
1Foundations of Constraint Programming Introduction

Lecture 1

Introduction



2Foundations of Constraint Programming Introduction

Constraint Programming

Alternative approach to programming

Combination of reasoning and computing

Constraint on a sequence of variables: a relation on their domains

Constraint Satisfaction Problem (CSP): a finite set of constraints

Constraint programming approach:

Formulate your problem as CSP

Solve the chosen representation using
- domain specific methods, or
- general methods



3Foundations of Constraint Programming Introduction

Solving CSPs

Determine whether it has a solution (is consistent)

Find a solution

Find all solutions

Find an optimal solution

Find all optimal solutions



4Foundations of Constraint Programming Introduction

Domain Specific vs. General Methods

Domain specific methods:

Special purpose algorithms (constraint solvers), for example

Program for solving systems of linear equations

Package for linear programming

Implementation of the unification algorithm

General Methods:

Constraint propagation algorithms

Search methods



5Foundations of Constraint Programming Introduction

Applications

Interactive graphic systems
(to express geometric coherence for scene analysis)

Operations research problems
(various optimization problems)

Molecular biology
(DNA sequencing, construction of 3D models of proteins)

Electrical engineering (location of faults in the circuits, computing the 
circuit layouts, testing the design, verification)

Natural language processing
(construction of efficient parsers)

Computer algebra
(solving and/or simplifying equations over various algebraic structures)



6Foundations of Constraint Programming Introduction

Some Recent Applications

Generation of coherent music radio programs

Software engineering: design recovery and code optimization

Selecting and scheduling satellite observations



7Foundations of Constraint Programming Introduction

Outline (of Today's Lecture)

Define formally Constraint Satisfaction Problems (CSPs)

Modeling: representing a problem as CSP

Clarify various aspects of modeling:
- in general there are several natural representations
- some representations straightforward, some non-trivial
- some representations rely on a “background” theory

Show the generality of the notion of a CSP



8Foundations of Constraint Programming Introduction

Constraint Satisfaction Problem (CSP)
Given:

Variables Y := y1, ..., yk

Domains D1, ..., Dk

Constraint C on Y: subset of D1 × ... × Dk

Given:

Variables x1, ..., xn

Domains D1, ..., Dn

Constraint Satisfaction Problem (CSP):

 {C; x1 ∈ D1, ..., xn ∈ Dn}

C – constraints, each on a subsequence of x1, ..., xn

(d1, ..., dn) ∈ D1 × ... × Dn is a solution to the CSP
if for every constraint C ∈ C on xi1

, ..., xim

(di1
, ..., dim

) ∈ C



9Foundations of Constraint Programming Introduction

Example: SEND + MORE = MONEY

Replace each letter by a different digit so that

SEND

+ MORE

  MONEY

is a correct sum.

Unique solution:

 9567

  + 1085

  10652

Variables: S, E, N, D, M, O, R, Y

Domains: [1..9] for S, M
[0..9] for E, N, D, O, R, Y



10Foundations of Constraint Programming Introduction

Alternatives for Equality Constraints

1 equality constraint:

 1000 ⋅ S + 100 ⋅ E + 10 ⋅ N + D

 + 1000 ⋅ M + 100 ⋅ O + 10 ⋅ R + E

 = 10000 ⋅ M + 1000 ⋅ O + 100 ⋅ N + 10 ⋅ E + Y

5 equality constraints:

D + E = 10 ⋅ C1 + Y
C1 + N + R = 10 ⋅ C2 + E
C2 + E + O = 10 ⋅ C3 + N
C3 + S + M = 10 ⋅ C4 + O
C4 = M

where C1, ..., C4 ∈ [0..1] “carry” variables



11Foundations of Constraint Programming Introduction

Alternatives for Disequality Constraints

28 disequality constraints:

x ≠ y for x, y ∈ {S, E, N, D, M, O, R, Y}, x < y

1 disequality constraint:

all_different(S, E, N, D, M, O, R, Y)

Modeling it as an IP (integer programming) problem:
For x, y ∈ {S, E, N, D, M, O, R, Y} transform x ≠ y to
 x – y ≤ 10 – 11zx,y

y – x ≤ 11zx,y – 1
where zx,y  ∈ [0..1]

Disadvantage: 28 new variables



12Foundations of Constraint Programming Introduction

N Queens

Place n queens on an n ⋅ n chess board so that they do not attack each other.

