre pro-
jected out of a query result, and thus they may lead to dugls@lution mappings. This
is accounted for using RDF instance mappings as follows:

Definition 2. An RDF instance mapping a partial functiono: RDF-B — RDF-T
from blank nodes to RDF terms. We extentb pattern graphs and filters as done for
solution mappings above. Teelution multise{BGP] for a basic graph patterBGP
over the active grapls is the following multiset of solution mappings:

{(u,n) | dom(u) = V(BGP), and n is the maximal number such that
o1,...,0p are distinct RDF instance mappings such that, forlaff i < n,
dom(o) = B(BGP) andu(o(BGP)) is a subgraph oG}.

Note that the numberin the definition of[BGP] is always finite.

The algebraic operators that are required for evaluatingbasic graph patterns
correspond to operations on multisets of solution mappivigsh are the same for all
entailment regimes. To take infinite multiplicities intocacnt, we assume + n =
N+w=wforalln>0,wxn=ns*w=wforaln>0andw«0=0%w =0.To

Table 2. Conditions for extending BGP matchingEeentailment (quoted fromip])

1. The scoping grapBG, corresponding to any consistent active gra@ is uniquely speci-
fied and isE-equivalent toAG.

2. For any basic graph patteBGP and pattern solution mappire, P(BGP) is well-formed
for E.

3. For any scoping grap8G and answer s€P, ..., P,} for a basic graph patte®GP, and
whereBGPq, ..., BGP,, is a set of basic graph patterns all equivalerB&P, none of which
share any blank nodes with any other or W@

SG ke (SGUP;(BGP;) U...UP,(BGP,)).

4. Each SPARQL extension must provide conditions on anseteghich guarantee that every

BGP andAG has a finite set of answers which is unique up to RDF graph algunge.

incorporate the fect of filters, it sifices to know that SPARQL assigns to any filker
an efective truth value that we will denote H§].

Definition 3. Two solution mappingg; andu, are compatibleif u;(v) = uo(v) for all
v € dom(u;) N dom(uy). If this is the case, a solution mappipg U u, is defined by
setting(uy U p2)(V) = u1(v) if v.e dom(uy), and(ug U u2)(V) = uz(v) otherwise.
Theevaluationof a graph pattern oveG, denoted] - |5, is defined as in Tablg,
where we abbreviate multisefSP], / [GP1] / [GP2]4 by M/ M1/ M; for readability.

Note that two mappings with disjoint domains are always catibfe. Intuitively,
Join(GP1, GP>) represents all possible combinations of mappings ff@R;] with
compatible mappings frorfGP,];, as accounted for by taking the product of multi-
plicities. One mapping in a join may result from various canaitions of compatible
mappings, so that we need to compute a sum of their multijgléici The expression
LeftJoin(GPy, GP,, F) combines the filtered join of the inputs with all mappings of
[GP1] s which are not represented in this filtered join.

4 Extending Basic Graph Pattern Matching

To extend SPARQL for entailment regimes like RDFS or OWL DBir8emantics, it
sufices to modify the evaluation of BGPs accordingly, while thimaining algebra op-
erations can still be evaluated as in Definit@nwhen considering-entailment, we
thus define solution muItiseﬁﬁGP]](E;. The SPARQL Query 1.0 specificatioh?] al-
ready envisages the extension of the BGP matching mechaarsihprovides a set of
conditions for such extensions that we recall in TébM/e found these conditions hard
to interpret since their terminology is not aligned well lwthe remaining specifica-
tion. In the following, we discuss our reading of these ctinds, leading to a revised
clarified version presented in Tal8¢

3 The current SPARQL working group is not chartered to revigeexisting specification, so
the ongoing work on entailment regimes is based on the agmmtpat the conditions were
meant to be in the revised form.

Table 3. Clarified conditions for extending BGP matchingBeentailment

An entailment regimé provides conditions on BGP evaluation such that for anyuatain[-]5
that satisfies these conditions, any basic graph paB&, and any graplG, the multiset of
graphs{(u(BGP), n) | (u,n) € [BGP]E} is uniquely determined up to RDF graph equivalence.

1. For any consistent active grapié, the entailment regim& uniquely specifies acoping
graph SG that isE-equivalent toAG.

2. A set ofwell-formedgraphs forE is specified such that, for any basic graph pat@@p,
scoping graptSG, and solution mapping in the underlying set of BGP]E,,, the graph
1(BGP) is well-formed forE.

3. For any basic graph patteBGP, and scoping grapBG, if S denotes the underlying set of
[BGP]E. then there is a family of RDF instance mappings)(.s such that

SG ke SG U|_Ju(o(BGP)).

