
Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

Solver submission of riss 1.0 to the

SAT Competition 2011

Norbert Manthey

KRR Report 11-01

Mail to Bulk mail to Office Internet

Technische Universität Dresden Technische Universität Dresden Room 2006 http://www.wv.inf.tu-dresden.de

01062 Dresden Helmholtzstr. 10 Nöthnitzer Straße 46

01069 Dresden 01187 Dresden



Solver submission of riss 1.0 to the SAT

Competition 2011

Norbert Manthey

ICCL – International Center for Computational Logic
Technische Universität Dresden, 01062 Dresden, Germany

norbert@janeway.inf.tu-dresden.de

Abstract. In this note the configurations of riss 1.0 that have been
submitted to the SAT Competition 2011 are described. The SAT solver
is component based and is able to enable most of the recently developed
techniques in SAT solving and preprocessing a formula. Furthermore,
two parallelizations of the algorithm can be used.

1 The SAT solver riss 1.0

Originally, riss 1.0 has been implemented to analyze the resource utilization
of SAT solvers. Furthermore, it should be possible to extend the solver easily.
Therefore, a component based scheme has been chosen that separates the CDCL
algorithm [16] into the components: unit propagation, decision heuristic, conflict
analysis, restart scheduling and removal. Additionally, a preprocessor has been
integrated to be able to simplify the formula after top level units have been found.
Each of this components has lots of parameters so that it is hard to find the best
combination. It can been shown that different configurations perform differently
well for several timeouts. Most of the recent parallel solvers execute several
configurations of a SAT solver in parallel and share learned clauses among these
configurations [7]. This parallelization is also available in riss 1.0. The solver is
submitted in sequential and parallel configurations to the competition.

Basic Configuration The standard version of riss 1.0 implements the Two-
Watched-Literal scheme without blocking literals, but with prefetching [9] the
clauses of the current watch list. Each new implied literal is propagated on bi-
nary clauses before it is propagated on longer clauses, since the binary clauses
are represented implicitly in their own watch list and are also stored as reason
clauses in this way. Thus, the conflict analysis does not need to access the bi-
nary clause explicitly. After the conflict clause has been analyzed and a 1st UIP
clause [19] has been learned, this clause is minimized further [18]. Decision are
based on the VSIDS heuristic and polarity caching [15] is used to determine the
polarity for the decision variable.

Besides the major components, riss 1.0 implements various event schedulers.
For scheduling restarts it uses a nested geometric series starting with 150 and
using an increment factor of 1.3. Learned clause removal is scheduled using a



2

geometric series starting with 1000 and with an increase value of 1.5. The removal
uses clause activities that are based on the LBD [3]. This activity is assigned
only once the clause is learned and stays static. Binary clauses are not removed.
Half of the remaining clauses are deleted.

The preprocessor of riss 1.0 implements a non increasing variable elimina-
tion (VE) [6] together with blocked clause elimination (BCE) [10], equivalence
elimination (EE), hidden tautology elimination (HTE) [8], vivification (VI) [14]
and extended resolution (ER) [1]. These techniques are applied in the following
order: EE + HTE + BCE + VE + VI + ER + EE + HTE + BCE. Further-
more, the solver is able to run any of these techniques again during a restart.
Currently, this option is not enabled since it introduces some overhead due to
the component based implementation of the solver.

1.1 Sequential Configurations

As for the usual use case, a static configuration has been submitted, that is the
currently best known configuration of riss 1.0. This configuration uses the basic
configuration. The second sequential configuration rissAuto sets up a configu-
ration according to the timeout for an instance. Therefore, it enables the best
known configuration for the specified time. The third sequential solver rissExp

uses an experimental configuration.

rissAuto The specified timeouts for the two stages of the competition are given
in advance. Therefore, rissAuto chooses its configuration based on the timeout
parameter. For 5000 seconds the basic configuration is chosen. For the first stage
timeout (1200 seconds) the solver applies a probing step [11] whenever it decides
a variable on the root of the search tree. During this step, the decision literal
l is propagated in both polarities. If propagating one of the polarities fails, a
new unit has been found. Furthermore, the implied literals of both polarities are
compared. If both polarities imply literal l’, l’ can also be set as a top level unit.

rissExp During the SAT Race 2010 the winner CryptoMiniSAT [17] was able
to extract encoded XOR-functions from the formula. The configuration rissExp

extracts XOR clauses and uses special structures instead of these clauses. The
extracted XOR is also used during conflict analysis, such that only a single
clause needs to be stored that represents an XOR. Furthermore, the propagation
of longer clauses uses the blocking literal scheme [13]. Additionally, if a binary
conflict is found, the propagation is continued until a longer conflict clause is
recognized. If there is no such a longer conflict clause, the last binary conflict is
selected as in PrecoSAT [4]. Restarts are scheduled dynamically following [2].

1.2 Parallel Configurations

Since modern CPUs will get more cores, the parallelization of SAT solvers is
important [5]. Modern SAT solvers run several configurations and share learned



3

clauses among these configurations [7]. The submitted version of riss 1.0 is
furthermore able to parallelize unit propagation [12] of a sequential solver.

The parallelization of riss 1.0 is quite experimental, such that the chosen
combination of configurations is not well studied yet. However, big series of ex-
periments have been used to discover well performing sequential configurations
that are able to solve as many instances as possible within a certain timeout
if they are executed in parallel without sharing clauses. Based on this knowl-
edge, the first two parallel configurations have been chosen. The third parallel
configuration uses the parallelized unit propagation.