Variables: x1, ..., xn

Domains: [1..n]

Constraints:

For i ∈ [1..n – 1] and j ∈ [i + 1..n]

xi ≠ xj (rows)

xi – xj ≠ i – j (South-West – North-East diagonals)

xi – xj ≠ j – i (North-West – South-East diagonals)



13Foundations of Constraint Programming Introduction

Zebra Puzzle

A small street has five differently colored houses on it.

Five men of different nationalities live in them.

Each of them has a different profession, likes a different

drink, and has a different pet animal.



14Foundations of Constraint Programming Introduction

Zebra Puzzle, ctd
The Englishman lives in the red house.

The Spaniard has a dog.

The Japanese is a painter.

The Italian drinks tea.

The Norwegian lives in the first house on the left.

The owner of the green house drinks coffee.

The green house is on the right of the white house.

The sculptor breeds snails.

The diplomat lives in the yellow house.

They drink milk in the middle house.

The Norwegian lives next door to the blue house.

The violinist drinks fruit juice.

The fox is in the house next to the doctor's.

The horse is in the house next to the diplomat's.

Who has the zebra and who drinks water?



15Foundations of Constraint Programming Introduction

Zebra Puzzle, ctd

25 Variables:

red, green, white, yellow, blue

english, spaniard, japanese, italian, norwegian

dog, snails, fox, horse, zebra

painter, sculptor, diplomat, violinist, doctor

tea, coffee, milk, juice, water

Domains: [1..5]

Constraints:

all_different(red, green, white, yellow, blue)

all_different(english, spaniard, japanese, italian, norwegian)

all_different(dog, snails, fox, horse, zebra)

all_different(painter, sculptor, diplomat, violinist, doctor)

all_different(tea, coffee, milk, juice, water)



16Foundations of Constraint Programming Introduction

Constraints, ctd

The Englishman lives in the red house:
english = red

spaniard = dog

japanese = painter

italian = tea

The Norwegian lives in the first house on the left:
norwegian = 1

green = coffee

The green house is on the right of the white house:
green = white + 1



17Foundations of Constraint Programming Introduction

Constraints, ctd

sculptor = snails

diplomat = yellow

milk = 3

The Norwegian lives next door to the blue house:
|norwegian – blue| = 1

violinist = juice

The fox is in the house next to the doctor's:
|fox – doctor| = 1

|horse – diplomat| = 1



18Foundations of Constraint Programming Introduction

Crossword Puzzles

Fill the crossword grid with words from

HOSES, LASER, SAILS, SHEET, STEER

HEEL, HIKE, KEEL, KNOT, LINE

AFT, ALE, EEL, LEE, TIE

Variables: x1, ..., x8

Domains: x7 ∈ {AFT, ALE, EEL, LEE, TIE}, etc.

Constraints: one per crossing

C1,2 := {(HOSES, SAILS), (HOSES, SHEET),

 (HOSES, STEER), (LASER, SAILS),

 (LASER, SHEET), (LASER, STEER)}

etc.

1 2 3

4 5

6 7

8



19Foundations of Constraint Programming Introduction

Unique Solution

1 2 3

4 5

6 7

8

H O S E S
A T

H I K E
A L E E

L A S E R

E L



20Foundations of Constraint Programming Introduction

Qualitative Temporal Reasoning

The meeting ran non-stop the whole day.

Each person stayed at the meeting for a continuos period of time.

The meeting began while Mr Jones was present and finished while Ms White 
was present.

Ms White arrived after the beginning of the meeting.

Director Smith was also present, but he arrived after Jones had left.

Mr Brown talked to Ms White in the presence of Smith.

Could Jones and White possibly have talked during this meeting?



21Foundations of Constraint Programming Introduction

13 Temporal Relations (Allen 1983)



22Foundations of Constraint Programming Introduction

Composition Table

Consider three events, A, B, and C
Given the temporal relations between A, B and between B, C, what is 
the temporal relation between A and C?

(Allen 1983) defines a 13 × 13 table:
Example: if A overlaps B and B before C, then A before C
This yields entry allen(overlaps, before, before)
(In total 409 entries)



