Membership Constraints in Formal Concept Analysis

Sebastian Rudolph, Christian Săcărea, and Diana Troancă

TU Dresden and Babeș-Bolyai University of Cluj-Napoca
sebastian.rudolph@tu-dresden.de, {csacarea,dianat}@cs.ubbcluj.ro

July 29, 2015
Formal Concept Analysis

Definition

A **formal context** is a triple \(K = (G, M, I) \) with a set \(G \) called **objects**, a set \(M \) called **attributes**, and \(I \subseteq G \times M \) the binary **incidence relation** where \(gIm \) means that object \(g \) has attribute \(m \).

A **formal concept** of a context \(K \) is a pair \((A, B)\) with **extent** \(A \subseteq G \) and **intent** \(B \subseteq M \) satisfying \(A \times B \subseteq I \) and \(A, B \) are maximal w.r.t. this property, i.e., for every \(C \supseteq A \) and \(D \supseteq B \) with \(C \times D \subseteq I \) must hold \(C = A \) and \(D = B \).
Constraints on Formal Contexts

Definition (inclusion/exclusion constraint)

A *inclusion/exclusion constraint* (MC) on a formal context $K = (G, M, I)$ is a quadruple $C = (G^+, G^-, M^+, M^-)$ with

- $G^+ \subseteq G$ called **required objects**,
- $G^- \subseteq G$ called **forbidden objects**,
- $M^+ \subseteq M$ called **required attributes**, and
- $M^- \subseteq M$ called **forbidden attributes**.

A formal concept (A, B) of K is said to **satisfy** a MC if all the following conditions hold:

$G^+ \subseteq A, \quad G^- \cap A = \emptyset, \quad M^+ \subseteq B, \quad M^- \cap B = \emptyset.$

An MC is said to be **satisfiable** with respect to K, if it is satisfied by one of its formal concepts.

Problem (MCSAT)

input: formal context K, membership constraint C

output: YES if C satisfiable w.r.t. K, NO otherwise.
Theorem

MCSAT is NP-complete, even when restricting to membership constraints of the form \((\emptyset, G^-, \emptyset, M^-)\).

Proof.

In NP: guess a pair \((A, B)\) with \(A \subseteq G\) and \(B \subseteq M\), then check if it is a concept satisfying the membership constraint. The check can be done in polynomial time.

NP-hard: We polynomially reduce the NP-hard 3SAT problem to MCSAT.
Reduction from 3SAT to MCSAT (by example)

Satisfiability of formula

\[\varphi = (r \lor s \lor \neg q) \land (s \lor \neg q \lor \neg r) \land (\neg q \lor \neg r \lor \neg s) \]

corresponds to satisfiability of MC

\((\emptyset, \{(r \lor s \lor \neg q), (s \lor \neg q \lor \neg r), (\neg q \lor \neg r \lor \neg s)\}, \emptyset, \{\tilde{q}, \tilde{r}, \tilde{s}\})\)

in the context

<table>
<thead>
<tr>
<th>(q)</th>
<th>(r)</th>
<th>(s)</th>
<th>(\neg q)</th>
<th>(\neg r)</th>
<th>(\neg s)</th>
<th>(\tilde{q})</th>
<th>(\tilde{r})</th>
<th>(\tilde{s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((r \lor s \lor \neg q))</td>
<td>(\times)</td>
<td>(\neg q)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
</tr>
<tr>
<td>((s \lor \neg q \lor \neg r))</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
</tr>
<tr>
<td>((\neg q \lor \neg r \lor \neg s))</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q)</td>
<td></td>
<td></td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(r)</td>
<td></td>
<td></td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(s)</td>
<td></td>
<td></td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\neg q)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
</tr>
<tr>
<td>(\neg r)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(\neg s)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
</tbody>
</table>

Bijection between valuations making \(\varphi\) true (here: \(\{q \mapsto \text{true}, r \mapsto \text{false}, s \mapsto \text{true}\}\))

and concepts satisfying MC (here: \(\{r, \neg q, \neg s\}, \{q, s, \neg r\}\)).
Theorem

When restricted to membership constraints of the form \((G^+, \emptyset, M^+, M^-)\) or \((G^+, G^-, M^+, \emptyset)\) MCSAT is in \(\mathbf{AC_0}\).

Proof.

\((G^+, \emptyset, M^+, M^-)\) is satisfiable w.r.t. \(\mathcal{K}\) if and only if it is satisfied by \((M^{+'}, M^{+''})\). By definition, this is the case iff

1. \(G^+ \subseteq M^{+'}\) and
2. \(M^{+''} \cap M^- = \emptyset\).

These conditions can be expressed by the first-order sentences

1. \(\forall x, y. (x \in G^+ \land y \in M^+ \rightarrow xIy)\) and
2. \(\forall x. (x \in M^- \rightarrow \exists y. (\forall z. (z \in M^+ \rightarrow yIz) \land \neg yIx))\).