HES

4. Entailment regimeshouldprovide conditions to prevent trivial infinite solution ntigkts.

Condition (1) forces an entailment regime to specify a dedascoping graph
based on which query answers are computed instead of usragtive graph directly.
Since an entailment regime’s definition of BGP matchingégfio refer to such derived
graph structures anyway, the additional use of a scopinghgdaes not increase the
freedom of potential extensions. We assume, thereforée thieascoping graph is the
active graph in the remainder. If the active grapRisconsistent, entailment regimes
specify the intended behavior directly, e.g., by requitimaf an error is reported.

Condition (2) refers to a “pattern solution mapping” thowgtat is probably meant
is apattern instance mapping, defined in L2] as the combination of an RDF instance
mappingo- and a solution mapping whereP(x) = u(o(x)). We assume, however,
that (2) is actually meant to refer to all solution mappirrg@GP]]g. Indeed, even for
simple entailment where well-formedness only requRréBGP) to be an RDF graph,
condition (2) would be violated when usimd pattern instance mappings. To see this,
consider a basic graph patt&8GP = {_:a exb excc}. Clearly, there is a pattern instance
mappingP with P(_:a) = "1""xsdint, butP(BGP) = {"1""xsd:int exb exc} is not
an RDF graph. Similar problems occur when using all solutm@ppings. Hence we
assume (2) to refer to elements of the computed solutioriset{BGP]%. The notion
of well-formednes turn needs to be specified explicitly for entailment regén

Condition (3) uses the term “answer set” to refer to the tesudmputed for a BGP.
To match the rest ofl2], this has to be interpreted as the solution multh]](E;.
This also means mappin@s are solution mappings (not pattern instance mappings as
their name suggests). The purpose of (3), as notetdpif to ensure that if blank node
names are returned as bindings for a variable, then the skmk tode name occurs
in different solutions only if it corresponds to the same blank rindee graph. To
illustrate the problem, consider the following graphs:

G:exaexb . Gi:exaexb b;. Gr:exaexb b,. Gz:exaexb :b;.
_d exe extf. _by exe extf. _'b; exe exf. _'b; exe exf.

Clearly, G simply entailsG; andG,, but notG3; where the two blank nodes are iden-
tified. Now consider a basic graph patt@8GP = {exa exb ?x.?y exe exf}. A so-
lution multiset forBGP could comprise two mappingg: ?x — _b;, %y — b, and
H2: X > by, > _b;. So we haven (BGP) = G; andu(BGP) = G, and both
solutions are entailed. However, condition (3) requires @uU u;(BGP) U u2(BGP) is
also entailed by, and this is not the case in our example since this union owG.
The reason is that our solutions have unintended co-refesenf blank nodes that (3)
does not allow. SPARQL’s basic subgraph matching semargggects this condition
by requiring solution mappings to refer to blank nodes tlctaialy occur in the active
graph, so blank nodes are treated like (Skolem) constaFtie.revised condition in Ta-
ble 3 has further been modified to not implicitly require finitewgidn multisets which
may not be appropriate for all entailment regimes. In addijtive use RDF instance
mappings for renaming blank nodes instead of requiringmethvariants of the BGP.

Finally, condition (4) requires that solution multisete dinite and uniquely deter-
mined up to RDF graph equivalence, again using the “answéteseninology. Our
revised condition clarifies what it means for a solution selt to be “unique up to
RDF graph equivalence.” We move the uniqueness requireateve all other condi-
tions, since (2) and (3) do not make sense if the solutionisatifivas not defined in this
sense. The rest of the condition was relaxed since entdilregimes may inherently
require infinite solution multisets, e.g., in the case offtuge Interchange Format RIF
[6]. It is desirable that this only happens if there are infisitdutions that are “inter-
esting,” so the condition has been weakened to merely re@drthe elimination of
infinitely many “trivial” solution mappings in solution mtigets. The requirement thus
is expressed in an informal way, leaving the details to thaiknent regime. Within this
paper, we will make sure that the solution multisets arednffaite (both regarding the
size of the underlying set, and regarding the multiplicitynalividual elements).

5 The RDF and RDFS Entailment Regimes

We focus on specifying the RDFS entailment regime, sincedise of RDF is an obvi-
ous simplification of this entailment regime. The major peob for RDFS entailment
is to avoid trivially infinite solution multisets as suggestby Table3 (4), where three
principal sources of infinite query results have to be aduh@s

1. An RDF graph can be inconsistent under the RDFS semamtiogich case it
RDFS-entails all (infinitely many) conceivable triples.

2. The RDFS semantics requires all models to satisfy an fefmimber obxiomatic
triples even when considering an empty graph.