23Foundations of Constraint Programming Introduction

The Composition Table, Part 1

before af ter meets met-by overlaps overl.-by before af ter meets met-by overlaps overl.-by
before before TEMP before before before before started-by before af ter overlaps met-by overlaps overl.-by

meets meets meets contains contains
overlaps overlaps overlaps f inished-by f inished-by
starts starts contains
during during finished-by

after TEMP after during after during af ter during before af ter before after before during
finishes f inishes meets f inishes
after af ter overlaps af ter
met-by met-by starts met-by
overl.-by overl.-by during overl.-by

meets before af ter before f inishes before overlaps contains before af ter overlaps overl.-by overlaps overl.-by
met-by f inished-by starts meets met-by contains started-by contains started-by
overl.-by equals during overlaps overl.-by f inished-by contains f inished-by contains
started-by contains contains
contains f inished-by started-by

met-by before af ter starts after during af ter f inishes before af ter meets after overlaps af ter
overlaps started-by f inishes starts met-by
meets equals overl.-by during overl.-by
contains
f inished-by

overlaps before af ter before overl.-by before R-OVERLAP f inished-by before af ter meets overl.-by overlaps overl.-by
met-by started-by meets met-by started-by started-by
overl.-by contains overlaps overl.-by contains contains
started-by started-by
contains contains

overl.-by before af ter overlaps after R-OVERLAP after equals before af ter meets met-by overlaps overl.-by
meets contains met-by
overlaps finished-by overl.-by
contains
f inished-by

starts before af ter before met-by before during
meets f inishes
overlaps overl.-by



24Foundations of Constraint Programming Introduction

The Composition Table, Part 2

starts started-by during contains f inishes f inished-by equals starts started-by during contains f inishes f inished-by equals
before before before before before before before before started-by starts started-by during contains overl.-by contains started-by

meets meets started-by f inishes
overlaps overlaps equals overl.-by
starts starts
during during

after during after during after after after after during during during during TEMP during before during
f inishes f inishes f inishes meets
after after after overlaps
met-by met-by met-by starts
overl.-by overl.-by overl.-by during

meets meets meets overlaps before overlaps before meets contains overlaps contains R-OVERLAP contains overl.-by contains contains
starts starts contains contains
during during f inished-by started-by

met-by during after during after met-by met-by met-by f inishes during after during after f inishes f inishes f inishes
f inishes f inishes met-by met-by f inished-by
overl.-by overl.-by overl.-by overl.-by equals

started-by
contains

overlaps overlaps overlaps overlaps before overlaps before overlaps f inished-by overlaps contains overlaps contains f inishes f inished-by f inished-by
contains starts meets starts meets starts f inished-by
f inished-by during overlaps during overlaps during equals

contains
f inished-by

overl.-by during after during after overl.-by overl.-by overl.-by equals starts started-by during contains f inishes f inished-by equals
f inishes met-by f inishes meets started-by
overl.-by overl.-by overl.-by overl.-by contains

started-by
contains

starts starts starts during before during before starts
started-by meets meets
equals overlaps overlaps

contains



25Foundations of Constraint Programming Introduction

Representation as CSP

5 events:
- M (meeting)
- J (Jones's presence)
- B (Brown's presence)
- S (Smith's presence)
- W (White's presence)

10 variables, each associated with an ordered pair of events and each 
with a domain:
TEMP ≔ {before, after, meets, metby, overlaps, 

overlappedby, starts, startedby, during,
 contains, finishes, finishedby, equals}
REAL-OVERLAP ≔ TEMP - {before, after, meets, metby}



26Foundations of Constraint Programming Introduction

Representation as CSP, ctd

Constraints:
- xJ,M ∈ {overlaps, contains, finishedby}

- xM,W ∈ {overlaps}

- xM,S ∈ REAL-OVERLAP

- xJ,S ∈ {before}

- xB,S ∈ REAL-OVERLAP

- xB,W ∈ REAL-OVERLAP

- xS,W ∈ REAL-OVERLAP

- xJ,B , xJ,W , xM,B ∈ TEMP

Final question 
If the constraint xJ,W ∈ REAL-OVERLAP is added, is the CSP consistent?



27Foundations of Constraint Programming Introduction

Allen's Temporal Constraints

allen: the composition table as a ternary relation (409 triples)

For each ordered triple A, B, C of the events: 
a constraint CA,B,C on the variables xA,B, xB,C, xA,C

CA,B,C ≔ allen ∩ (DA,B × DB,C × DA,C)

where
xA,B ∈ DA,B

xB,C ∈ DB,C

xA,C ∈ DA,C



28Foundations of Constraint Programming Introduction

Qualitative Spatial Reasoning

Two houses are connected by a road. The first house is surrounded 
by its garden or is adjacent to its boundary while the second house is 
surrounded by its garden.

What can we conclude about the relation between the second garden 
and the road?



