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Abstract

The verification problem for action logic programs with non-terminating
behaviour is in general undecidable. In this paper, we consider a restricted
setting in which the problem becomes decidable. On the one hand, we ab-
stract from the actual execution sequences of a non-terminating program
by considering infinite sequences of actions defined by a Büchi automaton.
On the other hand, we assume that the logic underlying our action formal-
ism is a decidable description logic rather than full first-order predicate
logic.

1 Introduction

Action programming languages like Golog [8] and Flux [14], which are respectively
based on the situation calculus and the fluent calculus, can be used to control
the behaviour of autonomous agents and mobile robots. Often, programs written
in these languages are non-terminating since the robots are supposed to perform
open ended tasks, like delivering coffee as long as there are requests. To ensure
that the execution of such a program leads to the desired behaviour of the robot,
one needs to specify the required properties in a formal way, and then verify that
these requirements are met by any (infinite) execution of the program. In the
coffee delivery example, one might, e.g., want to show that anyone requesting
coffee will eventually get it delivered. When trying to automate this verification
task, one has to deal with two sources of undecidability: (i) the expressiveness of
the programming constructs (while loops, recursion) and (ii) the expressiveness
of situation/fluent calculus, which encompasses full first-order predicate logic.
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Verification for non-terminating Golog programs has first been addressed by De
Giacomo, Ternovskaia, and Reiter [7], who express both the semantics of the
programs and the properties to be verified using an appropriate fixpoint logic.
To verify a property of a program, one first needs to compute a fixpoint, which
is expressed in second-order logic. In general, this computation need not termi-
nate (this corresponds to the first source of undecidability). Even if the fixpoint
computation does terminate, verifying that the desired property holds requires a
manual, meta-theoretic proof. Attempts to automate this approach are usually
restricted to propositional logic [11]. Claßen and Lakemeyer [6] aim at the fully
automated verification of non-terminating Golog programs. They specify prop-
erties in an extension of the situation calculus by constructs of the first-order
temporal logic CTL∗. Verification then basically boils down to the computation
of a fixpoint, where again this computation need not terminate. If the fixpoint
computation terminates, then the proof that the desired property holds is a de-
duction in the underlying logic (i.e., no meta-theoretic reasoning is required).
However, due to the second source of undecidability mentioned above, this de-
duction problem is in general not decidable.

In the present paper, we introduce a restricted setting, where both sources of
undecidability are avoided. Regarding the first source, instead of examining the
actual execution sequences of a given Golog or Flux program, we consider infinite
sequences of actions that are accepted by a given Büchi automaton B. If B is an
abstraction of the program, i.e. all possible execution sequences of the program
are accepted by B, then any property that holds in all the sequences accepted
by B is also a property that is satisfied by any execution of the program. For
example, assume that, among other actions, researcher John can perform the
action “review paper,” which makes him tired, and that robot Robin can perform
the actions “deliver paper” and “deliver coffee,” where the latter one results in
John no longer being tired, whereas the former one results in John having to
review yet another paper. The property φtired we want to ensure is that John
does not stay tired indefinitely, i.e., whenever he is tired at some time point,
then there is a later time point at which he is not tired. Assume that there is
a complex program controlling Robin’s behaviour, but we can show that Robin
will infinitely often deliver coffee. Thus, the Büchi automaton Bdeliver that accepts
all action sequences that contain the action “deliver coffee” infinitely often is an
abstraction of this program, and it is easy to see that any infinite sequence of
actions accepted by this automaton satisfies φtired .

To avoid the second source of undecidability, we restrict the underlying logic
to a decidable description logic. Description Logics (DLs) [2] are a well-known
family of knowledge representation formalisms that may be viewed as fragments
of first-order logic (FO). The main strength of DLs is that they offer considerable
expressive power going far beyond propositional logic, while reasoning is still
decidable. An action formalism based on DLs was first introduced in [4], and it
was shown that important reasoning problems such as the projection problem,
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which are undecidable in the full situation/fluent calculus, are decidable in this
restricted formalism.

In this paper, we show that these positive results can be extended to the veri-
fication problem. As logic for specifying properties of infinite sequences of DL
actions, we use the temporalized DL ALC-LTL recently introduced in [3], which
extends the well-known propositional linear temporal logic (LTL) [12] by allowing
for the use of axioms (i.e., TBox and ABox statements) of the basic DL ALC in
place of propositional letters.1 Note that the property φtired that we have used in
the above coffee delivery example can easily be expressed in LTL.

In the next section, we first recall the basic definitions for DLs, action formalisms
based on DLs, temporalized DLs, and Büchi automata, and then introduce the
verification problem and its dual, the satisfiability problem, which asks whether
there is an infinite sequence of actions accepted by the given Büchi automaton B
that satisfies the property. Since these problems are interreducible in polynomial
time, we then concentrate on solving the satisfiability problem. In Section 3, we
consider a restricted version of the general problem, where the Büchi automaton
accepts exactly one infinite sequence of unconditional actions without occlusions.
The general problem is then investigated in Section 4.

2 Preliminaries

The integration of actions formalisms can be applied to any DL which has well-
defined semantics of actions [4]. In this paper, we investigate the computa-
tional complexity of the inference problems at hand for DLs between ALC and
ALCQIO, hence we give the syntax and semantics of those DLs [2] in this section.

In DLs, concepts are inductively defined starting with a set NC of concept names,
a set NR of role names, and (possibly) a set NI of individual names. The expres-
siveness of a DL is determined by a set of constructors. The relevant constructors
to the DLs considered in this paper are shown in Table 1, where we use C,D
to denote concepts, A to denote a concept name, r to denote roles, and a, b to
denote individual names. As usual, we use ⊤ as an abbreviation for A ⊔ ¬A.

The DL that allows only for negation, conjunction, disjunction, existential re-
striction, and value restriction is called ALC. Different extensions of ALC allow
additionally for different constructors, indicated by the name of the DL. For ex-
ample, the name ALCQIO stands for the DL which extends ALC with Qualified
number restriction, Inverse role, and nOminals. If a DL allows for inverse roles,
a role is r or r−1 for some r ∈ NR. A role is a role name otherwise.

An interpretation I is a pair (∆I , ·I) where ∆I is a non-empty set and ·I is a

1More precisely, we will consider the extension of ALC-LTL to DLs between ALC and
ALCQIO, but disallow TBox statements.
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Name Syntax Semantics

negation ¬C ∆I \ CI

conjunction C ⊓D CI ∩DI

disjunction C ⊔D CI ∪DI

existential restriction ∃r.C {x | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}

value restriction ∀r.C {x | ∀y.((x, y) ∈ rI → y ∈ CI)}

qualified number (6 n r C) {d | ♯{e ∈ CI | (d, e) ∈ rI} ≤ n}
restriction (> n r C) {d | ♯{e ∈ CI | (d, e) ∈ rI} ≥ n}

inverse role r− {(y, x) | (x, y) ∈ rI}

nominal {a} {aI}

Table 1: Syntax and semantics of concepts and roles.

mapping that assigns a subset AI of ∆I to each concept name A ∈ NC, a binary
relation rI on ∆I to each role name r ∈ NR, and an element aI of ∆I to each
individual name a ∈ NI. Moreover, for all a, b ∈ NI, a 6= b implies aI 6= bI .
The interpretation of inverse role and concept descriptions is shown in the third
column of Table 1, where #S is the cardinality of a set S. We call an x ∈ ∆I is
a named object in I iff there exists an a ∈ NI with aI = x. Otherwise, x is an
anonymous object in I.

An acyclic TBox T is a finite set of concept definitions of the form A ≡ C such
that there is no concept name A occurring twice on the left-hand side of concept
definitions or using directly or indirectly itself in its definition [2]. The concept
names occurring on the left-hand side of concept definitions of T are called defined
concept names in T , whereas all other concept names are called primitive concept
names in T . An interpretation I is a model of T (denoted by I |= T ) iff for
all A ≡ C ∈ T , we have AI = CI . Note that we restrict our attention to
acyclic TBoxes since, for more general TBox formalisms involving general concept
inclusion axioms (GCIs), it is not clear how to define an appropriate semantics
for DL actions.

An ABox A is a finite set of assertions of the form C(a), r(a, b), or ¬r(a, b), where
C is a concept, r is a role, a, b are individual names. We call an assertion with
the first form a concept assertion, a role assertion otherwise. An interpretation
I is a model of assertion

C(a) iff aI ∈ CI ;
r(a, b) iff (aI , bI) ∈ rI ;
¬r(a, b) iff (aI , bI) 6∈ rI .