3. Every non-empty graph entails infinitely many triplesaiibéd by using arbitrary
blank nodes in triples.

We now discuss each of these problems, and derive a cona®téidn for BGP
matching in the proposed entailment regime at the end os#dtion.

4 Yet, SPARQL allows blank nodes to be renamed when loadingideats, so there is no
guarantee that blank node IDs used in input documents asenwes.

5.1 Treatment of Inconsistencies

SPARQL does not require entailment regimes to yield a padiqquery result in cases
where the active graph is inconsistent. As stated &, ['[the] effect of a query on an
inconsistent graph [...] must be specified by the particBRARQL extension.” One
could simply require that implementations of the RDFS émt@int report an error when
given an inconsistent active graph. However, a closer legkals that inconsistencies
are extremely rare in RDFS, so that the requirement of chgc&onsistency before
answering queries would impose an unnecessary burden dermaptations.

Indeed, graphs can only be RDFS-inconsistent due to improgeeof the datatype
rdf:XMLLiteral. A typical example for this is the following graph:

exa exb "<""rdf:XMLLiteral. exb rdfsrange rdfsLiteral.

The literal in the first triple isll-typed as it does not denote a valuerdf:XMLLiteral.
This does not cause an inconsistency yet but fofegs rdf:XMLLiteral to be inter-
preted as a resource that is not in the extensiordfsfLiteral, which in turn cannot
be the case in any model that satisfies the second triplg/pdie literals are the only
possible cause of inconsistency in RDFS and as such not aeinégroblen?. More-
over, inconsistencies of this type are inherently “loca’tlaey are based on individual
ill-typed literals that could easily be ignored if not reldtto a given query.

It has thus been decided in the SPARQL working group thaesystonly have to
report an error if they actually detect an inconsistencytiltinis happens, queries can
be answered as if all literals were well-typed. Our exaatnfalization corresponds to a
behavior where tools simply assume that all strings are-typkd forrdf:XMLLiteral,
and hence does not put additional burden on implementers.

5.2 Treatment of Axiomatic Triples

Every RDFS model is required to satisfy an infinite numbeaxibmatic triples The
reason is that the RDF vocabulary for encoding lists incdygt®perty namesif._i for
alli > 1, with several (RDFS) axiomatic triples for eaclfi_i. For instance, we find a
triple rdf._i rdfitype rdf:Property for all i € N. Thus, the query»rdfitype rdf:Property
could have infinitely many results. We consider such regrilt&l in the sense of Ta-
ble 3 (4), and thus we want avoid them in the RDFS entailment regime

We therefore propose that axiomatic triples with a subjéti@formrdf._i are only
taken into account if the subject’s IRI explicitly occurglire active graph. This ensures
that only finitely many axiomatic triples are considerechcsi there is only a finite
number of axiomatic triples whose subjects do not have tha fdf._i. To conveniently
formalize this, Definitiorb below still refers to the standard RDFS entailment with all
axiomatic triples, and restricts the range of solution nirage to ananswer domain
instead. Ignoring axiomatic triples for IRkdf_i that occur only in a query but not in
the active graph ensures that the total number of entaibrtbat are relevant for query
answering is finite. This would not be the case if new entailtmevould be required

5 Implementations may support additional datatypes thatlead to similar problems. Such
extensions go beyond the RDFS semantics we consider heriecgasistencies remain rare
even in these cases.

whenever a given query contains a hitherto unused IRI. Tikisxguishes our approach
from [5] where apartial closurealgorithm is used to decide RDFS entailment for a set
of axiomatic triples based on both the given graph and theyqgraph.

5.3 Treatment of Blank Nodes

Even if condition (3) in Tabl& holds, solution multisets could include infinitely many
results that only dfer in the identifiers for blank nodes. Simple entailment dsdhis
problem by restricting results to blank nodes that occuh@dctive graph. For entail-
ment regimes, however, one must take entailed triples iotount. This already leads
to triples with diferent blank nodes, as illustrated in the graBh®ndG, in Sectiorn4.
Restricting the range of solution mappings to blank nodéiseractive graph would
ensure finiteness but is not a satisfactory solution. To $8g eonsider the graph

G :exaexbexc. exdexe f

The queryBGP = {exa exb ?x} yields only one solution mapping : ? — exc
under simple entailment. Yet, the mappjig ? — _:f uses only blank nodes fro,

and satisfie§ £ p/(BGP) even under simple semantics. This shows that the latter two
conditions are not gficiently specific for handling blank nodes in entailment negs.