Due to descriptive complexity theory, first-order expressibility of a property ensures that it can be checked in \(\mathbf{AC_0}\). □
Triadic FCA

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A tricontext is a quadruple $\mathbb{K} = (G, M, B, I)$ with</td>
</tr>
<tr>
<td>- a set G called objects,</td>
</tr>
<tr>
<td>- a set M called attributes, and</td>
</tr>
<tr>
<td>- a set B called conditions, and</td>
</tr>
<tr>
<td>- $Y \subseteq G \times M \times B$ the ternary incidence relation where $(g, m, b) \in Y$ means that object g has attribute m under condition b.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A triconcept of a tricontext \mathbb{K} is a triple (A_1, A_2, A_3) with extent $A_1 \subseteq G$, intent $A_2 \subseteq M$, and modus $A_3 \subseteq B$ satisfying $A_1 \times A_2 \times A_3 \subseteq Y$ and for every $C_1 \supseteq A_1$, $C_2 \supseteq A_2$, $C_3 \supseteq A_3$ that satisfy $C_1 \times C_2 \times C_3 \subseteq Y$ holds $C_1 = A_1$, $C_2 = A_2$, and $C_3 = A_3$.</td>
</tr>
</tbody>
</table>
Membership constraints in triadic FCA

Definition

A triadic inclusion exclusion constraint (3MC) on a tricontext \(\mathbb{K} = (G, M, B, Y) \) is a sextuple \(C = (G^+, G^-, M^+, M^-, B^+, B^-) \) with

- \(G^+ \subseteq G \) called **required objects**, \(G^- \subseteq G \) called **forbidden objects**,
- \(M^+ \subseteq M \) called **required attributes**, \(M^- \subseteq M \) called **forbidden attributes**,
- \(B^+ \subseteq B \) called **required conditions**, and \(B^- \subseteq B \) called **forbidden conditions**.

A triconcept \((A_1, A_2, A_3) \) of \(\mathbb{K} \) is said to **satisfy** such a 3MC if all the following conditions hold: \(G^+ \subseteq A_1 \), \(G^- \cap A_1 = \emptyset \), \(M^+ \subseteq A_2 \), \(M^- \cap A_2 = \emptyset \), \(B^+ \subseteq A_3 \), \(B^- \cap A_3 = \emptyset \).

A 3MC constraint is said to be satisfiable with respect to \(\mathbb{K} \), if it is satisfied by one of its triconcepts.
Problem (3MCSAT)

input: formal context \(K \), triadic inclusion/exclusion constraint \(C \)

output: YES if \(C \) satisfiable w.r.t. \(K \), NO otherwise.

Theorem

3MCSAT is NP-complete, even when restricting to 3MCs of the following forms:

- \((\emptyset, G^-,\emptyset, M^-,\emptyset,\emptyset),(\emptyset, G^-,\emptyset,\emptyset,\emptyset, B^-),(\emptyset,\emptyset,\emptyset, M^-,\emptyset, B^-)\),
- \((G^+, G^-,\emptyset,\emptyset,\emptyset,\emptyset),(\emptyset,\emptyset, M^+, M^-,\emptyset,\emptyset),(\emptyset,\emptyset,\emptyset,\emptyset, B^+, B^-)\).

Proof.

In NP: guess a triple \((A_1, A_2, A_3)\) with \(A_1 \subseteq G \) and \(A_2 \subseteq M \) and \(A_3 \subseteq M \), then check if it is a triconcept satisfying the 3MC. The check can be done in polynomial time.

NP-hard: for the first type, use the same reduction as in the previous proof. For the second type, we polynomially reduce the NP-hard 3SAT problem to 3MCSAT in another way. □
Reduction from 3SAT to 3MCSAT (by example)

Satisfiability of formula

$$\varphi = (r \lor s \lor \neg q) \land (s \lor \neg q \lor \neg r) \land (\neg q \lor \neg r \lor \neg s)$$

corresponds to satisfiability of 3MC

$$(\{\ast\}, \{(r \lor s \lor \neg q), (s \lor \neg q \lor \neg r), (\neg q \lor \neg r \lor \neg s)\}, \emptyset, \emptyset, \emptyset, \emptyset)$$

in the tricontext

Bijection between valuations making φ true (here: \{q\mapstotrue, r\mapstofalse, s\mapstotrue\})
and triconcepts satisfying 3MC (here: (\{\ast\}, \{\ast, q, s\}, \{\ast, \neg r\})).
Theorem

$3MCSAT$ is in AC_0 when restricting to MCs of the forms $(\emptyset, G^-, M^+, \emptyset, B^+, \emptyset)$, $(G^+, \emptyset, \emptyset, M^-, B^+, \emptyset)$, and $(G^+, \emptyset, M^+, \emptyset, \emptyset, B^-)$.

Proof.