I is a model of A (denoted by I |= A) iff for all ϕ ∈ A, I is a model of ϕ.
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Given an assertion γ, its negation ¬γ is again an assertion: ¬(C(a)) := (¬C)(a),
¬(r(a, b)) := ¬r(a, b), and ¬(¬r(a, b)) := r(a, b).

We say that An ABox A is consistent w.r.t. an acyclic TBox T if A and T have
a common model. Consistency of an ABox w.r.t. an acyclic TBox is one of the
standard inference problems in DLs, which is to decide existence of a model for
a given knowledge base. Its complexity in DLs between ALC and ALCQIO
has been thoroughly studied. We will see later on that the inference problems
considered in this paper can be decided with the help of consistency.

The temporalized DLs are obtained from propositional linear temporal logic
(LTL) [12] by allowing for the use of assertions in place of propositional letters.

Definition 1. DL-LTL formulae are defined by induction:

• if β is an assertion, then β is an DL-LTL formula;

• if φ, ψ are DL-LTL formulae, then so are φ ∧ ψ, φ ∨ ψ, ¬φ, φUψ, and Xφ.

△

We use true as an abbreviation for ⊤(a), φ→ ψ for ¬φ ∨ ψ, 3φ for trueUφ (dia-
mond, which should be read as “sometime in the future”), and 2φ for ¬(trueU¬φ)
(box, which should be read as “always in the future”).

The difference to the logic ALC-LTL introduced in [3] is, on the one hand, that
assertions in DLs between ALC and ALCQIO rather than just ALC-assertions
can be used. On the other hand, an ALC-LTL formula may also contain GCIs,
whereas in DL-LTL we do not allow the use of terminological axioms. Instead,
we use a global acyclic TBox, whose concept definitions must hold at every time
point. The semantics of DL-LTL is based on DL-LTL structures, which are
infinite sequences of interpretations over the same non-empty domain ∆ (constant
domain assumption) in which every individual name stands for a unique element
of ∆ (rigid individual names).

Definition 2. A DL-LTL structure is a sequence I = (Ii)i=0,1,... of interpreta-
tions Ii = (∆, ·Ii) such that aIi = aIj for all individual names a and all i, j ∈
{0, 1, 2, . . .}. Given a DL-LTL formula φ, a DL-LTL structure I = (Ii)i=0,1,...,
and a time point i ∈ {0, 1, 2, . . .}, validity of φ in I at time i (written I, i |= φ) is
defined inductively:

I, i |= β iff Ii satisfies the ABox assertion β
I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= φ ∨ ψ iff I, i |= φ or I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= Xφ iff I, i+ 1 |= φ
I, i |= φUψ iff there is k ≥ i such that I, k |= ψ

and I, j |= φ for all j, i ≤ j < k
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△

In this paper, we assume that the transition from Ii to Ii+1 in a DL-LTL structure
is caused by the application of an action. We recall the pertinent definitions for
DL actions from [4].

Definition 3 (Action). Let T be an acyclic TBox. An action α for T is a triple
(pre, occ, post) which consists of

• a finite set pre of ABox assertions, the pre-conditions ;

• a finite set occ of occlusions of the form A(a) or r(a, b), with A a primitive
concept name in T , r a role name, and a, b ∈ NI;

• a finite set post of conditional post-conditions of the form β/γ, where γ is
an ABox assertion and ψ is a primitive literal for T , i.e., an ABox assertion
A(a), ¬A(a), r(a, b), or ¬r(a, b) with A a primitive concept name in T , r a
role name, and a, b individual names.

If every β/γ ∈ post is of the form ⊤(a)/γ, then we call α an unconditional action,
and in this case we write γ instead of ⊤(a)/γ. Otherwise, it is a conditional
action. We say that an action α is without occlusions if occ = ∅. Otherwise, α is
with occlusions. △

Basically, such an action is applicable in an interpretation if its pre-conditions are
satisfied. The conditional post-condition β/γ requires that γ must hold after the
application of the action if β was satisfied before the application. In addition,
nothing should change that is not required to change by some post-condition.
Occlusions specify the parts where the concept names and the role names can
change freely.

Definition 4. Let T be an acyclic TBox, α = (pre, occ, post) an action for T , and
I, I ′ interpretations sharing the same domain and interpretations of all individual
names. We say that α may transform I to I ′ w.r.t. T (I ⇒T

α I ′) iff, I and I ′

are models of T and for each primitive concept name A in T and each role name
r, we have

AI′

∩ IA = ((AI ∪ A+) \ A−) ∩ IA, and
rI

′

∩ Ir = ((rI ∪ r+) \ r−) ∩ Ir,

where

A+ = {bI | ϕ/A(b) ∈ post ∧ I |= ϕ},
A− = {bI | ϕ/¬A(b) ∈ post ∧ I |= ϕ},
IA = (∆I \ {bI | A(b) ∈ occ}) ∪ (A+ ∪ A−),
r+ = {(aI , bI) | ϕ/r(a, b) ∈ post ∧ I |= ϕ},
r− = {(aI , bI) | ϕ/¬r(a, b) ∈ post ∧ I |= ϕ}, and
Ir = ((∆I × ∆I) \ {(aI , bI) | r(a, b) ∈ occ}) ∪ (r+ ∪ r−).
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We say that α is executable in I if I is a model of pre. △

Let α = α1 · · ·αm be a finite sequence of actions. We use I ⇒T
α I ′ to abbreviate

I ⇒T
α1

· · · ⇒T
αm

I ′. We say that an action α is consistent with T iff for all
β1/γ, β2/¬γ in the post-conditions of α, {β1, β2} ∪ T is inconsistent. In this
paper, we consider only consistent actions. The requirement of consistent actions
is to avoid an unintuitive result of applying actions. For example, the set of
post-conditions of an inconsistent action α is {β/A(a), β/¬A(a)}. Thus, for all
models I of T with I |= ϕ, and for all I ′ with I ⇒T

α I ′, according to Definition 4,
I ′ 6|= A(a). This means that β/A(a) is not satisfied by the application of α.

It follows directly from Definition 4 that for all interpretation I, DL actions can
only change the interpretations of named objects in I. Note that for all acyclic
TBoxes T and for all actions α for T , if α is without occlusions, then for all
models I of T , there exists a unique I ′ such that I ⇒T

α I ′ [4].

In this paper, we are interested in deciding whether the executions of infinite
sequences of actions satisfy a (temporal) property expressed in DL-LTL. Let Σ
be a finite set of actions for T . An infinite sequence of such actions can be viewed
as an infinite word over the alphabet Σ, i.e., a mapping w : N → Σ, where N

denotes the set of non-negative integers.

Definition 5. Let T be an acyclic TBox, A be an ABox, and w an infinite
sequence of actions for T . The DL-LTL structure I = (Ii)i=0,1,... w.r.t. T and
w is generated by w from A w.r.t. T if I0 is a model of A and, for all i ≥ 0, we
have Ii ⇒

T
w(i) Ii+1 and w(i) is executable in Ii. △

For the verification problem, we consider infinite sequences of actions accepted
by a Büchi automaton. Büchi automata are finite automata accepting infinite
words [15]. A Büchi automaton B basically looks and works like a “normal”
finite automaton, but it receives infinite words w as inputs, and thus generates
infinite runs. An infinite run of B on w is an infinite word r : N → Q over the
alphabet Q of states of B such that r(0) is an initial state and, for every i ≥ 0,
there is a transition of B from the state r(i) with letter w(i) to the state r(i+1).
This run is accepting if it infinitely often reaches a final state. The language
Lω(B) of infinite words accepted by B consists of all infinite words w over Σ such
that B has an accepting run on w.

We are now ready to give a formal definition of the verification problem, which
was informally introduced in Section 1, as the problem of deciding validity of a
DL-LTL formula w.r.t. an acyclic TBox, an ABox, and a Büchi automaton.

Definition 6. Let T be an acyclic TBox, A an ABox, Σ a finite set of actions
for T , B a Büchi automaton for the alphabet Σ, and φ a DL-LTL formula.