A more adequate approach is the us&kdlemization

Definition 4. Let the prefixskol refer to a namespace IRI that does not occur as the
prefix of any IRI in the active graph or query. TB&olemizationsk(_:b) of a blank
node _b is defined ask(_:b) := skolb. We extendk(-) to graphs and filters just like
other (partial) functions on RDF terms.

Intuitively, Skolemization changes blank nodes into reseudentifiers that are not
affected by entailment. Clearly, we do not want Skolemized lblamdes to occur in
query results, but it is useful to restrict to solution mayysiu for which sk(G) E
sk(u(BGP)). In the above example, this condition is indeed satisfied but not byy’.

5.4 Defining the RDF(S) Entailment Regimes

The set ofwell-formedgraphs for the RDFS entailment regime is simply the set of all
RDF graphs. BGP matching for RDFS is defined as follows.

Definition 5. Let Voc(RDFS) be the RDFS vocabularg an RDF graph, and3GP
a basic graph pattern. Thanswer domain w.r.tG under RDFS entailmentvritten
ADgrprs(G), is the seVoc(G) U (Voc(RDFS) \ {rdf._i | i € N}). Theevaluation oBGP
overG under RDFS entailmefBGP]Z°FS is the solution multiset

{(u, n) | dom(u) = V(BGP), and n is the maximal number such that
o1,...,0p are distinct RDF instance mappings such that, for eachi < n,
sk(G) Frors sk(u(ci(BGP))) and(ran(u) U ran(c)) € ADrors(G)}-

Other types of graph patterns are evaluated as in Defirititfithe active graph is
RDFS-inconsistent, implementations may compute solutioitisets based on the as-
sumption that all literals of typelf:XMLLiteral are well-typed, so that no inconsistency
occurs. When the inconsistency is detected, implementashould report an error.

Since computing a partial RDFS closure for an RDF graph catobpe in polyno-
mial time [5] and BGP evaluation then amounts to subgraph matching beepartial
closure, it follows that the complexity of the evaluationblem under the RDFS regime
is the same as for standard SPARQL. For set semantics instaadltiset semantics
this is known to be PSPACE-completd].

The entailment regime for RDF is defined similarly, but usRIF entailment and
the RDF vocabulary instead. Note that the above definitionatao be restricted to
simple entailment, yielding the same solution multiset®agnition 2.

6 The OWL Entailment Regimes

In contrast to the RDFS semantics, a graph does no longeit adamique canonical
model that can be used to compute answers under the RDF-Basedntics (RBS)
and Direct Semantics (DS) of OWL, i.e., we can no longer imagjueries to act on a
unique “completed” version of the active graph. Thigeats reasoning algorithms (see
Section7), but has only little &ect on our definitions. The main new challenges for
OWL are its expressive datatype constructs that may leadfitdte answers, and the
fact that the OWL DS is defined in terms of OWL objects to whiafiven RDF graph
and query must first be translated. The problems discusseRD&(S) also require
slightly different solutions for OWL.:

1. Inconsistent input ontologies are required to be refeatith an error.

2. The axiomatic triples of RDFS are used only by the RBS andagain be handled
by suitably restricting solutions to an answer domain.

3. The problem of blank nodes occurs for both semantics amégain be addressed
by Skolemization, but for DS the blank nodes that are usedd¢o@e OWL objects
must not be Skolemized.

The main diference to RDFS is the stricter first item which no longer pesiahéferred
inconsistency detection. Inconsistencies in RDFS wergtedgnore since they always
related to single literals. Neither OWL semantics suggasth simple reasoning under
inconsistencies. Although proposals exists for addrgdsiis, they disagree on the in-
ferred entailments and tend to require complex computstion the other hand, typical
OWL reasoning algorithms are model building procedurestvidetect inconsistencies
as part of their normal operation. Hence, reporting errorthis case can usually be
done without additionalféort.

6.1 Infinite Entailments in Datatype Reasoning

In order to see how datatype reasoning in OWL can cause m&nitailments, consider
the graph and query in Tabke Recall thata abbreviatesdfitype, [...] denotes an
implicit blank node, and.(.) denotes an RDF lisG states that all data values to which
Peter is related viaxdp are in the singleton set of the integer 5. The query asks for al
data values to whicex:Peter cannot be related witbx.dp. Without suitable restrictions,
all (infinitely many) integers other than 5 could be used iluson mappings for %.