29Foundations of Constraint Programming Introduction

8 Spatial Relations

RCC8 ≔ { disjoint, meet, equal, covers, coveredby,  
  contains, inside, overlap}



30Foundations of Constraint Programming Introduction

The Composition Table for RCC8



31Foundations of Constraint Programming Introduction

Representation as CSP

5 spatial objects: H1, H2, G1, G2, R

10 variables with domains, each associated with an ordered pair of spatial objects:
- xH1,G1 ∈ {inside, coveredby}

- xH2,G2 ∈ {inside}

- xH1,H2 ∈ {disjoint}

- xH1,R ∈ {meet}

- xH2,R ∈ {meet}

- xG1,G2 ∈ {disjoint, meet}

- xH1,G2 ∈ {disjoint, meet}

- xG1,H2 ∈ {disjoint, meet}

- xG1,R ∈ RCC8

- xG2,R ∈ RCC8



32Foundations of Constraint Programming Introduction

Constraints

S3: the composition table as a ternary relation (193 triples)

For each ordered triple A, B, C of the objects: 
a constraint CA,B,C on the variables xA,B, xB,C, xA,C

CA,B,C ≔ S3 ∩ (DA,B × DB,C × DA,C)

where
xA,B ∈ DA,B

xB,C ∈ DB,C

xA,C ∈ DA,C



33Foundations of Constraint Programming Introduction

Constrained Optimization Problem (COP)

Given:
- a CSP

P ≔ 〈C ; x1 ∈ D1, ..., xn ∈ Dn〉

- an objective function
obj : Sol →  R

(P, obj) a constrained optimization problem (COP)

Task: Find a solution d to P for which the value obj(d) is optimal (maximal)



34Foundations of Constraint Programming Introduction

Example: Knapsack Problem

Given a knapsack of a fixed volume and n objects, each with a volume and a value. 
Find a collection of these objects with maximal total value that fits in the knapsack.

Representation as a COP:

Given: knapsack volume v; volumes a1, ..., an; values b1, ..., bn

Variables: x1, ..., xn

Domains: {0,1}

Constraint:

∑ ai   xi ≤ v

Objective function:

∑ bi   xi

n

i=1

n

i=1



35Foundations of Constraint Programming Introduction

Example: Golomb Ruler

Golomb ruler with m marks: an ordered sequence of m natural numbers such 
that the distance between any two elements in this sequence is unique.

The largest element of a Golomb ruler is its length.

An optimum Golomb ruler with m marks: a Golomb ruler with m marks with a 
minimal length.



36Foundations of Constraint Programming Introduction

Optimum Golomb Ruler with 5 Marks

A Golomb ruler with 5 marks: 

The distances are:

for elements one apart: 1, 3, 5, 2

for elements two apart: 4, 8, 7

for elements three apart: 9,10

for elements four apart: 11

In fact, this is an optimum Golomb ruler with 5 marks.

The largest known optimum Golomb ruler has 21 marks and is of length 333.

0, 1, 4, 9, 11



37Foundations of Constraint Programming Introduction

Representations as a COP

Pair: two numbers i, j such that 1 ≤ i < j ≤ m

Pairs i, j  and k, l are
- different if i ≠ k or j ≠ l
- disjoint if i ≠ k and j ≠ l

Representation 1

Variables: x1, ..., xm

Domains: ℕ

Constraints: 

xi < xi+1 for i ∈ [1..m – 1]

xj – xi ≠ xl – xk for all different pairs i, j  and k, l

Objective function: -xm



38Foundations of Constraint Programming Introduction

Representations as a COP, ctd

Representation 2

Constraints: 

xi < xi+1 for i  [1..∈ m – 1]

xj – xi ≠ xl – xk for all disjoint pairs i, j  and k, l

Representation 3

Variables: x1, ..., xm, zi,j for each pair i, j

Domains: ℕ for x1, ..., xm

ℕ \ {0} for zi,j

Constraints: 

zi,j = xj – xi for each pair i, j

zij ≠ zk,l for all different pairs i, j  and k, l

Representation 4

Replace the disequality constraints by a single all_different on zi,j.



39Foundations of Constraint Programming Introduction

Different Representations as CSP

Less Contrived Examples

A Microcode Label Assignment Problem
- CSP representation: 187 finite integer domain variables
- IP representation: 2024 Boolean variables

A Packing Problem
- CSP representation: 7 finite integer domain variables, 2 constraints
- IP representation: 42 Boolean variables, 18 constraints

A Golf Scheduling Problem
- CP representation: 176 variables
- IP representation 1: 2574 variables
- IP representation 2: 592 variables



40Foundations of Constraint Programming Introduction

Objectives (of Today's Lecture)

Define formally Constraint Satisfaction Problems (CSPs)

Modeling: representing a problem as CSP

Clarify various aspects of modeling:
- in general there are several natural representations
- some representations straightforward, some non-trivial
- some representations rely on a “background” theory

Show the generality of the notion of a CSP


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41