• φ is valid w.r.t. T , A, and B if I, 0 |= φ holds for all w ∈ Lω(B) and all
DL-LTL structures I generated by w from A w.r.t. T .
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• φ is satisfiable w.r.t. T , A, and B if there is w ∈ Lω(B) and a DL-LTL
structures I generated by w from A w.r.t. T such that I, 0 |= φ.

△

Obviously, φ is valid w.r.t. T , A and B iff ¬φ is unsatisfiable w.r.t. T , A and
B. For this reason, we concentrate in the following on solving the satisfiability
problem.

Let us give the formal description of our example in the previous section. We use
the following initial ABox

A = {∃hasSubmittedPaper.{paperi}(ecai2010) | 1 ≤ i ≤ 500}∪
{¬Reviewed(paperi) | 1 ≤ i ≤ 500}

to state that there are 500 papers submitted to the conference ecai2010 and that
none of them has been reviewed yet. Robot Robin is in charge of delivering papers
to the reviewers and keeping them vigorous by serving them coffee. John is one
of the reviewers. We define the following actions:

reviewPaperi = ({¬Tired(john),Assigned(paperi)}, ∅,
{¬Reviewed(paperi)/Reviewed(paperi),
¬Reviewed(paperi)/Tired(john)}),

deliverPaperi = ({∃hasSubmittedPaper.{paperi}(ecai2010)}, ∅, {Assigned(paperi)}),

deliverCoffee = (∅, ∅, {¬Tired(john)}),

where i is with 1 ≤ i ≤ 500. The property φtired is captured by the following
DL-LTL formula:

φtired = 2(Tired(john) → 3¬Tired(john)).

The Büchi automaton Bdeliver is depicted in Figure 1. The state q0 is the initial
state and q1 is the final state. The alphabet of Bdeliver is Σ which consists of the
actions defined above. The actions reviewPaperi, deliverPaperi, and deliverCoffee

are respectively abbreviated with rPi, dPi, and dC. It is easy to check that for
every w ∈ Σω, w ∈ Lω(Bdeliver) iff the action deliverCoffee occurs infinitely often
in w.

3 The Case of a Single Cyclic Sequence of Un-

conditional Actions without Occlusions

We say that the infinite word w is cyclic if it starts with an initial word α1 · · ·αm

and then repeats a non-empty word β1 · · · βn infinitely often. We denote such a
cyclic word by w = α1 · · ·αm(β1 · · · βn)ω. The following facts are well-known [15]
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q0 q1
dC

dPi, rPi

dPi, rPi

dC

Figure 1: Bdeliver

(and easy to see): if B is a Büchi automaton that accepts a singleton language
{w}, then w is a cyclic word of the form w = α1 · · ·αm(β1 · · · βn)ω where m,n
are bounded by the cardinality of the set of states of B; conversely any singleton
language {w} consisting of a cyclic word w = α1 · · ·αm(β1 · · · βn)ω is accepted
by a corresponding Büchi automaton Bw such that the cardinality of the set of
states of B is linear in m+ n.

In this section, we consider only Büchi automata accepting singleton languages.
In addition, we restrict the attention to unconditional actions without occlusions.
Thus, for the remainder of this section, we assume that T is an acyclic TBox,
A an ABox, Σ a finite set of unconditional actions for T (without occlusions),
Bw a Büchi automaton for the alphabet Σ accepting the singleton language {w}
for w = α1 · · ·αm(β1 · · · βn)ω, and φ an DL-LTL formula. Such a cyclic sequence
of actions represents a program that, after an initialization phase, runs in a non-
terminating loop.

Lemma 7. Let I and I ′ be two interpretations and β = β1 · · · βn be a sequence
of actions for a TBox T . If I ⇒T

β I ′, then I ′ ⇒T
β I ′.

Proof. Suppose I ′ ⇒T
β J ′ for some interpretation J ′ (such a J ′ always exists

since for every model I of T and every action α for T , if α is without occlusions,
then there exists an I ′ with I ⇒T

α I ′ [4]). Thus, it is enough to show that I ′ = J ′.
Since both interpretations I ′ and J ′ share the domain (suppose it is denoted by
∆) and interpretations of all individual names, it remains to show for all primary
concept name A w.r.t. T and all r ∈ NR, we have AI′

= AJ ′

and rI
′

= rJ
′

. Here
we show only the former and the latter can be proved analogously.

“⊆”: Assume that AI′

6⊆ AJ ′

. Then there is a d ∈ ∆ such that d ∈ AI′

and
d 6∈ AJ ′

. Since I ′ ⇒T
β J ′, there is a βj ∈ {β1, . . . , βn} such that ¬A(a) ∈ βj

for some a ∈ NI with aI = d and for all i with j < i ≤ n, we have A(a) 6∈ βi.
(Intuitively, it means that d is removed from A by βj and never added afterwards.)
However, together with I ⇒T

β I ′, such a βj in β implies d 6∈ AI′

, which contradicts
the assumption.

“⊇”: Assume that AJ ′

6⊆ AI′

. Then there is a d ∈ ∆ such that d ∈ AJ ′

and
d 6∈ AI′

. Since I ′ ⇒T
β J ′, there is a βj ∈ {β1, . . . , βn} such that A(a) ∈ βj

for some a ∈ NI with aI = d and for all i with j < i ≤ n, we have ¬A(a) 6∈ βi.
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(Intuitively, it means that d is added into A by βj and never removed afterwards.)
However, together with I ⇒T

β I ′, such a βj in β implies d ∈ AI′

, which contradicts
the assumption. ❏

The main observation that allows us to solve the satisfiability problem for φ w.r.t.
T , A and Bw is that each DL-LTL structure generated by w from A w.r.t. T “runs
into a cycle” after the first m + 2n interpretations. This is a direct consequence
of Lemma 7.

Lemma 8. Let I = (Ii)i=0,1,... be a DL-LTL structure generated by w = α1 · · ·αm(β1 · · · βn)ω

from A w.r.t. T . Then Im+kn+i = Im+n+i for all k ≥ 2 and 0 ≤ i < n.

Based on this observation, we can solve the satisfiability problem by the reduction
from the satisfiability problem of DL-LTL formulas to the consistency problem:

• Construct an acyclic TBox Tred and an ABox Ared from A, T , w, and φ,

• Construct an ABox Apre from w, and

• Compute an ABox Aφ from φ by a tableau algorithm.

We show that φ is satisfiable w.r.t. T , A, and Bw iff Ared ∪Apre ∪Aφ is consistent
w.r.t. Tred.

Without loss of generality, we can assume that there are no LTL negation signs
in φ. First, we transform φ into negation normal form (NNF), i.e., LTL negation
signs occur only in front of ABox assertions. To this end, we need to introduce
the dual operator R of U. ϕRψ = ¬(¬ϕU¬ψ), i.e., I, i |= ϕRψ iff for all m ≥ i,
I,m |= ψ or there exists a k such that I, k |= ϕ and I, j |= ψ for all j with
i ≤ j ≤ k.

¬(ϕ ∧ ψ) ; ¬ϕ ∨ ¬ψ; ¬(ϕ ∨ ψ) ; ¬ϕ ∧ ¬ψ;
¬(ϕUψ) ; ¬ϕR¬ψ; ¬(ϕRψ) ; ¬ϕU¬ψ;

¬Xϕ ; X¬ϕ.

By exhaustively applying the above rules, every DL-LTL formula φ can be trans-
formed to an equivalent one in NNF. What is more, replace respectively ¬(C(a))
with (¬C)(a), ¬(r(a, b)) with ¬r(a, b), and ¬((¬r)(a, b)) with r(a, b) after NNF
of ϕ is obtained. It is clear that those replacements are satisfiability preserving
and can be done in polynomial time of the size of φ. The size of obtained formula
is polynomial in the size of φ [17].

Basically, we apply the approach for solving the projection problem from [4]
to the finite sequence of actions α1 · · ·αm β1 · · · βnβ1 · · · βn−1. In this approach,
time-stamped copies of all concept and role names occurring in the input (i.e., in
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w, T ,A, φ) are generated, together with a number of additional auxiliary concept
names. Using this extended vocabulary, one builds, for every assertion γ occurring
in the input, time-stamped variants γ(i) for all i, 0 ≤ i ≤ m+2n−1. The extended
vocabulary is also used to construct an acyclic TBox Tred and an ABox Ared. As
we will see in the construction, for each concept name A and each role name
r in the input, we introduce labeled names A(i), T

(i)
A , and r(i) to describe the

interpretation of those names after the sequence of action w(0) · · ·w(i− 1).2

Let Obj be the set of all the individual names in the input, i.e, in A, T , φ or Bw.