Table 4. A query with infinitely many entailed solutions

G : ex:Peter a [a owl:Restriction; BGP : exPeter a [a owl:Restriction;
owl:onProperty ex:dp; owl:onProperty ex:dp;
owl:allValuesFrom [a rdfs:Datatype; owl:allValuesFrom [a rdfs:Datatype;

owl:oneOf (5" xsd:integer)]] owl:datatypeComplementOf [

a rdfs:Datatype; owl:oneOf (?x)]]]

Moreover, it is currently unknown how to compute all mapgirigr literal variables
even for cases where there number is finite — testing alalgas clearly not an optiof.
We therefore restrict the answer domain for the OWL entailimegimes to include
only literals that are explicitly mentioned in the input ghaLike for the IRIsdf._i, this
may lead to unexpected behavior, since mentioning a litartite input may lead to
new query results even for queries not directly related i®literal. Yet, we think this
problem is so rare in practice that a more detailed analydlsegproblematic datatype
expressions is not worthwhile, even if it could further limnintuitive behavior.

6.2 The OWL 2 RDF-Based Semantics Entailment Regime

The OWL 2 RDF-Based Semantics treats classes as indivithatisefer to elements
of the domain. Each such element is then associated withsesabthe domain, called
the class extension. This means that semantic conditiormtase extensions are only
applicable to those classes that are actually represemtad Blement of the domain
which can lead to less consequences than expected. Coti@delowing An example
is given by the following graph and BGP:

G : exa rdfitype exC BGP : ? rdftype [rdftype owl:Class ;
owl:unionOf (ex:C exD)]

G states thaexa has typeex:C, while BGP asks for instances of the complex class
denoting the union oéx:.C andex:D. One might expegt: ?x +— exa to be a solution,
but this is not the case under the OWL 2 RDF-Based Seman#ies(so 14, Sec. 7.1]).
Itis guaranteed that the union of the class extensionsf@randex:D exists as a subset
of the domain; no statement@implies, however, that this union is the class extension
of any domain element. Thug(BGP) is not entailed byG.

The entailment holds, however, when the stateregift owl:unionOf (ex:C exD)
is added tas. In the OWL Direct Semantics, in contrast, classes dendsessel not do-
main elements, sG entailsu(BGP) under DS where, formallys must first be extended
with an ontology header to become well-formed for DS. Notg #similar situation
occurs for the example in Sectidhl, but the problem still occurs if the necessary
expressions are introduced.

Summing up, the RBS handles blank nodes just like RDFS, evessies where they
are needed for encoding OWL class expressions. This allews use Skolemization
just like in the case of RDFS in the next definition.

6 Hence one cannot call such solutions “trivial” in the senfsEable 3. Indeed, our restrictions
are motivated by pragmatic considerations, not by formgliirements of SPARQL.

Table 5. Grammar extension for extended OWL objects

Class := IRI | Var ObjectProperty := IRI | Var DataProperty := IRI | Var
Individual := NamedIndividual | Anonymouslindividual | Var
Literal := typedLiteral | stringLiteralNoLanguage | stringLiteralWithLanguage | Var

Definition 6. LetVoc(OWL2) be the OWL 2 vocabularg a graph, andBGP a basic
graph pattern. We writé=rgs to denote the OWL 2 RDF-Based Semantics entailment
relation. Theanswer domain w.r.{G under RDF-Based Semantics entailmemttten
ADRrps(G), is the sevoc(G) U (Voc(OWL2) \ {rdf._i | i € N}). Theevaluation oBGP
overG under RDF-Based Semantics entailmf#®P]35S is the solution multiset

{(u, n) | dom(u) = V(BGP), and n is the maximal number such that
o1,...,0pq are distinct RDF instance mappings such that, for eaghi < n,
sk(G) Fres sk(u(ci(BGP))) and(ran(u) U ran(c)) € ADgres(G)}.

6.3 The OWL 2 Direct Semantics Entailment Regime

The OWL 2 Direct Semantics is not defined in terms of tripleg,ib terms of OWL
objects that constitute amtology The OWL 2 recommendation specifies how to con-
struct an ontologyDg from a graphG that satisfies some further conditior$§.[Thus

G is well-formed for the OWL DS entailment regifieOg is defined. In the follow-
ing, we conveniently identify ontologies with their unigoanonical representation in
Functional-Style Synta)g]. Some RDF triples are mapped to so-calteah-logical ax-
iomssuch as annotations, declarations, or import directivesh &xioms can only have
indirect dfect on DS entailment, e.g., since imported axioms are taki@naccount,
but they do not directly lead to entailments. In particutamotations do not contribute
query results under DS.

Like the active graph, also the BGP of the query is mappedant@®@WL 2 DL
ontology, extended to allow variables in place of class rerabject property names,
datatype property names, individual names, or literalbléfashows how productions
of the OWL 2 functional-style syntax grammad] jare extended to allow variables as
defined by th&/ar production from the SPARQL grammalrd]. Solution mappingsin a
query result are applied to such extended ontologies taroatset of OWL DL axioms
that is compatible with the queried ontology and also eadHily it under DS.