Finding a good clause sharing algorithm is hard. Usually, the length of learned
clauses increases during solving an instance. To prevent sharing too long clauses,
a thread sends only clauses that are shorter than the minimum of its learned
clauses since the last restart. Additionally, only clauses are received that are
shorter than the average of the learned clause length since the last restart of
the receiving thread. Using this mechanism, shared clauses help to reduce the
average size of learned clauses.

PrissFix The parallel configuration PrissFix uses a fixed setting that uses 4
cores. It follows the portfolio approach as for example ManySAT [7]. Differently
to ManySAT, the basic configuration of riss 1.0 is part of the parallel version and
is run without receiving clauses from the other configurations. Thus, PrissFix
should be at least as powerful as the basic configuration, because the search
path of this configuration is not changed, if the overhead of communication and
sharing the memory architecture is neglected. Due to clause sharing among the
remaining configurations, the solvers performance might be even higher.

PrissAuto A drawback of the fixed configuration PrissFix is that it is not able
to use an arbitrary number of cores. Thus, PrissAuto is able to enable up to
8 configurations that are executed in parallel and share learned clauses among
each other. Again, the first configuration is the basic configuration and it also
receives clauses. The remaining configurations have been chosen out of many
experiments on the last SAT competitions application benchmark such that the
combination of the configurations is able to solve as many instances as possible
in a specified timeout.

PrissUP The parallelization of the unit propagation is able to use an arbitrary
number of threads. Differently to the basic configuration, PrissUP does not
distinguish between binary clauses and other clauses. The formula is regarded
as a set of clauses. This set is separated among the n used threads. During
propagation, each thread T propagates the literal of its propagation queue using
its partition of the formula. In case of a conflict, the propagation of all threads
is stopped. Otherwise, if T reaches a fix point, it synchronizes its propagation
queue with the queues of the other threads. The algorithm is implemented with
a single lock, which is only needed for sharing the information about a conflict
because multiple threads might find a conflict. Thus, the submitted version of
PrissUP uses 2 threads because the scalability has not been analyzed yet.



4

Acknowledgment The author would like to thank Peter Steinke for many discus-
sions concerning the configuration of the solvers. Additional thanks go to Marijn
Heule because of many fruitful discussions about HTE and other preprocessing
techniques.

References

1. Gilles Audemard, George Katsirelos, and Laurent Simon. A restriction of extended
resolution for clause learning sat solvers. In Maria Fox and David Poole, editors,
AAAI. AAAI Press, 2010.

2. Gilles Audemard and Laurent Simon. Glucose: a solver that predicts learnt clauses
quality. SAT 2009 Competitive Event Booklet,
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf, 2009.

3. Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
sat solver. In Twenty-first International Joint Conference on Artificial Intelli-
gence(IJCAI’09), pages 399–404, jul 2009.

4. Armin Biere. PrecoSAT system description.
http://fmv.jku.at/precosat/preicosat-sc09.pdf, 2009.

5. Intel Corporation. Intels Teraflops Research Chip.
http://download.intel.com/pressroom/kits/Teraflops/Teraflops_

Research_Chip_Overview.pdf, 2010.
6. Niklas Eén and Armin Biere. Effective preprocessing in sat through variable

and clause elimination. In In proc. SAT05, volume 3569 of LNCS, pages 61–75.
Springer, 2005.

7. Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Diversification and
intensification in parallel sat solving. In Proceedings of the 16th international
conference on Principles and practice of constraint programming, CP’10, pages
252–265, Berlin, Heidelberg, 2010. Springer-Verlag.

8. Marijn Heule, Matti Järvisalo, and Armin Biere. Clause elimination procedures
for cnf formulas. In Christian Fermüller and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, volume 6397 of Lecture Notes
in Computer Science, pages 357–371. Springer Berlin / Heidelberg, 2010.

9. Steffen Hölldobler, Norbert Manthey, and Ari Saptawijaya. Improving resource-
unaware sat solvers. In Christian Fermüller and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, volume 6397 of Lecture
Notes in Computer Science, pages 357–371. Springer Berlin / Heidelberg, 2010.

10. Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In
Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 6015 of Lecture Notes in Computer
Science, pages 129–144. Springer Berlin / Heidelberg, 2010.

11. I. Lynce and J. P. Marques-Silva. Probing-based preprocessing techniques for
propositional satisfiability. IEEE International Conference on Tools with Artificial
Intelligence, 2003.

12. Norbert Manthey. Parallelizing the heart of a sat solver, 2010. Submitted to SAT
2011.

13. Niklas Sörensson. Minisat 2.2 and minisat++ 1.1. http://baldur.iti.uka.de/

sat-race-2010/descriptions/solver_25+26.pdf, 2010.
14. Cédric Piette, Youssef Hamadi, and Lakhdar Sas. Vivifying propositional clausal

formulae.



5

15. Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme
for satisfiability solvers. In Proceedings of 10th International Conference on Theory
and Applications of Satisfiability Testing(SAT), pages 294–299, 2007.

16. João P. Marques Silva and Karem A. Sakallah. GRASP: A new search algorithm
for satisfiability. In Proceedings of the 1996 IEEE/ACM international conference
on Computer-aided design, ICCAD ’96, pages 220–227, Washington, DC, USA,
1996. IEEE Computer Society.

17. Mate Soos. Cryptominisat 2.5.0. In SAT Race competitive event booklet, July 2010.
18. Niklas Sörensson and Armin Biere. Minimizing learned clauses. In Proceedings

of the 12th International Conference on Theory and Applications of Satisfiability
Testing, SAT ’09, pages 237–243, Berlin, Heidelberg, 2009. Springer-Verlag.

19. Lintao Zhang, Conor F. Madigan, and Matthew H. Moskewicz. Efficient conflict
driven learning in a boolean satisfiability solver. In ICCAD, pages 279–285, 2001.