TN = {N ≡ ⊔
a∈Obj

{a}}.

Let Sub be the set of the subconcepts in the input. For every C ∈ Sub, if
C ∈ Sub is not a defined concept name of T , then there is a concept definition of
T

(i)
C in T

(i)
Sub. Moreover, T

(i)
Sub contains only those concept definitions. The concept

definition of T
(i)
C is defined inductively on the structure of C as described in

Figure 2. We are now ready to assemble Tred:

Tred = TN ∪ (
m+2n−1⋃

i=0

T
(i)

Sub) ∪ {T
(i)
A ≡ T

(i)
E | A ≡ E ∈ T , i ≤ m+ 2n− 1}.

The TBoxes TN and T
(i)

sub can ensure that the interpretations of concept and
role names remain unchanged by actions on the anonymous objects and the last
part of Tred is to make sure that T is satisfied no matter how actions change an
interpretation. The changes by actions on the named objects will be guaranteed
by Ared. For every ABox assertion ϕ we define ϕ(i) as

ϕ(i) =






T
(i)
C (a) if ϕ = C(a)
r(i)(a, b) if ϕ = r(a, b)
¬r(i)(a, b) if ϕ = ¬r(a, b)

(1)

For 1 ≤ i ≤ m+ 2n− 1, we define

A
(i)
post = {γ(i) | γ ∈ posti−1}

For 1 ≤ i ≤ m+ 2n− 1 the ABox A
(i)
min only contains

1. the following assertions for every a ∈ Obj and every primitive concept name
A in T in the input:

a : (A(i−1) → A(i)) if ¬A(a) 6∈ posti−1

a : (¬A(i−1) → ¬A(i)) if A(a) 6∈ posti−1

2There are other names introduced in the reduction. The intuition of those names is given
in detail in [4]. Note that the auxiliary individual name ahelp and ABox Aaux and role names
ra used in [4] are not necessary here since we consider only unconditional actions.
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T
(i)
A ≡ (N ⊓ A(i)) ⊔ (¬N ⊓ A(0)) for a primary concept name A w.r.t. T

T
(i)
{a} ≡ {a}

T
(i)
¬C ≡ ¬T

(i)
C

T
(i)
C⊓D ≡ T

(i)
C ⊓ T

(i)
D

T
(i)
C⊔D ≡ T

(i)
C ⊔ T

(i)
D

T
(i)
∃r.C ≡

(
N ⊓

(
(∃r(0).(¬N ⊓ T

(i)
C )) ⊔ (∃r(i).(N ⊓ T

(i)
C ))

))

⊔(¬N ⊓ ∃r(0).T
(i)
C ))

T
(i)
∀r.C ≡

(
N →

(
(∀r(0).(¬N → T

(i)
C )) ⊓ (∀r(i).(N → T

(i)
C ))

))

⊓(¬N → ∀r(0).T
(i)
C )

T
(i)
(>n r C) ≡

(
N ⊓ ⊔

0≤j≤min{n,#Obj}

(
(> j r(i) (N ⊓ T

(i)
C ))⊓

(> (n− j) r(0) (¬N ⊓ T
(i)
C ))

))

⊔(¬N ⊓ (> n r(0) T
(i)
C ))

T
(i)
(6n r C) ≡

(
N → ⊓

0≤j≤min{n+1,#Obj}

(
¬(> j r(i) (N ⊓ T

(i)
C ))⊔

¬(> (n− j) r(0) (¬N ⊓ T
(i)
C ))

))

⊓(¬N → (6 n r(0) T
(i)
C ))

Figure 2: Concept definitions in T
(i)

Sub.

2. the following assertions for all a, b ∈ Obj and every role name r in the input:

a : (∃r(i−1).{b} → ∃r(i).{b}) if ¬r(a, b) 6∈ posti−1

a : (∀r(i−1).¬{b} → ∀r(i).¬{b}) if r(a, b) 6∈ posti−1.

The ABox Aini is defined as follows:

Aini = {ϕ(0) | ϕ ∈ A}.

Then, we construct Ared:

Ared = Aini ∪
m+2n−1⋃

i=1

A
(i)
post ∪

m+2n−1⋃

i=1

A
(i)
min.

As revealed in [4], from every model of Tred and Ared we can construct the crucial
part of a DL-LTL structure generated by w from A w.r.t. T and vice versa.

Lemma 9. Let (T ,A,Bw, φ) be an input of the satisfiability problem. Let Ared

and Tred be respectively the ABox and the TBox obtained according to the above
construction using w = α1 . . . αmβ1 . . . βn is the only word accepted by Bw. Then,
we have

12



• for every sequence I0, . . . , Im+2n−1 of models of T such that I0 |= A and
Ii ⇒

T
w(i) Ii+1 for every i with 0 ≤ i < m+ 2n− 1, there exists an interpre-

tation J such that J |= Ared, J |= Tred, and for all i ∈ {0, . . . ,m+ 2n− 1}
and for all assertions γ in the input, Ii |= γ iff J |= γ(i).

• for every interpretation J such that J |= Ared, J |= Tred, there exists a
sequence I0, . . . , Im+2n−1 of models of T such that I0 |= A, and for every i
with 0 ≤ i < m+ 2n− 1, we have Ii ⇒

T
w(i) Ii+1 and for all assertions γ in

the input, Ii |= γ iff J |= γ(i).

Employing this property of Ared and Tred, we can also check executability of w.
Define Apre as follows:

Apre =
⋃

0≤j<m+2n−1

{γ(j) | γ ∈ prej}.

The tableau rules displayed in Figure 3 try to satisfy the semantics of LTL oper-
ators in the DL-LTL formula φ, where in ∨-rule we have:

B′ = (A \ {(ϕ1 ∨ ϕ2)
(i)}) ∪ {ϕ

(i)
1 }, and

B′′ = (A \ {(ϕ1 ∨ ϕ2)
(i)}) ∪ {ϕ

(i)
2 };

in U-rule1 and U-rule2, we have:

Bk = (A \ {(ϕ1Uϕ2)
(i)}) ∪ {ϕ

(i)
1 , . . . , ϕ

(k−1)
1 , ϕ

(k)
2 }

for all k with i ≤ k < m+ 2n, and

Bk = (A \ {(ϕ1Uϕ2)
(i)}) ∪ {ϕ(i)

1 , . . . , ϕ
(m+2n−1)
1 , ϕ

(m+n)
1 , . . . , ϕ

(k−1)
1 , ϕ

(k)
2 },

for all k with m+ n ≤ k < i;

and in R-rule1 and R-rule2 we have:

Bk = (A \ {(ϕ1Rϕ2)
(i)}) ∪ {ϕ

(i)
2 , . . . , ϕ

(k)
2 , ϕ

(k)
1 },

for all k with i ≤ k < m+ 2n,

B∞
1 = {ϕ

(i)
2 , . . . , ϕ

(m+2n−1)
2 },

Bk = (A \ {(ϕ1Uϕ2)
(i)}) ∪ {ϕ

(i)
2 , . . . , ϕ

(m+2n−1)
2 , ϕ

(m+n)
2 , . . . , ϕ

(k)
2 , ϕ

(k)
1 },

for all k with n+m ≤ k < i, and

B∞
2 = {ϕ

(m+n)
2 , . . . , ϕ

(m+2n−1)
2 }.