The construction of ontologies from graphs requires typeagtations for proper-
ties, classes, and (custom) datatypes to avoid ambiguétneswe need similar typing
information for termsand variables in BGPs. For example, the BGR ?p o} could
refer to DataPropertyAssertion(?p ?s ?0) or ObjectPropertyAssertion(?p ?s ?0) if
the type of P is not given. We take type declarations from the queriedlogiointo
account, so that only variables may require further typing.

Formally, an extended ontolog)‘ng is constructed for a basic graph patt&@P
and graphG using the parsing process for RDF graphs as define®]iwith three
modifications: variable identifiers are allowed in placeRIfd and literals in all parsing
steps, an ontology header may be addeB@® if not given, and the type declarations
given inBGP are augmented with the declaration§iiidenotedlIDecl(G) in [9]). The

complete parsing process is detailed in the latest entatlmegimes working draft.
BGP is well-formed for the OWL DS entailment regime and a grepif OSGP can be
obtained in this way and is an extended OWL DL ontology.

We can now define the evaluation of graph patterns. Skoldinizes now applied
to Og, which ensures that only blank nodes that represent anomy@@/L individuals
are Skolemized, not blank nodes used for encoding complek &xtax in RDF.

Definition 7. Consider a graphG that is well-formed for the OWL 2 DS entailment
regime, and a basic graph patteBGP that is well-formed for DS an@. With sk(Og)
we denote the result of replacing each blank node ©dnwith sk(b). Theanswer do-
main w.r.t.G under OWL 2 Direct Semantics entailmewtitten ADps(G), is Voc(Og).

If Og is inconsistent, queries must be rejected with an errore@tlise, we writd=ps
for the OWL 2 Direct Semantics entailment relation and defireeevaluation oBGP
overG under OWL 2 Direct Semantics entailmgBGP]2° as the solution multiset

{(1, n) | dom(u) = V(BGP), and n is the maximal number such that
o1,...,0p are distinct RDF instance mappings such that, for eaghi < n,
Og U u(oi(Ogp)) is an OWL 2 DL ontology, and

sk(Oc) Fos Sk(u(7(0F)) and (ran(u) U ran(cn)) € ADps(G))-

SinceADps(G) is finite, clearly the solution multiset and each multiftyids finite
too. Although the restriction té\Dps(G) avoids infinite results as discussed in Sec-
tion 6.1, reasoners may have to consider a large number of litergdetastial variable
bindings and we expect that not all systems will provide alete implementation for
queries with literal variables.

The complexity of standard reasoning problems in OWL ard-wadlerstood and
BGP evaluation can be implemented using the standard rieag@chniques. The com-
plexity of OWL reasoning usually outweighs that of the SPAR&)jebra operations,
i.e., checking whether a solution mapping is a solution rmgiete for nondeterministic
exponential time in OWL DL and undecidable for the RDF-Basenhantics.

7 Implementations of SPARQL Entailment Regimes

We now discuss how the interplay between SPARQL query psitg@nd semantic
inference can be implemented in practice. Three princippt@aches for this task are
reviewed below. An overview of optimized implementatiochriques for SPARQL

algebra operators or specific reasoning algorithms is effmscope of this work.

Materialization and Partial ClosureéOne can often extend the input graph with all rele-
vant semantic consequences, pre-computed at load timeyahdite SPARQL queries
on this extended graph under the simple semantics. The agipis not applicable to
entailment regimes for which one cannot pre-compute adlviegit consequences, e.g.,
for OWL DS entailment where arbitrarily complex class exgsiens may be required.
In the case of RDF(S) and OWL RDF-Based Semantics, howeuedefinitions en-
sure that the relevant consequences are finite and deperttednput graph onl§.

7 httpy/www.w3.orgTR/201QWD-spargl11-entailment-20100601
8 Computing all such consequences for OWL RBS is of courseusiilecidable.

http://www.w3.org/TR/2010/WD-sparql11-entailment-20100601/

Materialization is the most common implementation techaigsupported in systems
such as AllegroGraph, Jena, BigOWLIM and SwiftOWLIM, MutgaOntoBroker, or
Virtuoso? The partial closure algorithm proposed #] for checking RDF(S) entail-
ment can be adapted to implement the RDF(S) regime: Blanksindthe initial graph
have to marked since only they can be used in solution anariostmappings, whereas
new blank nodes introduced by the partial closure algorithrmot be used for variable
bindings. Blank nodes in the query are treated as variah#&ste projected out imme-
diately after BGP evaluation; the multiplicity of a solutigs then given by the number
of original solutions from which it can be obtained throuftstprojection.