$\mathbb{C} = (\emptyset, G^-, M^+, \emptyset, B^+, \emptyset)$ is satisfiable w.r.t. \mathbb{K} if and only if the triconcept (G_U, M, B) satisfies it (where $G_U = \{g \mid \{g\} \times M \times B \subseteq Y\}$), that is, if $G_U \cap G^- = \emptyset$. This can be expressed by the first-order formula

$$\forall x. x \in G^- \rightarrow \exists y, z. (y \in M \land z \in B \land \neg (x, y, z) \in Y).$$

Therefore, checking satisfiability of this type of 3MCs is in AC_0. The other cases follow by symmetry.
Definition

An **n-context** is an \((n+1)\)-tuple \(\mathbb{K} = (K_1, \ldots, K_n, R)\) with \(K_1, \ldots, K_n\) being sets, and \(R \subseteq K_1 \times \ldots \times K_n\) the \(n\)-ary incidence relation. An **n-concept** of an n-context \(\mathbb{K}\) is an \(n\)-tuple \((A_1, \ldots, A_n)\) satisfying \(A_1 \times \ldots \times A_n \subseteq R\) and for every \(n\)-tuple \((C_1, \ldots, C_n)\) with \(A_i \supseteq C_i\) for all \(i \in \{1, \ldots, n\}\), satisfying \(C_1 \times \ldots \times C_n \subseteq R\) holds \(C_i = A_i\) for all \(i \in \{1, \ldots, n\}\).

Definition

A **n-adic inclusion/exclusion constraint** \((nMC)\) on a \(n\)-context \(\mathbb{K} = (K_1, \ldots, K_n, R)\) is a \(2\times n\)-tuple \(\mathbb{C} = (K_1^+, K_1^-, \ldots, K_n^+, K_n^-)\) with \(K_i^+ \subseteq K_i\) called **required sets** and \(K_i^- \subseteq K_i\) called **forbidden sets**. An \(n\)-concept \((A_1, \ldots, A_n)\) of \(\mathbb{K}\) is said to **satisfy** such a membership constraint if \(K_i^+ \subseteq A_i\) and \(K_i^- \cap A_i = \emptyset\) hold for all \(i \in \{1, \ldots, n\}\). An n-adic membership constraint is said to be satisfiable with respect to \(\mathbb{K}\), if it is satisfied by one of its \(n\)-concepts.
Theorem

For a fixed $n > 2$, the nMCSAT problem is

- **NP-complete** for any class of constraints that allows for
 - the arbitrary choice of at least two forbidden sets or
 - the arbitrary choice of at least one forbidden set and the corresponding required set,

- **in AC_0** for the class of constraints with at most one forbidden set and the corresponding required set empty,

- **trivially true** for the class of constraints with all forbidden sets and at least one required set empty.
Econding in Answer Set Programming

Given an \(n \)-context \(\mathbb{K} = (K_1, \ldots, K_n, R) \) and \(nMC \) \(\mathbb{C} = (K_1^+, K_1^-, \ldots, K_n^+, K_n^-) \), let the corresponding problem be given by the following set of ground facts \(F_{\mathbb{K},\mathbb{C}} \):

- \(\text{set}_i(a) \) for all \(a \in K_i \),
- \(\text{rel}(a_1, \ldots, a_n) \) for all \((a_1, \ldots, a_n) \in R \),
- \(\text{required}_i(a) \) for all \(a \in K_i^+ \), and
- \(\text{forbidden}_i(a) \) for all \(a \in K_i^- \).

Let \(P \) denote the following fixed answer set program (with rules for every \(i \in \{1, \ldots, n\} \)):

<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{in}_i(x) \leftarrow \text{set}_i(x) \land \lnot \text{out}_i(x))</td>
</tr>
<tr>
<td>(\text{out}_i(x) \leftarrow \text{set}_i(x) \land \lnot \text{in}_i(x))</td>
</tr>
<tr>
<td>(\quad \leftarrow \bigwedge_{j \in {1, \ldots, n} \setminus {i}} \text{in}_j(x_j) \land \lnot \text{rel}(x_1, \ldots, x_n))</td>
</tr>
<tr>
<td>(\text{exc}i(x_i) \leftarrow \bigwedge{j \in {1, \ldots, n} \setminus {i}} \text{in}_j(x_j) \land \lnot \text{rel}(x_1, \ldots, x_n))</td>
</tr>
<tr>
<td>(\quad \leftarrow \text{out}_i(x) \land \lnot \text{exc}_i(x))</td>
</tr>
<tr>
<td>(\quad \leftarrow \text{out}_i(x) \land \text{required}_i(x))</td>
</tr>
<tr>
<td>(\quad \leftarrow \text{in}_i(x) \land \text{forbidden}_i(x))</td>
</tr>
</tbody>
</table>

Then the answer sets of \(P \) correspond to the \(n \)-concepts of \(\mathbb{K} \) satisfying \(\mathbb{C} \).
Applications

- "concept retrieval"
- guided navigation by interactively narrowing down the search space ("faceted browsing")
- context debugging

Thank You!