As we can see, the tableau rules work on a set of sets of DL-LTL formulas. Each
formula is labeled with (i). Intuitively, the label stands for the time point, e.g.,
ψ(i) can be read as the formula ψ holds at time point i. We apply exhaustively the
tableau rules to S = {{φ(0)}}. The following lemma tells us that every application
of a tableau rule preserves satisfiability of the formula the rule applies to:
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A ∈ S ∧ (ϕ1 ∧ ϕ2)
(i) ∈ A

A := (A \ {(ϕ1 ∧ ϕ2)
(i)}) ∪ {ϕ

(i)
1 , ϕ

(i)
2 }

∧-rule

A ∈ S ∧ (ϕ1 ∨ ϕ2)
(i) ∈ A

S := (S \ {A}) ∪ {B′,B′′}
∨-rule

A ∈ S ∧ (Xϕ)(i) ∈ A ∧ i < m+ 2n− 1

A := A \ {(Xϕ)(i)} ∪ {ϕ(i+1)}
X-rule1

A ∈ S ∧ (Xϕ)(i) ∈ A ∧ i = m+ 2n− 1

A := A \ {(Xϕ)(i)} ∪ {ϕ(n+m)}
X-rule2

A ∈ S ∧ (ϕ1Uϕ2)
(i) ∈ A ∧ i ≤ m+ n

S := S \ {A} ∪ {Bi, . . . ,Bm+2n−1}
U-rule1

A ∈ S ∧ (ϕ1Uϕ2)
(i) ∈ A ∧ i > m+ n

S := S \ {A} ∪ {Bm+n, . . . ,Bm+2n−1}
U-rule2

A ∈ S ∧ (ϕ1Rϕ2)
(i) ∈ A ∧ i ≤ m+ n

S := S \ {A} ∪ {Bi, . . . ,Bm+2n−1,B
∞
1 }

R-rule1

A ∈ S ∧ (ϕ1Rϕ2)
(i) ∈ A ∧ i > m+ n

S := S \ {A} ∪ {Bm+n, . . . ,Bm+2n−1,B
∞
2 }

R-rule2

Figure 3: Tableau rules.

Lemma 10. Let S be the set in some status of the tableau algorithm starting
with {{φ(0)}}. S

′ is obtained from S by an application of one of the tableau rules
to Al ∈ S. Then for every DL-LTL structure I = (Ii)i=0,1,... generated by w from
A w.r.t. T , the following statements are equivalent:

• I, i |= ϕ for all ϕ(i) ∈ Al.

• there exists an new element Bk ∈ S
′ such that I, i |= ϕ for all ϕ(i) ∈ Bk.

Proof. It is obvious for ∧-rule and ∨-rule. By Lemma 7, I is of the following
form:

(I0, . . . , Im+n, . . . , Im+2n−1, Im+n, . . . , Im+2n−1, Im+n, . . . ).

Thus, it follows that the above statements are equivalent for X-rule1 and X-rule2.

U-rule1: Consider the removed formula (ϕ1Uϕ2)
(i) ∈ Al. Then we know that for

all i ≤ m + n, I, i |= ϕ1Uϕ2 iff (by the semantics of U) there exists a k ≥ i such
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that I, k |= ϕ2 and I, j |= ϕ1 for all i ≤ j < k iff (from the form of I we know
that k must be smaller than m + 2n) there exists a k with i ≤ k ≤ m + 2n − 1
such that I, k |= ϕ2 and I, j |= ϕ1 for all j with i ≤ j < k, i.e., there is one new
added Bk such that I, i |= ϕ for all ϕ(i) ∈ Bk \ Al.

U-rule2: Consider the removed formula (ϕ1Uϕ2)
(i) ∈ Al. Then we know that for

all i > m + n, I, i |= ϕ1Uϕ2 iff (by the semantics of U) there exists a k ≥ i such
that I, k |= ϕ2 and I, j |= ϕ1 for all i ≤ j < k iff (from the form of I we know that
k must be between m+ n and m+ 2n) there exists a k with i ≤ k ≤ m+ 2n− 1
such that I, k |= ϕ2 and I, j |= ϕ1 for all j with i ≤ j < k or there exists a k with
m + n ≤ k < i such that I, k |= ϕ2 and I, j |= ϕ1 for all j with i ≤ j ≤ m + 2n
and for all j with m+n ≤ j < k iff there is one new added Bk such that I, i |= ϕ
for all ϕ(i) ∈ Bk \ Al.

Similarly, the form of I, together with the semantics of R operator, implies that
the two statements in the lemma are equivalent if either of R-rule1 and R-rule2 is
applied. ❏

After the tableau algorithm terminates with S, for every A in S, every formula
in A is an ABox assertion and the function defined in (1) can applied to those
assertions.3 Thus, every element in S can be viewed as an ABox. Then, we use
the set S, together with the constructed Tred, Ared, and Apre to decide whether φ
is satisfiable w.r.t. T , A, and Bw.

Lemma 11. Let S be the set when the tableau algorithm terminates. Then φ is
satisfiable w.r.t. T , A, and Bw iff there is an Aφ ∈ S such that Ared ∪Apre ∪Aφ

is consistent w.r.t. Tred.

Proof. “⇒”: If ϕ is satisfiable w.r.t. T , A, and Bw then there is a DL-LTL
structure I = (Ii)i=0,1,... generated by w from A w.r.t. T such that I, 0 |= A.
By Point 1 of Lemma 9, there exists an interpretation J such that J |= Ared,
J |= Tred and for all i ∈ {0, . . . ,m+ 2n− 1} and for all assertions γ in the input,
Ii |= γ iff J |= γ(i). Since Ii |= prei for all i with 0 ≤ i ≤ m+ 2n− 1, we obtain
that J |= Apre. By Lemma 10, I, 0 |= φ implies there exists Aφ ∈ S such that
I, i |= ϕ for all ϕ(i) ∈ Aφ. Since for every ϕ(i) ∈ Aφ, ϕ is an assertion, I, i |= ϕ
yields Ii |= ϕ. Hence, J |= Aφ.

“⇐”: Let J be a model of Ared ∪ Apre ∪ Aφ and Tred with some Aφ ∈ S. Then
it follows from Point 2 of Lemma 9 that there exist I0, . . . , In+2m−1 such that
I0 |= A and Ii ⇒

T
w(i) Ii+1 for all i with 0 ≤ i < m+ 2n− 1 and for all assertions

γ in the input and for all i with 0 ≤ i < m+ 2n− 1, Ii |= γ iff J |= γ(i). Define
I as follows:

(I0, . . . , Im+n, . . . , Im+2n−1, Im+n, . . . , Im+2n−1, Im+n, . . . ).

3The termination of the tableau algorithm will be addressed later on when we analyze the
complexity.
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By the definition of Apre, we know that Ii |= prei for all i with 0 ≤ i < m+2n−1,
which implies that Ii |= prei for all i ≥ 0. By Lemma 7, I is a DL-LTL structure
generated by w from A w.r.t. T . Moreover, J |= Aφ implies for all ψ(i) ∈ Aφ,
Ii |= ψ, i.e., I, i |= ψ. By Lemma 10, we have I, 0 |= φ. ❏

For arbitrary T , A, Bw, and φ, the size of Ared and Tred is polynomial in the size
of input and they can be constructed in polynomial time. This is independent of
the codings of numbers in the number restrictions in the input [9]. It is clear that
Apre has those properties as well. In general, the size of S can be exponential
in the size of the input. However, we need only one element Aφ in S such
that Ared ∪ Apre ∪ Aϕ ∪ Tred is consistent. For a DL-LTL formula φ, Aφ can be
constructed in NPSpace since

• each application of a tableau rule generates at most only (m + 2n) (i.e.,
polynomially many) sets of labeled formulas;

• every labeled formula in generated sets is a strict subformula of the formula
that the rule applies to and i in all labels (i) is never over m+ 2n− 1;

• there is a tableau rule applicable iff there is an LTL operator in S.

By Savitch’s theorem [10], the construction of Aφ can be done in PSpace. Over-
all, Ared, Apre, Aφ and Tred can be constructed in PSpace. Consistency checking
of an ALCQO-ABox w.r.t. an ALCQO-TBox is in PSpace [5] if the numbers
in qualified number restriction are coded in unary. For ALCIO, it is in Exp-

Time [1]. For ALCQIO, a fragment of C2, it is in NExpTime [16, 13], even
if the numbers are in binary coding. Thus, we obtained an upper bound of the
satisfiability problem for DLs between ALC and ALCQIO.

Lemma 12. The satisfiability problem of DL-LTL formulas w.r.t. acyclic TBoxes,
ABoxes, and Büchi automata (with the restriction specified at the beginning of this
section) is

• in PSpace for ALCQO if the numbers in qualified number restriction are
coded in unary;

• in ExpTime for ALCIO;

• in NExpTime for ALCQIO.

In what follows, we show that those upper bounds are tight by reducing the
projection problem to the (un)satisfiability problem.
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Definition 13 (The projection problem). Let T be an acyclic TBox, α1 · · ·αm a
finite sequence of actions for T , and A an ABox. An assertion ϕ is a consequence
of applying α1 · · ·αm in A w.r.t. T iff for all models of A and T , and all I ′ with
I ⇒T

α1···αm
I ′, we have I ′ |= ϕ. △

It has been shown in [4] that for DLs L between ALC and ALCQIO, the pro-
jection problem in L is as hard as the (in)consistency problem in LO even if
every action has empty set of pre-conditions and occlusions and unconditional
post-conditions.