Query Rewriting These techniques change the query rather than the queaed.gr
One or more, possibly more complex queries are then evaloats the original graph.
More expressive query features may be needed, e.g., by tsjudar expressions to
capture the transitivity ofdfs:subClassOf. To the best of our knowledge a pure query
rewriting techniques has so far only be proposed for a suifseDFS [L1]. A com-
bination with materialization, however, is also possihte successfully used, e.g., to
realize RDFS entailment in Sesanid.

Modified Query EvaluatiornThe most direct approach for implementing our definitions
is to modify existing SPARQL processors to evaluate BGHsdintly. This can be ac-
complished, e.g., with the free ARQ librarlat{p;/jena.sourceforge.n@&RQy). While
this offers much flexibility, computing BGP matches on demand maglpde many
optimizations for evaluating algebra operators. Yet, thisthod is a good approach
for adding SPARQL support to systems that perform compléscéncing. The Hermit
OWL reasonerlittpy/hermit-reasoner.cofns currently being extended accordingly to
support the proposed DS entailment regime. This work alsludtes the modification
of the OWL API for parsing BGPs into extended OWL ontologies.

8 Related Work

Section7 listed various #&orts that are closely related to the implementation of our
proposals. Here we focus on alternative proposals for dgugrgxpressive semantic
data sources, especially for OWL.

OWL DS queries that ask for individuals and literals only eosely related t@on-
junctive queriegCQs) on description logic (DL) knowledge bases; sgddr a basic
introduction. An important dierence is that CQs admit full existential variables that can
represent any domain element which can be (indirectly)iateto exist. In contrast,
variables and blank nodes under OWL DS entailment may onl¢ tw individuals that
are represented by a given blank node or IRl in the input,esponding to so-called
distinguished variablegh CQs. As of today, decidability of CQ entailment has only
been established for a sublanguage of OWIL3.[Restricted CQ answering still is the
most common query service provided by OWL reasoners todayeXxample, KAON2
(httpy/kaon2.semanticweb.gjgand the TrOWL systemh(tpy/trowl.ey) support the
CQ subset of the OWL DS regime, whereas RacerRtipy/racer-systems.cofnhas

9 Seehttpy/en.wikipedia.orgwiki/Triplestorefor more information on the mentioned systems.

http://jena.sourceforge.net/ARQ/
http://hermit-reasoner.com/
http://kaon2.semanticweb.org/
http://trowl.eu/
http://racer-systems.com/
http://en.wikipedia.org/wiki/Triplestore

its proprietary query language for CQs, called nRQ@L Similarly, OWLgres [L6] and

Quontd® support the CQ fragment, but they implement the OWL QL prpfilaich

restricts the expressivity of the input ontology to allow éomore éicient implemen-
tation based on standard database techniques.

We are not aware of a complete implementation of the DS emé¢ait regime. As
of today, the Pellet OWL 2 DL reasondrttpy/clarkparsia.corpelle) is the most ad-
vanced system. The subset of SPARQL that Pellet supportiéed GPARQL-DL [L5]

— consists of queries that can be translated into a pre-defieteof query atoms in an
abstract syntax; with the semantics defined per abstracy qiem.

Explicitly listing admissible queries has the advantage tine can focus on queries
that are well supported by OWL reasoners. Our definition oflOWS entailment, in
contrast, uses a more general approach based on a diredngapBGPs to extended
OWL ontologies. This allows for queries that are not tydicalipported by reasoners,
e.g., when using variables to represent class names in egrolalss expressions.

Furthermore, SPARQL-DL treats blank nodes in queries like-distinguished CQ
variables with full existential meaning, whereas the DSmegtreats such blank nodes
like SPARQL variables that are projected out after BGP eatédn. Blank nodes under
DS entailment thus are largely like distinguished CQ vdesthough we allow blank
nodes in the input to occur in results via Skolemization. @esign choice makes the
treatment of blank nodes more uniform across all SPARQLilemat regimes, and it
avoids the computational problems with non-distinguisteiables in OWL.

9 Conclusions

We have presented extensions for SPARQL to incorporate RDFS, OWL RDF-
Based semantics, and OWL Direct Semantics entailment. \Wbeaparing the individ-
ual entailment regimes, we find that a surprisingly high l@fecompatibility can be
achieved between theftérent formalisms.

The presented regimes are closely related to the SPARQLilEetet Regimes doc-
ument currently developed in the W3C SPARQL working groug e believe that
our extended discussions and the resulting definitionsigeecv useful resource for im-
plementers and users of SPARQL.