We can reduce the projection problem in L to the validity problem of DL-LTL
formulas w.r.t. acyclic TBoxes, ABoxes, and Büchi sequences of actions in L. Let
A be an ABox and αi = (∅, ∅, posti) an unconditional action for an TBox T for
all i with 1 ≤ i ≤ m. It is easy to see that an assertion ϕ is a consequence
of applying α1 . . . αm in A w.r.t. T iff Xmϕ is valid w.r.t. T , A, and Bw with
w = α1 . . . αmβ

ω
1 and β1 = (∅, ∅, ∅) (in which Xm is the abbreviation of number m

of Xs). Thus, the complexity results about the projection problem in [4] imply
the following lemma:

Lemma 14. The validity problem of DL-LTL formulas w.r.t. acyclic TBoxes,
ABoxes, and Büchi automata (with the restriction specified at the beginning of
this section) is

• PSpace-hard for ALC;

• ExpTime-hard for ALCI;

• co-NExpTime-hard for ALCQI.

The above lemma does not rely on the coding of numbers. Recall that the validity
problem can be further reduced to the (un)satisfiability problem. Thus,

Theorem 15. The satisfiability problem (and the complement of the validity prob-
lem) of DL-LTL formulas w.r.t. acyclic TBoxes, ABoxes, and Büchi automata
(with the restriction specified at the beginning of this section) for the DL L is

• PSpace-complete if L is in {ALC,ALCO,ALCQ,ALCQO} and the num-
bers in qualified number restriction are coded in unary;

• ExpTime-complete if L is in {ALCI,ALCIO};

• NExpTime-complete if L is in {ALCQI,ALCQIO}.
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4 The General Case

Now, we consider arbitrary Büchi automata and (possibly) conditional actions.
In this setting, we cannot use the approach introduced in the previous section. On
the one hand, it is easy to see that, for conditional actions, the crucial Lemma 8
need not hold. On the other hand, while any non-empty language accepted by
a Büchi automaton contains a cyclic word, it may also contain non-cyclic ones.
Thus, it is not a propri clear whether a cyclic word can be taken as the word
w ∈ Lω(B) required by the definition of the satisfiability problem.

Our approach for solving satisfiablity of a DL-LTL formula φ w.r.t. an acyclic
TBox T , an ABox A, and a Büchi automaton B over an alphabet Σ of (possibly)
conditional actions is based on the approach for deciding satisfiablity in ALC-LTL
introduced in [3]. Given a DL-LTL formula φ to be tested for satisfiability, this

approach builds the propositional abstraction φ̂ of φ by replacing each assertion4

γ occurring in φ by a corresponding propositional letter pγ. Let L be the set of
propositional letters used for the abstraction. Consider a set S ⊆ P(L), i.e., a
set of subsets of L. Such a set induces the following (propositional) LTL formula:

φ̂S := φ̂ ∧ 2

(
∨

X∈S

(
∧

p∈X

p ∧
∧

p 6∈X

¬p

))

Intuitively, this formula is satisfiable if there exists a propositional LTL struc-
ture satisfying φ̂ in which, at every time point, the set of propositional letters
satisfied at this time point is one of the sets X ∈ S. To get satisfiability of φ
from satisfiability of φ̂S for some S ⊆ P(L), we must check whether the sets of
assertions induced by the sets X ∈ S are consistent. To be more precise, assume
that a set S = {X1, . . . , Xk} ⊆ P(L) is given. For every i, 1 ≤ i ≤ k, and every
concept name A (role name r) occurring in φ, we introduce a copy A(i) (r(i)).
We call A(i) (r(i)) the ith copy of A (r). The assertion γ(i) is obtained from γ
by replacing every occurrence of a concept or role name by its ith copy. The set
S = {X1, . . . , Xk} induces the following ABox:

AS :=
⋃

1≤i≤k

{γ(i) | pγ ∈ Xi} ∪ {¬γ(i) | pγ 6∈ Xi}.

The following lemma is proved in [3].

Lemma 16. The DL-LTL formula φ is satisfiable iff there is a set S ⊆ P(L)

such that the propositional LTL formula φ̂S is satisfiable and the ABox AS is
consistent (w.r.t. the empty TBox).

4In [3], both assertions and GCIs need to be replaced. In the present paper, GCIs are not
allowed to occur in LTL formulae, and thus we need to deal only with assertions.

18



Now, we show how we can use this approach to solve the satisfiability problem
introduced in Definition 6, i.e., satisfiability of a DL-LTL formula φ w.r.t. an
acyclic TBox T , an ABox A, and a Büchi automaton B over an alphabet Σ
of (possibly) conditional actions. First, note that Lemma 16 also holds if we
formulate it for DL-LTL formulae, with a DL between ALC and ALCQIO, rather
than ALC-LTL formulae. However, the existence of a set S ⊆ P(L) such that φ̂S

is satisfiable and the ABox AS is consistent is not enough to have satisfiability of
φ w.r.t. T , A, and B. In fact, the existence of such a set only yields a DL-LTL
structure I = (Ii)i=0,1,... satisfying φ. We also need to ensure (i) that I0 is a
model of A and (ii) that there is an infinite word w ∈ Lω(B) such that, for all
i ≥ 0, the transition from Ii to Ii+1 is caused by the action w(i) and Ii is a model
of T .

Ensuring that I0 is a model of A is easy since A can be encoded in the DL-LTL
formula by working with the formula φ ∧

∧
γ∈A γ instead of φ. For this reason,

we will assume in the following (without loss of generality) that the ABox A is
empty.

To deal with the second issue, we introduce corresponding propositional letters
pγ not only for the assertions γ occurring in φ, but also for (i) the assertions
γ occurring in the actions in Σ, and (ii) the assertions γ of the form A(a) and
r(a, b) where A, r, a, b occur in φ, T , or an action in Σ, A is a concept name that
is primitive in T , r is a role name, and a, b are individual names. We call the
assertions introduced in (ii) primitive assertions. In the following, let L be the
(finite) set of propositional letters obtained this way. Obviously, Lemma 16 still
holds if we use this larger set of propositional letters to build the sets S and the
formulae φ̂S .

One way of deciding satisfiability of a propositional LTL formula φ̂ is to con-
struct a Büchi automaton Cbφ

that accepts the propositional LTL structures sat-

isfying φ̂ [18]. To be more precise, let Γ := P(L). A propositional LTL struc-

ture Î = (wi)i=0,1,... is an infinite sequence of truth assignments to the proposi-
tional letters from L. Such a structure can be represented by an infinite word
X = X(0)X(1) . . . over Γ, where X(i) consists of the propositional variables that
wi makes true. The Büchi automaton Cbφ

is built such that it accepts exactly
those infinite words over Γ that represent propositional LTL structures satisfying
φ̂. Consequently, φ̂ is satisfiable iff the language accepted by Cbφ

is non-empty.

The size of Cbφ
is exponential in the size of φ̂, and the emptiness test for Büchi

automata is polynomial in the size of the automaton. As sketched in [3], the
automaton Cbφ

can easily be modified into one accepting exactly the words rep-

resenting propositional LTL structures satisfying φ̂S . In fact, we just need to
remove all transitions that use a letter from Γ \ S. Obviously, this modification
can be done in time polynomial in the size of Cbφ

, and thus in time exponential in

the size of φ̂. We denote the Büchi automaton obtained this way by CS
bφ
.
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Lemma 17. Let φ be a DL-LTL formula and L the set of propositional letters
constructed as described above. Let S be a subset of P(L). We construct φ̂S and

CS
bφ

as above. Then for every propositional structure Î = (wi)i=0,1,..., Î, 0 |= φ̂S iff

the infinite word represented by Î is accepted by CS
bφ
.

Now, consider the Büchi automaton B from the input, and assume that it is of
the form B = (Q,Σ, I,∆, F ), where Q is the set of states, I ⊆ Q the set of initial
states, ∆ ⊆ Q×Σ×Q the transition relation, and F ⊆ Q the set of final states.
We use B to construct a Büchi automaton B′ = (Q′,Γ, I ′,∆′, F ′) that accepts
those infinite words X = X(0)X(1) . . . over the alphabet Γ for which there is an
infinite word w ∈ Lω(B) such that the difference between X(i) and X(i+ 1) is
“caused by” the action w(i):

• Γ = P(L);

• Q′ = Q× Σ × Γ;

• I ′ = I × Σ × Γ;

• ((q, α,X), Y, (q′, α′, X ′)) ∈ ∆′ iff the following holds:

1. (q, α, q′) ∈ ∆;

2. X = Y ;

3. Let α = (pre, occ, post).

– pγ ∈ X for all γ ∈ pre;

– if β/γ ∈ post and pβ ∈ X then pγ ∈ X ′;

– for every primitive assertion γ, if pγ ∈ X, γ /∈ occ, and there is no
β/¬γ ∈ post with pβ ∈ X, then pγ ∈ X ′;

– for every primitive assertion γ, if pγ 6∈ X, γ /∈ occ, and there is no
β/γ ∈ post with pβ ∈ X, then pγ 6∈ X ′;

• F ′ = F × Σ × Γ.

The intersection of the languages Lω(B′) and Lω(CS
bφ
) thus contains those infi-

nite words X = X(0)X(1) . . . over the alphabet Γ (i) that represent proposi-

tional LTL structures satisfying φ̂S , and (ii) for which there is an infinite word
w ∈ Lω(B) such that the difference between X(i) and X(i+ 1) is caused by the
action w(i), where the formal meaning of “caused by” is given by the conditions
in Item 3 of the definition of B′. Since the class of languages of infinite words
accepted by Büchi automata is closed under intersection, there is a Büchi au-
tomaton D(φ̂,S,B) accepting this intersection. This automaton can be obtained
from B′ and CS

bφ
by a product construction that is a bit more complicated, but not
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more complex, than the construction for “normal” finite automata [15]. Thus,

like CS
bφ

and B′, the automaton D(φ̂,S,B) is of size exponential in the size of the

input.

Given a word X = X(0)X(1) . . . accepted by D(φ̂,S,B), we still cannot be sure
that the propositional LTL structure represented by this word can be lifted to a
DL-LTL structure generated by a word w ∈ Lω(B) from the empty ABox w.r.t.
T . The first problem is that we must ensure that X = X(0)X(1) . . . can be lifted
to a DL-LTL structure I = (Ii)i=0,1,... satisfying φ. By Lemma 16, this is the
case if the ABox AS is consistent (w.r.t. the empty TBox). However, we will see
below that we need to adapt the definition of AS in order to align it with the
approach used to solve the second problem.

This second problem is that we need to ensure that Ii ⇒
T
w(i) Ii+1 holds for all

i ≥ 0.5 Note that Item 3 in the definition of B′ only enforces that the changes to
the named part of the interpretation (i.e., for the domain elements interpreting
individual names) are according to the action w(i). It does not say anything about
the unnamed part of the interpretation (which, according to the semantics of our
actions, should not be modified) and it does not deal with the TBox. Fortunately,
this is exactly what the TBox Tred already used in the previous section is designed
for. The idea is that every concept description C occurring in the input (directly

or as subdescription) is represented by new concept names T
(i)
C for i = 1, . . . , k,

where the index i corresponds to the set Xi ∈ S. Recall that we already have
copies A(i), r(i) (i = 1, . . . , k) for all concepts and role names occurring in the
input. In addition, we now introduce an additional copy A(0), r(0). Intuitively, for
every index i, we want to have an interpretation Ii that is a model of the ABox

Ai = {γ | pγ ∈ Xi} ∪ {¬γ | pγ 6∈ Xi}

and of the input TBox T , such that all these interpretations coincide on their
unnamed parts. Now, for every concept name A (role name r), the copy A(0)

(r(0)) corresponds to the extension of A (r) on the unnamed part of Ii (which
is the same for all i), and the copy A(i) (r(i)) corresponds to the extension of A

(r) on the named part of Ii. For a concept description C, the concept name T
(i)
C

corresponds to the extension of C in Ii (both named and unnamed part). Let
S = {X1, . . . , Xk}. We define

Tred = TN ∪ (
k⋃

i=1

T
(i)

Sub) ∪ {T
(i)
A ≡ T

(i)
E | A ≡ E ∈ T , 1 ≤ i ≤ k},

where TN and T
(i)

Sub are defined as in the previous section. The TBox Tred is defined
such that, from a model of Tred, one can derive models Ii of T coinciding on their
unnamed parts. To ensure that Ii is also a model of Ai, we basically use the

5Recall that the definition of Ii ⇒
T

w(i) Ii+1 also includes the requirement that Ii must be a
model of T .
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ABox AS introduced above with the only difference that γ(i) is defined as in (1)

in the previous section, instead of the copy γ(i) used in [3] (see above). Let ÂS

be the ABox obtained this way:

ÂS =
⋃

1≤i≤k

{γ(i) | pγ ∈ Xi} ∪ {¬γ(i) | pγ 6∈ Xi}.

We are now ready to formlate the main technical result of this section.

Lemma 18. The DL-LTL formula φ is satisfiable w.r.t. T , ∅, and B iff there is
a set S ⊆ P(L) such that Lω(D(φ̂,S,B)) 6= ∅ and ÂS is consistent w.r.t. Tred.

Proof. “⇒”: Suppose that φ is satisfiable w.r.t. T , A, and B. Then there exist
a w = α0α1 · · · ∈ Lω(B) and a DL-LTL structure I = (Ii)i=0,1,... generated by w
from A (A = ∅ by our assumption) w.r.t. T such that I, 0 |= φ. We define Xi for
all i ≥ 0 and S as follows:

Xi = {pγ ∈ L | Ii |= γ} and S = {Xi | i ∈ N}.

It follows from the definition of Xi that for all i ≥ 0, for all pγ ∈ L, pγ ∈ Xi iff

Ii |= γ. Let Î be the propositional LTL structure (Xi)i=0,1,.... Then, for all i ≥ 0,

Î, i |=
∧

p∈Xi

p ∧
∧

p 6∈Xi

¬p,

and thus,

Î, i |=
∨

X∈S

(
∧

p∈X

p ∧
∧

p 6∈X

¬p

)
.

Hence,

Î, 0 |= 2

(
∨

X∈S

(
∧

p∈X

p ∧
∧

p 6∈X

¬p

))
.

Moreover, since I, 0 |= φ, Î, 0 |= φ̂ (This can be shown by induction on the

structure of φ). Thus, Î, 0 |= φ̂S . By Lemma 17, we have that X0X1 . . . ∈ Lω(CS
bφ
).

We now show that X0X1 . . . is accepted by B′. Since w ∈ Lω(B), there exists an
accepting run q0q1 . . . of B on w. We show that (q0, α0, X0)(q1, α1, X1) . . . is a
run of B′ on X0X1 . . . : For all i ≥ 0, we have

1. (qi, αi, qi+1) ∈ ∆;

2. Xi = Xi;

3. if αi = (prei, occi, posti) then
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• pγ ∈ Xi for all γ ∈ prei: since I is a DL-LTL structure generated by
w from A w.r.t. T , Ii |= prei. Thus, for all γ ∈ prei, pγ ∈ Xi.

• if β/γ ∈ posti and pβ ∈ Xi then pγ ∈ Xi+1: since I is a DL-LTL
structure generated by w from A w.r.t. T , Ii ⇒T

αi
Ii+1. Thus, for

every β/γ ∈ posti, we have if Ii |= β then Ii+1 |= γ. By the definition
of Xi, pβ ∈ Xi implies that Ii |= β. Thus, Ii+1 |= γ, which implies
pγ ∈ Xi+1.

• for every primitive assertion γ, if pγ ∈ Xi, γ /∈ occi, and there is
no β/¬γ ∈ posti with pβ ∈ Xi, then pγ ∈ Xi+1: since I is a DL-LTL
structure generated by w from A w.r.t. T , Ii ⇒

T
αi

Ii+1. Thus, for every
primitive assertion γ, if Ii |= γ, β /∈ occ, and there is no β/¬γ ∈ posti
with Ii |= β, we have Ii+1 |= γ. By the definition of Xi, pγ ∈ Xi

implies that Ii |= γ. Moreover, since there is no β/¬γ ∈ posti with
pβ ∈ Xi, there is no β/¬γ ∈ posti with Ii |= β. Thus, Ii+1 |= γ, which
implies that pγ ∈ Xi+1.