Our work also provides a basis for further extensions of SBAREntailment
regimes such as D-entailment can easily be added. A RIH®etai regime is also cur-
rently under developmentin the SPARQL Working Group, altjiosome preliminaries
still have to be clarified, e.g., how an RDF graph can impoerarode a RIF rule set. An
integration of new SPARQL operators, which are defined algjeblly such as thei-
nusoperator currently under discussion, is straightforwn@RARQL modifications that
introduce extension points besides BGP matching, in centrauld require more con-
siderations. Depending on the outcome of current discnssibis might be the case for
path expressionsi SPARQL 1.1. Yet, our overall impression is that SPARQLeaay
— both theoretically and practically — for taking the stegdred sub-graph matching.

10 httpy/www.dis.uniromal.jguontg

http://clarkparsia.com/pellet
http://www.dis.uniroma1.it/quonto/

Acknowledgements This work was supported by EPSRC in the projdetmiT: Rea-
soning with Large Ontologieand by DFG in the proje@&xpresSTWe thank the mem-
bers of the SPARQL working group for valuable comments amgestions.

References

1. Beckett, D., Berners-Lee, T.: Turtle — Terse RDF Tripledguaage. W3C Team Submission
(14 January 2008), available at hifpww.w3.orgTeamSubmissigturtle/

2. Haarsley, V., Méller, R., Wessel, M.: Querying the sentanteb with Racer+ nRQL. In:
Proc. KI-2004 International Workshop on Applications ofddeption Logics (2004)

3. Hayes, P. (ed.): RDF Semantics. W3C Recommendation (bfu&e 2004), available at
httpy/www.w3.org TR/rdf-mt/

4. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations aifaeatic Web Technologies. Chapman
& Hall/CRC (2009)

5. ter Horst, H.J.: Completeness, decidability and complexf entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. JWeb Semantics 3(2-3), 79—
115 (2005)

6. Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Grp Note (22 June 2010), avail-
able athttpy/www.w3.org TR/rif-overview/

7. Motik, B., Patel-Schneider, P.F., Cuenca Grau, B. (ed®\WL 2 Web Ontology
Language: Direct Semantics. W3C Recommendation (27 Oct8b89), available at
httpy//www.w3.orgTR/owl2-direct-semantig¢s

8. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): O®\WWeb Ontology Language: Struc-
tural Specification and Functional-Style Syntax. W3C Rem@mdation (27 October 2009),
available ahttp;/www.w3.orgTR/owl2-syntax

9. Patel-Schneider, P.F., Motik, B. (eds.): OWL 2 Web Orgglbanguage: Mapping to RDF
Graphs. W3C Recommendation (27 October 2009), availablettpf/www.w3.0rgTR/
owl2-mapping-to-rdf

10. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and lexihpof SPARQL. ACM Transac-
tions on Database Systems 34(3), 1-45 (2009)

11. Pérez, J., Arenas, M., Gutierrez, C.: nNSPARQL: A naiagad language for RDF. J. of Web
Semantics (2010), to appear, hitweb.ing.puc.g¢gkjperezpapergws2010.pdf

12. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Quenglage for RDF. W3C Recom-
mendation (15 January 2008), available at Wiyww.w3.orgTR/rdf-spargl-query

13. Rudolph, S., Glimm, B.: Nominals, inverses, countingd aonjunctive queries. J. of Arti-
ficial Intelligence Research (2010), accepted for pulibcathttp//www.comlab.ox.ac.yk
files’2179paper.pdf

14. Schneider, M. (ed.): OWL 2 Web Ontology Language: RDBd8h Semantics.
W3C Recommendation (27 October 2009), available at Mitpw.w3.0rgTR/
owl2-rdf-based-semantits

15. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWIL-Dn: Golbreich, C., Kalyan-
pur, A., Parsia, B. (eds.) Proc. OWLED 2007 Workshop on OWkpdtiences and Direc-
tions. CEUR Workshop Proceedings, vol. 258. CEUR-WS.o0972

16. Stocker, M., Smith, M.: Owlgres: A scalable OWL reasomer Dolbear, C., Ruttenberg,
A., Sattler, U. (eds.) Proc. OWLED 2008 Workshop on OWL: Eigreces and Directions.
CEUR Workshop Proceedings, vol. 432. CEUR-WS.org (2008)

17. Stuckenschmidt, H., Broekstra, J., Amerfoort, A.: Tinspace tradefis in scaling up RDF
Schema reasoning. In: WISE 2005 Workshops. LNCS, vol. 3807,172—-181. Springer
(2005)

http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/