• for every primitive assertion γ, if pγ 6∈ X and there is no β/γ ∈ post

with pβ ∈ X, then pγ 6∈ X ′: This can be shown similarly to the
previous condition.

It follows from the fact that q0q1 . . . is accepting by B that the above run is
accepting by B′. Thus, X0X1 . . . is accepted by the automaton D(φ̂,S,B).

It remains to show that ÂS is consistent w.r.t. Tred. Suppose S = {X1, . . . , Xk}.
For each ι ≥ 0, we know that there is an iι ∈ {1, . . . , k} such that Xiι = {pγ ∈ L |
Iι |= γ}. Conversely, for each i ∈ {1, . . . , k}, there is an ι ≥ 0 such that i = iι.
Let ι1, . . . , ιk ∈ {0, 1, . . . } be such that iι1 = 1, . . . , iιk = k. The interpretation J
is obtained from Iιi by the following construction:6

• ∆J := ∆Iι1 (= ∆Iι2 = · · · = ∆Iιk ),

• aJ := aIι1 (= aIι2 = · · · = aIιk ) for all a ∈ NI,

• NJ := {aJ | a ∈ Obj},

• (A(i))J := AIιi for all concept names A in the input and 1 ≤ i ≤ k,

• (A(0))J := AI0 for all concept names A in the input,

• (r(i))J := rIιi for all role names r in the input and 1 ≤ i ≤ k,

• (r(0))J := rI0 for all role names r in the input, and

• (T
(i)
C )J := CIιi for all C ∈ Sub and 1 ≤ i ≤ k.

6It is possible that Iι1
, . . . , Iιk

do not respect the order in I, but this does not matter for
our purpose.
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It follows from the definition of J that J |= TN . By induction on the structure
of C, it can be shown that for all C ∈ Sub and for all i with 1 ≤ i ≤ k, J satisfies
the concept definition of T

(i)
C (cf. the proof of Lemma 15 in [5] for details). Thus,

we get J |= Tred.

The definition of J implies that for all i with 1 ≤ i ≤ k and for all pγ ∈ L,
Iιi |= γ iff J |= γ(i). The definition of Xi implies that pγ ∈ Xi iff Iιi |= γ. Thus,
for all i with 1 ≤ i ≤ k, J is a model of the following ABox Ai

{γ(i) | pγ ∈ Xi} ∪ {¬γ(i) | pγ 6∈ Xi},

which implies that J |= ÂS .

“⇐”: Suppose that there is a set S ⊆ P(L) such that Lω(D(φ̂,S,B)) 6= ∅ and

ÂS is consistent w.r.t. Tred. Thus, there exists a model J of ÂS and Tred. For
i ∈ {1, . . . , k}, we define Ji as follows:

• ∆Ji := ∆J ,

• aJi := aJ for every individual name a ∈ NI,

• AJi := (T
(i)
A )J for every concept name A in the input, and

• rJi := (r(i))J ∩ (NJ × NJ ) ∪ (r(0))J ∩ (∆J × (¬N)J ∪ (¬N)J × ∆J ) for
every role name r in the input.

By induction on the structure of C, we can show that for each C ∈ Sub, CJi =
(T

(i)
C )J (cf. the proof of Lemma 15 in [5] for details). Since J |= Tred, for all

A ≡ C ∈ T , J |= T
(i)
A ≡ T

(i)
C for all i with 1 ≤ i ≤ k. Hence, Ji |= T for all i

with 1 ≤ i ≤ k. Moreover, J |= ÂS implies that for all i with 1 ≤ i ≤ k, J is a
model of the following ABox Ai:

{γ(i) | pγ ∈ Xi} ∪ {¬γ(i) | pγ 6∈ Xi}.

Thus, for all pγ ∈ L, pγ ∈ Xi iff Ji |= γ.

Since Lω(D(φ̂,S,B)) 6= ∅, then there exists an accepting run (q0, α0, X0)(q1, α1, X1) . . .
of B′ on X0X1 . . . such that X0X1 . . . ∈ Lω(CS

bφ
). By the construction of B′, we

get that w = α0α1 · · · ∈ Lω(B). By Lemma 17, X0X1 . . . ∈ Lω(CS
bφ
) implies that

the propositional LTL structure Ĵ = (Xi)i=0,1,... has the property that Ĵ , 0 |= φ̂S .

Thus, Ĵ |= φ̂ and

Î, 0 |= 2

(
∨

X∈S

(
∧

p∈X

p ∧
∧

p 6∈X

¬p

))
.
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The latter implies that for all ι ≥ 0,

Î, ι |=
∨

X∈S

(
∧

p∈X

p ∧
∧

p 6∈X

¬p

)
.

Hence, for all ι ≥ 0, there exists exactly one iι such that 1 ≤ iι ≤ k, Xiι ∈ S and
Xι = Xiι . Consider the DL-LTL structure I = (Iι)ι=0,1,... with Iι = Jiι . Then,

for all ι ≥ 0, for all pγ ∈ L, pγ ∈ Xι iff Iι |= γ. This, together with Ĵ |= φ̂, yields
that I, 0 |= φ (This can be shown by induction on the structure of φ).

Now we show that for all ι ≥ 0, Iι ⇒
T
w(ι) Iι+1. By the definition of Iι, we know

that all of Iι share the domain and interpretation of individuals. Since Ji |= T
for all i with 1 ≤ i ≤ k, by the definition of Iι, we have Iι |= T for all ι ≥ 0.
It follows from the definitions of J1, . . . ,Jk and the fact J |= Tred that for all
x, y ∈ ∆J , we have for all i with 1 ≤ i ≤ k,

• for each primitie concept name A in T , if x 6∈ NJ , then x ∈ AJi iff x ∈
(A(0))J and

• for each role name r, if x 6∈ NJ or y 6∈ NJ , then (x, y) ∈ rJi iff (x, y) ∈
(r(0))J .

This implies the anonymous objects respect the semantics of actions, which, to-
gether with the fact that for all ι ≥ 0, for all pγ ∈ L, pγ ∈ Xι iff Iι |= γ, and
the definition of ∆′ (the transition relation of B′) yields that the conditions in
Definition 4 are satisfied. Similarly, for all ι ≥ 0, Iι |= preι since for all γ ∈ preι,
pγ ∈ Xι. Thus, αi is executable in Iι. Hence, I is a DL-LTL structure generated
by w from A (A = ∅ by our assumption) w.r.t. T . ❏

This lemma yields a decision procedure for the satisfiability problem. In fact, the
double-exponentially many sets S ⊆ P(L) can be enumerate within ExpSpace,

and the exponentially large automaton D(φ̂,S,B) can be tested for emptiness in

exponential time. Finally, the ABox ÂS is of exponential size (due to the fact that
S is of exponential size) and the same is true for Tred. Since consistency w.r.t. an
acyclic TBox is PSpace-complete in ALCQO (ExpTime-complete in ALCIO,
NExpTime-complete in ALCQIO, respectively), the required consistency test
can be performed in ExpSpace (2-ExpTime, 2-NExpTime, respectively).

Theorem 19. The satisfiability problem (and the complement of the validity prob-
lem) of DL-LTL formulas w.r.t. acyclic TBoxes, ABoxes, and Büchi automaton
over an alphabet of (possibly) conditional actions (possibly) with occusions is

• in ExpSpace for ALCQO if the numbers in qualified number restriction
are coded in unary;
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• in 2-ExpTime for ALCIO;

• in 2-NExpTime for ALCQIO.

5 Future Work

To sum up, we have shown that the verification problem for non-terminating ac-
tion logic programs becomes decidable if we abstract from the actual execution
sequences of a non-terminating program by considering infinite sequences of ac-
tions defined by a Büchi automaton, and assume that the logic employed by the
action theory is a decidable description logic.

In this paper, we have assumed that a Büchi automaton abstracting the program
in the sense that all possible execution sequences of the program are accepted
by this automaton is given (e.g., by the developer of the action program). An
important topic for future research is how to generate such an abstraction auto-
matically from a given program. Alternatively, if this is not possible since it yields
abstractions that are too coarse (i.e., containing too many infinite sequences of
actions that are not execution sequences of the program), it would still be help-
ful to develop tools that facilitate proving that a given Büchi automaton is an
abstraction of a given program. In addition, it will probably be necessary to
develop optimized versions of the decisions procedures introduced in this paper
before they can be applied to large DL-based action theories.
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